Low-rank approximation problems in system identification

Ivan Markovsky

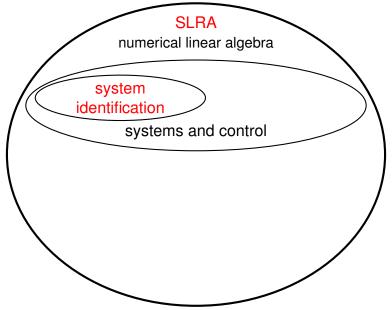
Aims of the lecture

 review system identification from the perspective of linear algebra

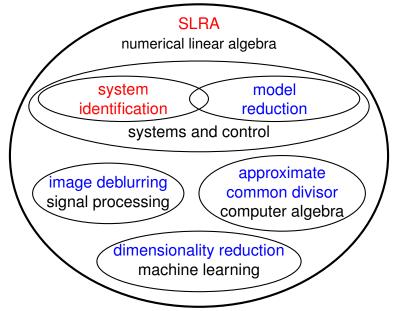
this leads to a core computational problem:

(SLRA) approximate a structured matrix by a low-rank matrix with the same structure

 outline solution approaches and an application to model-free control



Scope of structured low-rank approximation



Outline

Introduction: data, model class, approximation

Approximation error-model complexity trade-off

System identification \leftrightarrow low-rank approximation

Solution methods: variable projection

Example: model-free control

Conclusions

Outline

Introduction: data, model class, approximation

Approximation error-model complexity trade-off

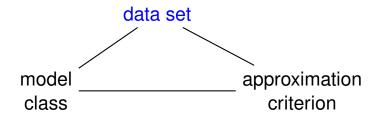
System identification ↔ low-rank approximation

Solution methods: variable projection

Example: model-free control

Conclusions

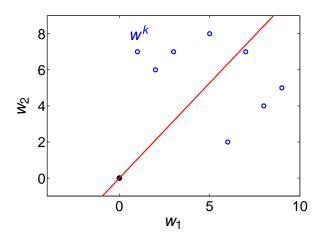
First is the data ...



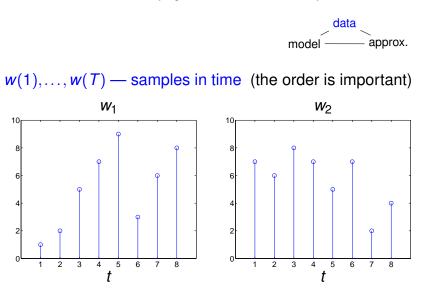
Line fitting (linear static model)

 w^1, \ldots, w^N — data points

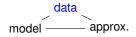
(the order is not important)



Time series data (dynamic model)



Summary: data

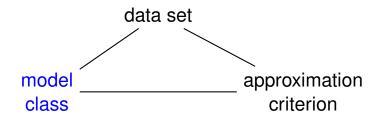


• the data is a set $w = \{w^1, \dots, w^N\}$

• of vector valued
$$w^k = \begin{bmatrix} w_1^k \\ \vdots \\ w_q^k \end{bmatrix}$$

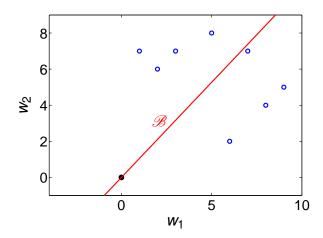
- ▶ time series w_i^k = (w_i^k(1),..., w_i^k(T_k))
 N # of repeated experiments
 q # of variables
 T_k # of time samples in the kth exp.
- in static problems, $T_1 = \cdots = T_N = 1$

Next is the model class



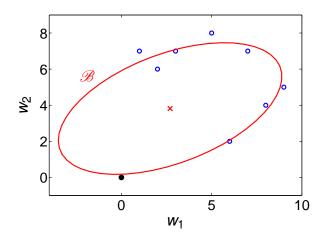
Line fitting (linear static model)

- *model*: line through the origin
- ℳ model class: all lines through the origin



Conic section fitting (quadratic static model)

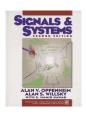
- model: conic section
- model class: all conic sections



Classical definition of dynamical model

dynamical model is signal processor

$$\widehat{u} \longrightarrow \mathsf{model} \longrightarrow \widehat{y}$$



approx.

