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Algebraic curves

Affine variety

consider system of p, g-variate polynomials
ri(dy,...,dq.)=0, i=1,...,p = R(d)=0
the set of their real valued solutions
B={deRI|R(d)=0}
is affine variety

of primary interest for data modeling is the set % (the model)

R(d) =0 is demoted to (kernel) representation of %
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Dimension of affine variety

image representation:
#B={d|d=P(), forall e RI}
dim(%) =: minimum g in image representation of &

affine variety of dimension one is called algebraic curve
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Algebraic curves in 2D

in the special case q = 2, we use
X :==dj. and y :=do.

the set
#={(x,y)€R?|r(x,y)=0}

may be
o empty, e.9., r(x,y) =x?+y?+1
« finite (isolated points), e.g., r(x,y) =x?+y?, or

o infinite (curve), e.g., r(x,y) =x2+y2—1

Examples
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Examples
e subspace linear % (q > 2, zeroth degree repr.)
e conic section second order algebraic curve in R?
e cissoid B={(x,y) | y?(L+x)=(1-x)3}
o folium of Descartes B ={(x,y) | x3+y3—3xy =0}

four-leaved rose B =1{(x,y) | (x?+y?)® —4x°y?2 =0}
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Parabolay =x2+1
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Ellipse y2+xy +x°—-1=0
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Cissoid y2(1+x) = (1 —x)3
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Folium of Descartes x2 +y3 —3xy =0
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Rose (x?+y?)3 —4x%y2 =0
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Explicit vs implicit representations

function y = f(x) vs relation (r(x,y) = 0) (mathematics)

e input/output vs kernel representation (system theory)
e regression vs EIV regression (statistics)
o functional vs structural models (statistics)

11/33



Algebraic curves The fitting problem Bias correction Examples

The fitting problem

Given:

e data points 2 = {dj,...,dy }
¢ set of candidate curves (model class) .#
e data-model distance measure dist(d, %)

find model % € .# that is as close as possible to the data:

minimize over B € .# dist(Z2, %)
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Algebraic vs geometric distance measures

geometric distance: dist(d, %) := ming_,, [|d — a||

where R defines

algebraic “distance”: IIR(d)]| kernel repr. of 2

other interpretations:
e misfit vs latency

P. Lemmerling and B. De Moor, Misfit versus latency,
Automatica, 37:2057-2067, 2001

e algebraic <« LS > ARMAX

e geometric <« TLS/PCA <+ EIV SYSID
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Example: geometric distance to a linear model

8 o~
dist(2,%1)= min |y I|dj—d;|3=7.8865
dl,...,d8€t%1 j:]_

14/33



Algebraic curves The fitting problem Bias correction Examples

Example: geometric distance to a quadratic model

-4 -2 0 2 4 6 8 10

8 ~
dist(2,%,) = min > lldj —djl|*=1.1719
d17.‘.7d8€'%72 j:]_
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Kernel representation in 2D

linearin 6

r(d)= zgitl O (d) = B(d) nonlinear in d
e 6 — (row) vector of parameters

e ¢(d) — vector of monomials, e.g.,

q=2, n:=deg(r)=2 ~ @d)=[x2 xy x y2 y 1]
n=3~ gd)=[x3 x%y! x2 xy2 xy x y® y2 y 1]’

¢ gex = (*F") — measure of complexity of .,

the degree n is the only design parameter in the curve fitting prob.

e O is nonunique, 6 and a0, for all a # 0, define the same £
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Algebraic curve fitting in R?

minimize over |8, =1 z Ire(d))|I5

Ire(d)I3 =8 [@(ch) - o(c)]|[>

= 00(2)0"(2)8" =0v(2)0"

M=

algebraic curve fitting is eigenvalue problem
minimize over 8], =1 6W(2)8'
or, equivalently, (unstructured) low rank approximation problem

minimize over ® | ®(2)—d|r

subjectto  rank(®) < geq — 1

17/33



The fitting problem

Geometric distance

minimize over ¥ ¢ & H [dy - dN]—[al aN}
—_——

F

Q)

let Z={d | 8¢p(d)=0}
ICHB = aje%, forj=1,....N
— G(p(aj):o, forj=1,....N
= 69(2)=0
the problem of computing the geometric distance is:

minimize over HD—ﬁHF subject to QCD(@):O
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Geometric curve fitting

minimize over # € .4, dist(2,%)
assuming that N > (e, we have

00(7)=0, 040 rank(cb(@))gqext_L G = (21")

geometric curve fitting is nonlinearly structured low rank approx.:

minimize over Zand 6 ||D— f)H
subject to rank((b(.@)) < Oext—1

note: algebraic fitting is a relaxation of geometric fitting,
obtained by removing the structure constraint
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Bias corrected low rank approximation

assume that & is generated by the errors-in-variables model
dj =doj+dj, where doje %andd ~N(0,0%4) (EIV)

o %y is the “true” model
* Zy:={do1,...,don } is the true data, and

« 9= {al,...,EIN } is the measurement noise

the estimate obtained by the algebraic fitting method is biased

define the matrices
V=0(2)0"(2) and  Wo:=d(Z)d (%)

we construct “corrected” matrix V¢, such that E(V¢) = Wy
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Hermite polynomials

the polynomials

ho(x)=1, hy(x)=x, and
he(x) =xhg_1(X) — (k —2)hg_2(x), fork=2,3,...

have the property

E (he(Xo+X)) =x§,  where X ~N(0,0?) (%)
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Bias correction

Derivation of the correction

N

N
V=3 p(d)e’(d)= 3 [a(d)g(dy)]
(=1 /=1

where the monomials @ are
@(d):df_kl-.'dg_kq, for k=1,...,0et
the (i,j)th element of W is
N q ~
‘-»Uij Z d |1+njl .. n|q+an _ Z I—I (dO kf'i‘dk[)nqurnjq

(=1k=1

by (EIV), akg are independent, zero mean, normally distributed
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Bias correction

then, by the property (xx) of the Hermite polynomials

N g
@jj =) |_| nig-+ng (Ake)
(=1k=1

has the desired property

‘-.Uc Jj ; 0 K¢ = l.UO,ij
1k=1

the corrected matrix W, is an even polynomial in o

Ve(0%) =Veo+0%Weq+- -+ 0" ™MWep,

the estimate 8 is in the null space of W¢(a?), i.e., W(02)8 =0

computing simultaneously o and 8 is a polynomial EVP
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Comparison of algebraic, bias corrected, and
geometric fits on simulation examples

Simulation setup: g=2,p=1

e true model Bo={d | p(d)=0}

data points d =dg+d, do € %, d ~ N(0,02l)

algebraic fit — black dotted line

bias corrected fit — dashed dotted line

geometric fit — dashed line
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Parabolay =x2+1
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Hyperbola x? —y? -1 =0
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Cissoid y2(1+x) = (1 —x)3
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Folium of Descartes x2 +y3 —3xy =0

2
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Eight curve y2 —x2+x4=0

) 05 0 05 1
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Rose (x?+y?)3 —4x%y2 =0

=) 0.5 0 05

Examples
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“Special data” example

0 5 10
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new application of structured low rank approximation
the first | know of with nonlinear structure

To-do list:
e Robust and efficient optimization methods

e Generalize to nD (vector polynomials)

Link to linear system identification

Link to related curve fitting methods, e.g., principal curves

Statistical properties

Impact on applications
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Questions?
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