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Why missing data?

◮ sensor failures

measurements are accidentally corrupted

◮ compressive sensing

measurements are intentionally skipped

◮ model-free signal processing

missing data is what we aim to find

2 / 18



This talk . . .

◮ given data is "noisy" (errors-in-variables setup)

Ig — given/specified elements of w

w |Ig
— selects the elements Ig of w

◮ problem is to simultaneously
◮ approximate w |Ig

and
◮ fill in the missing values

by an LTI system of bounded complexity

◮ special case: exact identification with missing data
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Exact identification with missing data

◮ the problem is equivalent to finding ŵ , such that

‖w |Ig
− ŵ |Ig

‖= 0
︸ ︷︷ ︸

exact data

and rank
(
HL(ŵ)

)
≤ r︸ ︷︷ ︸

of an LTI system

where r is bound on the model complexity and

HL(w) :=




w(1) w(2) · · · w(T −L+1)
w(2) w(3) · · · w(T −L+2)
w(3) w(4) · · · w(T −L+3)
...

...
...

w(L) w(L+1) · · · w(T )




◮ Hankel structured low-rank matrix completion
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Approx. identification with missing data

◮ given w and r

minimize over ŵ ‖w |Ig
− ŵ |Ig

‖
︸ ︷︷ ︸
approximation error

subject to rank
(
HL(ŵ)

)
≤ r︸ ︷︷ ︸

ŵ is trajectory of

bounded complexity LTI system

◮ approx. Hankel structured low-rank matrix completion
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Main idea

◮ element-wise nonnegative weights wi(t) ↔ vi(t)

◮ weighted cost function

‖w − ŵ‖v :=

√√√√ T

∑
t=1

q

∑
i=1

vi(t)
(
wi(t)− ŵi(t)

)2

◮ zero weight vi(t) = 0 ↔ missing value wi(t)

◮ vi(t) =
1

"variance of the noise on wi(t)"

◮ zero weight ↔ infinite noise variance
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Problem

◮ with vi(t) =

{
1, if wi(t) is given

0, if wi(t) is missing

‖w |Ig
− ŵ |Ig

‖= ‖w − ŵ‖v

◮ and the problem is

minimize over ŵ ‖w − ŵ‖v

subject to rank
(
HL(ŵ)

)
≤ r

(SLRA)

◮ weighted Hankel structured low-rank approximation
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Parameter optimization

◮ using the kernel parameterization

rank
(
HL(ŵ)

)
≤ r ⇐⇒

RHL(ŵ) = 0

R ∈ R
p×qL full row rank (f.r.r.)

q — # of variables

p := qL− r — co-rank (rank deficiency)

◮ (SLRA) becomes

minimize over ŵ and R ‖w − ŵ‖v

subject to RS (p̂) = 0 and R f.r.r.
(SLRAR)
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VARPRO-like solution method

◮ (SLRAR ) is separable in p̂ and R, i.e.,

minimize over f.r.r. R ∈ R
p×qL f (R) (OUTER)

where

f (R) := min
ŵ

‖w − ŵ‖v s.t. RHL(ŵ) = 0 (INNER)

◮ (INNER) is a (generalized) least norm problem

◮ p̂ is eliminated (projected out) of (SLRAR )
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Evaluation of f (R) with missing data

f = min
x ,y

x⊤x subject to Ax +By = c (GLN)

Lemma under the following assumptions

A1. B is full column rank

A2. 1 ≤ dim(c)−dim(y)≤ dim(x)

A3. Ā := B⊥A is full row rank

(GLN) has a unique solution

f = c⊤(B⊥)⊤(ĀĀ⊤)−1B⊥c,

x = Ā⊤(ĀĀ⊤)−1B⊥c, y = B+(c−Ax)
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Proof
Under A1 and A2, rank(B) = ny and

TB =

[
B+

B⊥

]
B =

[
T+B

T⊥B

]
=

[
Iny

0

]
, det(T ) 6= 0

Then [
B+Ax

B⊥Ax

]
+

[
y

0

]
=

[
B+c

B⊥c

]
.

The first equation

y = B+(c−Ax)

uniquely determines y , given x . The second equation

B⊥Ax = B⊥c (∗)

defines a linear constraint for x only.
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Proof

By assumption A2, (∗) is an underdetermined system of

linear equations. Therefore, (GLN) is equivalent to the

following standard weighted least norm problem

f = min
x

x⊤x B⊥Ax = B⊥c. (GLN’)

By assumption A3 the solution is unique.
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About assumptions A1–A3

◮ A1 and A3 ensure uniqueness of y

◮ otherwise, y ∈ B+(c−Ax)+null(B)

◮ A2 ensures feasibility with a nontrivial solution

◮ with m = ny , (GLN) has trivial solution f = 0

◮ with m−ny > nx , (GLN) generically has no solution
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Examples

1. autonomous system identification with missing data
◮ 2nd order, T = 50, y = ȳ +white noise
◮ periodically missing data with period 3

2. data-driven simulation (as missing data estimation)
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Autonomous system identification
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Model-free simulation

◮ second order SISO system, defined by

y(t) = 1.456y(t −1)−0.81y(t −2)+u(t)−u(t −1)

◮ w (1) is noisy trajectory generated from random input

◮ w (2) is the impulse response estimate h̄, i.e.,

u(2) = (0, . . . ,0︸ ︷︷ ︸
ℓ

,1,0, . . . ,0︸ ︷︷ ︸
pulse input

)

y (2) = (0, . . . ,0︸ ︷︷ ︸
ℓ

, ĥ(0), ĥ(1), . . . , ĥ(T2− ℓ−1)︸ ︷︷ ︸
impulse response — missing data

)
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Conclusions

◮ element-wise weighted approximation criterion

◮ zero weights ↔ missing values

◮ cost function evaluation

f = min
x ,y

x⊤x subject to Ax +By = c

◮ unique solution under certain assumptions

◮ nonlinear least-squares problem

◮ initial approximation from nuclear norm relaxaion
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