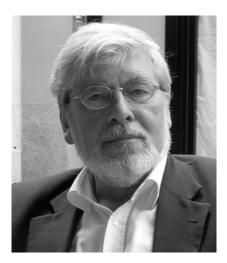
data

model

- specified by a map $\hat{y} = f(\hat{u})$
- "state space model", "transfer function model", ...
- however, lines and conic sections may not be graphs

• *e.g.*,
$$\xrightarrow{\uparrow}$$
, $\xrightarrow{\uparrow}$ can't be represented by $f: \widehat{u} \mapsto \widehat{y}$

"good definition should formalize sensible intuition" Jan Willems, Paradigms and puzzles, TAC'91



Behavioral definition of model

a model is a subset

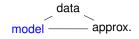
$$\mathscr{B} = \left\{ \widehat{w} \mid g(\widehat{w}) = 0 \text{ holds} \right\}$$

represented by an implicit function g

- in the static case, $g(\widehat{w}) = 0$ is algebraic equation
- in the dynamic case, $g(\widehat{w}) = 0$ is difference equation

•
$$\widehat{w} = \begin{bmatrix} \widehat{u} \\ \widehat{y} \end{bmatrix}$$
, $\widehat{y} = f(\widehat{u})$ is a special case of $g(\widehat{w}) = 0$
 $(g(\widehat{u}, \widehat{y}) = \widehat{y} - f(\widehat{u}))$

Summary: model



three data modeling examples:

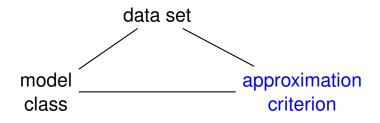
problemmodelline fittingstatic linearconic section fittingstatic nonlinearsystem identificationdynamic

two definitions of a model:

classical	behavioral
map $\widehat{y} = f(\widehat{u})$	set { $\widehat{w} \mid g(\widehat{w}) = 0$ }
f — function	g — relation

the classical one can not deal with all examples

Finally, the approximation criterion ...

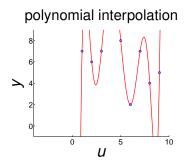


Exact model

$$w \subset \mathscr{B} \iff w^1, \dots, w^N \in \mathscr{B}$$
$$\iff : \quad "w \text{ is exact data of } \mathscr{B}'$$

two well known exact modeling problems

- realization: LTI model class, impulse resp. data
- interpolation: static nonlinear model class



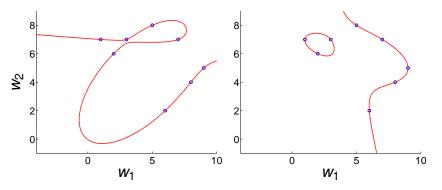
$$\mathscr{B} = \left\{ \begin{bmatrix} \widehat{u} \\ \widehat{y} \end{bmatrix} \mid \widehat{y} = f(\widehat{u}) \right\}$$

f is 8th order polynomial

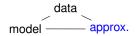
Exact 3rd order nonlinear static models

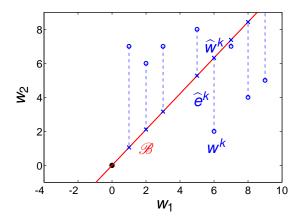
$$\mathscr{B} = \left\{ \left[\begin{array}{c} \widehat{w}_1 \\ \widehat{w}_2 \end{array} \right] \mid g(\widehat{w}_1, \widehat{w}_2) = 0 \right\}$$

