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Affine variety

consider system of p, q-variate polynomials

ri(d1·, . . . ,dq·) = 0, i = 1, . . . ,p ⇐⇒ R(d) = 0

the set of their real valued solutions

B = {d ∈ R
q | R(d) = 0}

is affine variety

of primary interest for data modeling is the set B (the model)

R(d) = 0 is demoted to (kernel) representation of B
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Dimension of affine variety

image representation:

B = {d | d = P(ℓ), for all ℓ ∈ R
g }

dim(B) =: minimum g in image representation of B

affine variety of dimension one is called algebraic curve
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Algebraic curves in 2D

in the special case q = 2, we use

x := d1· and y := d2·

the set
B = {(x ,y) ∈ R

2 | r(x ,y) = 0}

may be

• empty, e.g., r(x ,y) = x2 +y2 +1

• finite (isolated points), e.g., r(x ,y) = x2 +y2, or

• infinite (curve), e.g., r(x ,y) = x2 +y2 −1
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Examples

• subspace linear B (q ≥ 2, zeroth degree repr.)

• conic section second order algebraic curve in R
2

• cissoid B = {(x ,y) | y2(1+x) = (1−x)3 }

• folium of Descartes B = {(x ,y) | x3 +y3 −3xy = 0}

• four-leaved rose B = {(x ,y) | (x2 +y2)3 −4x2y2 = 0}
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Parabola y = x2+1
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Ellipse y2+xy +x2−1 = 0
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Cissoid y2(1+x) = (1−x)3
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Folium of Descartes x3+y3−3xy = 0
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Rose (x2+y2)3−4x2y2 = 0
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Explicit vs implicit representations

• function y = f (x) vs relation (r(x ,y) = 0) (mathematics)

• input/output vs kernel representation (system theory)

• regression vs EIV regression (statistics)

• functional vs structural models (statistics)
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The fitting problem

Given:

• data points D = {d1, . . . ,dN }

• set of candidate curves (model class) M

• data-model distance measure dist(d ,B)

find model B̂ ∈ M that is as close as possible to the data:

minimize over B ∈ M dist(D ,B)
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Algebraic vs geometric distance measures

geometric distance: dist(d ,B) := mind̂∈B
‖d − d̂‖

algebraic “distance”: ‖R(d)‖
where R defines
kernel repr. of B

other interpretations:

• misfit vs latency

P. Lemmerling and B. De Moor, Misfit versus latency,
Automatica, 37:2057–2067, 2001

• algebraic ↔ LS ↔ ARMAX

• geometric ↔ TLS/PCA ↔ EIV SYSID
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Example: geometric distance to a linear model
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Example: geometric distance to a quadratic model
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Kernel representation in 2D

r(d) = ∑qext
k=1 θk φk (d) = θφ(d) linear in θ

nonlinear in d

• θ — (row) vector of parameters

• φ(d) — vector of monomials, e.g.,

q = 2, n := deg(r)= 2  φ(d)=
[
x2 xy x y2 y 1

]⊤

n= 3  φ(d)=
[
x3 x2y1 x2 xy2 xy x y3 y2 y 1

]⊤

• qext =
(q+n

n

)
— measure of complexity of Mn

the degree n is the only design parameter in the curve fitting prob.

• θ is nonunique, θ and αθ , for all α 6= 0, define the same B
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Algebraic curve fitting in R
2

minimize over ‖θ‖2 = 1
N

∑
j=1

‖rθ (dj)‖
2
2

N

∑
j=1

‖rθ (dj)‖
2
2 =

∥∥θ
[
φ(d1) · · · φ(dN)

]∥∥2
2

= θΦ(D)Φ⊤(D)θ⊤ = θΨ(D)θ⊤

algebraic curve fitting is eigenvalue problem

minimize over ‖θ‖2 = 1 θΨ(D)θ⊤

or, equivalently, (unstructured) low rank approximation problem

minimize over Φ̂ ‖Φ(D)− Φ̂‖F

subject to rank(Φ̂)≤ qext −1

17 / 33



Algebraic curves The fitting problem Bias correction Examples

Geometric distance

minimize over D̂ ⊂ B

∥∥∥∥
[
d1 · · · dN

]
︸ ︷︷ ︸

D

−
[
d̂1 · · · d̂N

]