g is 3rd order polynomial in \widehat{w}_1 , \widehat{w}_2

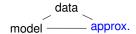


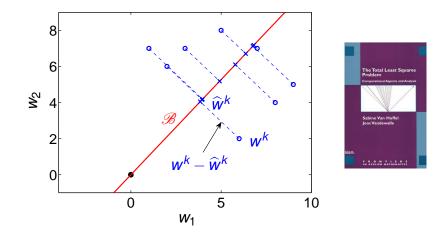
Ordinary least squares





Total least squares





Linear static case



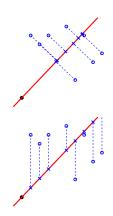
$$\min_{\widehat{u},\widehat{y},\theta} \| \begin{bmatrix} u - \widehat{u} & y - \widehat{y} \end{bmatrix} \|_{\mathsf{F}} \text{ s.t. } \underbrace{\widehat{u}\theta = \widehat{y}}_{(\widehat{u},\widehat{y}) \subset \mathscr{B}(\theta)}$$

$$\widehat{w} = (\widehat{u}, \widehat{y})$$
 approximates $w = (u, y)$

ordinary least squares

$$\min_{\widehat{e},\theta} \|\widehat{e}\|_2 \quad \text{s.t.} \quad \underbrace{u\theta = y + \widehat{e}}_{(\widehat{e},u,y) \subset \mathscr{B}_{\mathsf{ext}}(\theta)}$$

 \hat{e} is unobserved (latent) input



Exact models in the approximation criteria

Misfit approach:

modify w as little as possible, so that \hat{w} is exact

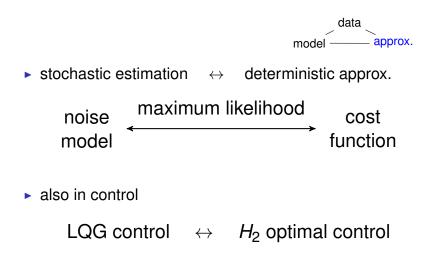
 $\| \boldsymbol{w} - \widehat{\boldsymbol{w}} \|$ is the misfit criterion

Latency approach:

augment \mathscr{B} by as small as possible e, so that (e, w) is exact

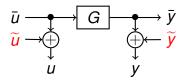
 $\|e\|$ is the latency criterion

Deterministic vs stochastic setting



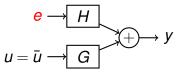
Misfit and latency in the stochastic setting

$\mathsf{EIV} \leftrightarrow \mathsf{misfit}$



$$\begin{split} \widetilde{\boldsymbol{u}}, \, \widetilde{\boldsymbol{y}} & -\text{measurement errors} \\ \min_{\widehat{\boldsymbol{w}} \subset \mathscr{B}} \, \| \boldsymbol{w} - \widehat{\boldsymbol{w}} \| \\ \mathscr{B} := \left\{ \begin{bmatrix} \widehat{\boldsymbol{u}} \\ \widehat{\boldsymbol{y}} \end{bmatrix} \mid \widehat{\boldsymbol{y}} = \widehat{\boldsymbol{G}} \widehat{\boldsymbol{u}} \right\} \end{split}$$

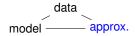
 $\textbf{ARMAX} \leftrightarrow \textbf{latency}$

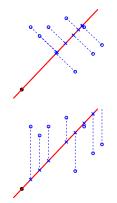


e — disturbance

 $\min_{\substack{(\widehat{e},w)\subset\mathscr{B}_{\mathsf{ext}}}} \|\widehat{e}\|$ $\mathscr{B}_{\mathsf{ext}} := \left\{ \begin{bmatrix} \widehat{e} \\ u \\ y \end{bmatrix} \mid y = [\widehat{H} \ \widehat{G}] \begin{bmatrix} \widehat{e} \\ u \end{bmatrix} \right\}$

Summary: approximation criterion





 $\blacktriangleright \ TLS \leftrightarrow misfit \leftrightarrow errors\text{-in-variables}$

$$\min_{\widehat{\boldsymbol{w}} \subset \mathscr{B}} \|\boldsymbol{w} - \widehat{\boldsymbol{w}}\| \quad \left(\begin{array}{c} \text{projection} \\ \text{of } \boldsymbol{w} \text{ on } \mathscr{B} \end{array}\right)$$

 $\blacktriangleright \text{ OLS} \leftrightarrow \text{latency} \leftrightarrow \text{ARMAX}$

 $\min_{(\widehat{e},w)\in\mathscr{B}_{\mathsf{ext}}} \|\widehat{e}\|$

Outline

Introduction: data, model class, approximation

Approximation error-model complexity trade-off

System identification \leftrightarrow low-rank approximation

Solution methods: variable projection

Example: model-free control

Conclusions

A general problem

the aim is to obtain "simple" and "accurate" model:

"accurate" \rightarrow min. error($w, \widehat{\mathscr{B}}$) = misfit/latency "simple" \rightarrow Occam's razor principle: among equally accurate models, choose the simplest

Model complexity

simple models are small models

 $\mathscr{B}_1 \subset \mathscr{B}_2 \implies \mathscr{B}_1 \text{ is simpler than } \mathscr{B}_2$

- nonlinear model complexity is an open problem
- ▶ in the linear time-invariant case, ℬ is a subspace

size of the model = dimension of \mathscr{B}

however, models with inputs are infinite dimensional

Linear time-invariant model's complexity

• restriction of \mathscr{B} on an interval [1, T]

$$\begin{aligned} \mathscr{B}|_{\mathcal{T}} &= \{ \, \textit{w} = \big(\textit{w}(1), \dots, \textit{w}(\mathcal{T})\big) \mid \exists \ \textit{w}_{p}, \textit{w}_{f}, \\ \text{such that} \ (\textit{w}_{p}, \textit{w}, \textit{w}_{f}) \in \mathscr{B} \, \} \end{aligned}$$

► for sufficiently large T

$$dim(\mathscr{B}|_{\mathcal{T}}) = (\texttt{\# of inputs}) \cdot \mathcal{T} + (order)$$
$$complexity(\mathscr{B}) = \begin{bmatrix} m \\ \ell \end{bmatrix} \rightarrow \texttt{\# of inputs}$$
$$\rightarrow order or lag$$

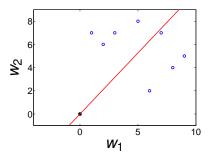
▶ $\mathscr{L}_{m,\ell}$ — set of LTI systems of bounded complexity

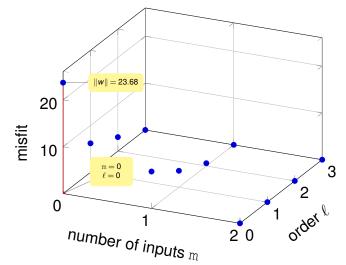
Complexity selection

 if m is given and fixed, choosing the complexity is an order selection problem

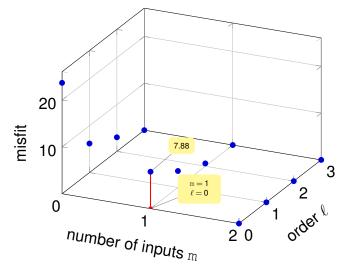
 in general, choosing the complexity involves order selection and input selection

illustrated next on the example from the introduction

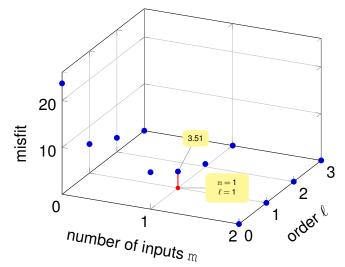




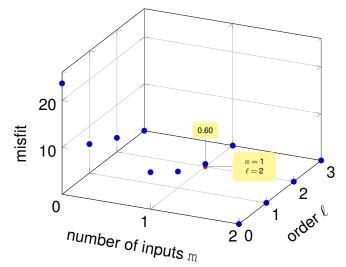
 $\texttt{m}=\textbf{0},\,\ell=\textbf{0}\implies \mathscr{B}=\{\,\textbf{0}\,\}$ is the only model