︸ ︷︷ ︸
D̂

∥∥∥∥
F

let B = {d | θφ(d) = 0}

D̂ ⊂ B ⇐⇒ d̂j ∈ B, for j = 1, . . . ,N

⇐⇒ θφ(d̂j) = 0, for j = 1, . . . ,N

⇐⇒ θΦ(D̂) = 0

the problem of computing the geometric distance is:

minimize over D̂ ‖D− D̂‖F subject to θΦ(D̂) = 0

18 / 33



Algebraic curves The fitting problem Bias correction Examples

Geometric curve fitting

minimize over B ∈ Mn dist(D ,B)

assuming that N ≥ qext, we have

θΦ(D̂)= 0, θ 6= 0 ⇐⇒ rank
(
Φ(D̂)

)
≤ qext−1, qext :=

(2+n
n

)

geometric curve fitting is nonlinearly structured low rank approx.:

minimize over D̂ and θ ‖D− D̂‖

subject to rank
(
Φ(D̂)

)
≤ qext −1

note: algebraic fitting is a relaxation of geometric fitting,
obtained by removing the structure constraint
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Bias corrected low rank approximation

assume that D is generated by the errors-in-variables model

dj = d0,j + d̃j , where d0,j ∈ B0 and d̃j ∼ N(0,σ2Iq) (EIV)

• B0 is the “true” model

• D0 := {d0,1, . . . ,d0,N } is the true data, and

• D̃ := { d̃1, . . . , d̃N } is the measurement noise

the estimate obtained by the algebraic fitting method is biased

define the matrices

Ψ := Φ(D)Φ⊤(D) and Ψ0 := Φ(D0)Φ
⊤(D0)

we construct “corrected” matrix Ψc, such that E(Ψc) = Ψ0
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Hermite polynomials

the polynomials

h0(x) = 1, h1(x) = x , and

hk (x) = xhk−1(x)− (k −2)hk−2(x), for k = 2,3, . . .

have the property

E
(
hk (x0 + x̃)

)
= xk

0 , where x̃ ∼ N(0,σ2) (∗∗)
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Derivation of the correction

Ψ=
N

∑
ℓ=1

φ(dℓ)φ⊤(dℓ) =
N

∑
ℓ=1

[
φi(dℓ)φj(dℓ)

]

where the monomials φi are

φk (d) = dnk1
1· · · · d

nkq
q· , for k = 1, . . . ,qext

the (i , j)th element of Ψ is

ψij =
N

∑
ℓ=1

d
ni1+nj1

1ℓ · · · d
niq+njq
qℓ =

N

∑
ℓ=1

q

∏
k=1

(d0,kℓ+ d̃kℓ)
niq+njq

by (EIV), d̃kℓ are independent, zero mean, normally distributed
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then, by the property (∗∗) of the Hermite polynomials

φc,ij :=
N

∑
ℓ=1

q

∏
k=1

hniq+njq (dkℓ)

has the desired property

E(ψc,ij) =
N

∑
ℓ=1

q

∏
k=1

d
niq+njq

0,kℓ =: ψ0,ij

the corrected matrix Ψc is an even polynomial in σ

Ψc(σ2) = Ψc,0 +σ2Ψc,1 + · · ·+σ2nψΨc,nψ

the estimate θ̂ is in the null space of Ψc(σ2), i.e., Ψc(σ2)θ̂ = 0

computing simultaneously σ and θ is a polynomial EVP
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Comparison of algebraic, bias corrected, and
geometric fits on simulation examples

Simulation setup: q = 2, p = 1

• true model B0 = {d | θ0φ(d) = 0}

• data points d = d0 + d̃ , d0 ∈ B0, d̃ ∼ N(0,σ2I)

• algebraic fit — black dotted line

• bias corrected fit — dashed dotted line

• geometric fit — dashed line
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Parabola y = x2+1
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Hyperbola x2−y2−1 = 0
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Cissoid y2(1+x) = (1−x)3
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Folium of Descartes x3+y3−3xy = 0
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Eight curve y2−x2+x4 = 0
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Rose (x2+y2)3−4x2y2 = 0
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“Special data” example
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new application of structured low rank approximation
the first I know of with nonlinear structure

To-do list:

• Robust and efficient optimization methods

• Generalize to nD (vector polynomials)

• Link to linear system identification

• Link to related curve fitting methods, e.g., principal curves

• Statistical properties

• Impact on applications
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Questions?
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