 $m = 1, \ell = 0 \implies \mathscr{B}$ is a line through 0



 $m = 1, \ell = 1 \implies \mathscr{B}$ is 1st order SISO



 $\texttt{m}=\texttt{1},\,\ell=\texttt{2}\implies\mathscr{B}\text{ is 2nd order SISO}$

Approximation error-complexity trade-off

minimize over
$$\widehat{\mathscr{B}} \in \mathscr{L}$$

$$\begin{bmatrix} \operatorname{error}(w,\widehat{\mathscr{B}}) \\ \operatorname{complexity}(\widehat{\mathscr{B}}) \end{bmatrix}$$

three ways to "scalarize" the problem:

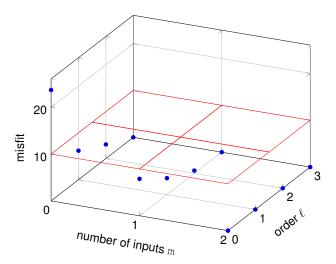
1. minimize over
$$\widehat{\mathscr{B}} \in \mathscr{L}$$
 error $(w, \widehat{\mathscr{B}}) + \lambda$ complexity $(\widehat{\mathscr{B}})$

2. minimize over
$$\widehat{\mathscr{B}} \in \mathscr{L}$$
 complexity $(\widehat{\mathscr{B}})$ subject to error $(w, \widehat{\mathscr{B}}) \leq \mu$

3. minimize over
$$\widehat{\mathscr{B}}$$
 error $(w, \widehat{\mathscr{B}})$
subject to $\widehat{\mathscr{B}} \in \mathscr{L}_{m,\ell}$

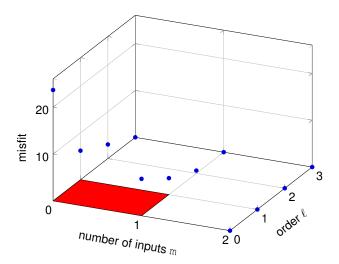
Complexity minimization with error bound

minimize over $\widehat{\mathscr{B}} \in \mathscr{L}$ complexity $(\widehat{\mathscr{B}})$ subject to error $(w, \widehat{\mathscr{B}}) \leq \mu$



Error minimization with complexity bound

minimize over $\widehat{\mathscr{B}}$ error $(w, \widehat{\mathscr{B}})$ subject to $\widehat{\mathscr{B}} \in \mathscr{L}_{m,\ell}$



Summary: error-complexity trade-off

LTI model complexity

complexity(
$$\mathscr{B}$$
) = $\begin{bmatrix} m \\ \ell \end{bmatrix} \rightarrow \# \text{ of inputs}$
 $\rightarrow \text{ order or lag}$

error-complexity trade-off

minimize over
$$\widehat{\mathscr{B}} \in \mathscr{L}$$
 $\begin{bmatrix} \operatorname{error}(w, \widehat{\mathscr{B}}) \\ \operatorname{complexity}(\widehat{\mathscr{B}}) \end{bmatrix}$

- tracing all optimal solutions requires hyper parameter
 - 1. λ no physical meaning
 - 2. μ bound on the error
 - 3. (m, ℓ) bound on the complexity

Outline

Introduction: data, model class, approximation

Approximation error-model complexity trade-off

System identification \leftrightarrow low-rank approximation

Solution methods: variable projection

Example: model-free control

Conclusions

Approximate identification problem

minimize over $\widehat{\mathscr{B}}$ error($w, \widehat{\mathscr{B}}$) subject to $\widehat{\mathscr{B}} \in \mathscr{L}_{m,\ell}$

in the case error = misfit

$$\operatorname{error}(w,\widehat{\mathscr{B}}) = \min_{\widehat{w}\in\widehat{\mathscr{B}}} \|w - \widehat{w}\|$$

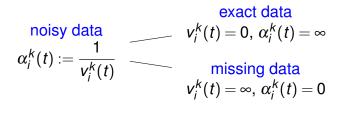
the problem is

minimize over
$$\widehat{\mathscr{B}}$$
, $\widehat{\mathscr{W}} || \mathscr{W} - \widehat{\mathscr{W}} |$
subject to $\widehat{\mathscr{W}} \in \widehat{\mathscr{B}} \in \mathscr{L}_{m,\ell}$

Exact, noisy, and missing data

▶ $v_i^k(t)$ — variance of the measurement noise on $w_i^k(t)$

$$\|\mathbf{w} - \widehat{\mathbf{w}}\|_{\alpha}^{2} = \sum_{k=1}^{N} \sum_{i=1}^{q} \sum_{t=1}^{T} \alpha_{i}^{k}(t) (\mathbf{w}_{i}^{k}(t) - \widehat{\mathbf{w}}_{i}^{k}(t))^{2}$$



► $v_i^k(t) = \infty$ imposes equality constraint $\widehat{w}_i^k(t) = w_i^k(t)$

• $v_i^k(t) = 0$ makes $||w - \widehat{w}||_{\alpha}^2$ independent of $w_i^k(t)$

Summary: identification problem

approximate identification in the misfit setting

 $\begin{array}{ll} \text{minimize} & \text{over } \widehat{\mathscr{B}}, \ \widehat{w} & \|w - \widehat{w}\|_{\alpha} \\ \text{subject to} & \ \widehat{w} \in \widehat{\mathscr{B}} \in \mathscr{L}_{\mathrm{m},\ell} \end{array} \tag{SYSID}$

► element-wise weighted error criterion $\|\cdot\|_{\alpha}$ exact $w_i^k(t) \leftrightarrow \alpha_i^k(t) = \infty$ missing $w_i^k(t) \leftrightarrow \alpha_i^k(t) = 0$

Next: SYSID \leftrightarrow Hankel structured LRA

exact trajectory
$$w \in \mathscr{B} \in \mathscr{L}_{m,\ell}$$

$$\uparrow$$

$$R_0w(t) + R_1w(t+1) + \dots + R_\ell w(t+\ell) = 0$$

$$\uparrow$$
rank deficient
$$\mathscr{H}_{\ell+1}(w) := \begin{bmatrix} w(1) & w(2) & \dots & w(T-\ell) \\ w(2) & w(3) & \dots & w(T-\ell+1) \\ w(3) & w(4) & \dots & w(T-\ell+2) \\ \vdots & \vdots & \vdots \\ w(\ell+1) & w(\ell+2) & \dots & w(T) \end{bmatrix}$$

$$w \in \mathscr{B} \iff \mathscr{H}_{\ell+1}(w)$$
 rank deficient

• relation at time t = 1

$$R_0 w(1) + R_1 w(2) + \dots + R_\ell w(\ell + 1) = 0$$

▶ in matrix form:

$$\begin{bmatrix} R_0 & R_1 & \cdots & R_\ell \end{bmatrix} \begin{bmatrix} w(1) \\ w(2) \\ \vdots \\ w(\ell+1) \end{bmatrix} = 0$$

$$w \in \mathscr{B} \iff \mathscr{H}_{\ell+1}(w)$$
 rank deficient

• relation at time t = 2

$$R_0 w(2) + R_1 w(3) + \cdots + R_\ell w(\ell + 2) = 0$$

▶ in matrix form:

$$\begin{bmatrix} R_0 & R_1 & \cdots & R_\ell \end{bmatrix} \begin{bmatrix} w(2) \\ w(3) \\ \vdots \\ w(\ell+2) \end{bmatrix} = 0$$

$w \in \mathscr{B} \iff \mathscr{H}_{\ell+1}(w)$ rank deficient

• relation at time $t = T - \ell$

 $R_0 w(T - \ell) + R_1 w(T - \ell + 1) + \dots + R_\ell w(T) = 0$

in matrix form:

$$\begin{bmatrix} R_0 & R_1 & \cdots & R_\ell \end{bmatrix} \begin{bmatrix} w(T-\ell) \\ w(T-\ell+1) \\ w(T-\ell+2) \\ \vdots \\ w(T) \end{bmatrix} = 0$$

Putting it all together

• relation for $t = 1, \ldots, T - \ell$

 $R_0 w(t) + R_1 w(t+1) + \dots + R_\ell w(t+\ell) = 0$

in matrix form:

$$\underbrace{\begin{bmatrix} R_0 & R_1 & \cdots & R_\ell \end{bmatrix}}_{R} \underbrace{\begin{bmatrix} w(1) & w(2) & \cdots & w(T-\ell) \\ w(2) & w(3) & \cdots & w(T-\ell+1) \\ w(3) & w(4) & \cdots & w(T-\ell+2) \\ \vdots & \vdots & & \vdots \\ w(\ell+1) & w(\ell+2) & \cdots & w(T) \end{bmatrix}}_{\mathscr{H}_{\ell+1}(w)} = 0$$

 $w \in \mathscr{B} \iff \mathscr{H}_{\ell+1}(w)$ rank deficient

• with $R \in \mathbb{R}^{(q-m) \times q(\ell+1)}$ full row rank,

 $\operatorname{rank}\left(\mathscr{H}_{\ell+1}(w)=0\right)\leq q\ell+\mathsf{m}$ (q — # of variables)

 $w \in \mathscr{B} \in \mathscr{L}_{m,\ell} \iff \operatorname{rank}(\mathscr{H}_{\ell+1}(w)) \le q\ell + m$

► multiple time-series ↔ mosaic-Hankel matrix

$$\{w^{1}, \dots, w^{N}\} \subset \mathscr{B} \in \mathscr{L}_{m,\ell}$$

$$\iff \operatorname{rank}\left(\underbrace{\left[\mathscr{H}_{\ell+1}(w^{1}) \cdots \mathscr{H}_{\ell+1}(w^{N})\right]}_{\mathscr{H}_{\ell+1}(w)}\right) \leq q\ell + m$$

Structured weighted low-rank approximation

$$\begin{array}{ll} \text{minimize} & \text{over } \widehat{\mathscr{R}} \text{ and } \widehat{w} & \|w - \widehat{w}\|_{\alpha} \\ \text{subject to} & \widehat{w} \subset \widehat{\mathscr{R}} \in \mathscr{L}_{\mathrm{m},\ell} \\ & & \\$$

Summary: structured low-rank approximation

- $\blacktriangleright (SYSID) \iff (SLRA)$
- ► LTI model class ⇔ Hankel structure
- ▶ repeated experiments ⇐⇒ mosaic-Hankel structure

$$\begin{bmatrix} \mathscr{H}_{\ell+1}(w^1) & \cdots & \mathscr{H}_{\ell+1}(w^N) \end{bmatrix}$$

▶ bounded complexity ⇐⇒ rank constraint

$$(\mathsf{m},\ell)$$
 \leftrightarrow $r = q\ell + \mathsf{m}$

Outline

Introduction: data, model class, approximation

Approximation error-model complexity trade-off

System identification ↔ low-rank approximation

Solution methods: variable projection

Example: model-free control

Conclusions

Solution methods

- ▶ given: data *w* and complexity bound (m, ℓ)
- find: $\widehat{\mathscr{B}}$ that solves (SYSID) or, equivalently, (SLRA)
- 1. choice of model representation
 - transfer function
 - input/state/output
 - ▶ ...
- 2. choice of optimization method
 - local optimization
 - global optimization
 - convex relaxations

Model vs model representation

▶ 1st order SISO model $\mathscr{B} \in \mathscr{L}_{1,1}$

$$\mathscr{B}_{\mathsf{de}}(\theta) = \left\{ \left. \widehat{w} \right| \begin{bmatrix} \theta_1 & \theta_2 & \theta_3 & \theta_4 \end{bmatrix} \begin{bmatrix} \widehat{w}_1(t) \\ \widehat{w}_2(t) \\ \widehat{w}_1(t+1) \\ \widehat{w}_2(t+1) \end{bmatrix} = 0, \ \forall t \right\}$$

transfer functions

$$G_{w_1\mapsto w_2}(z)=-rac{ heta_1+ heta_3 z}{ heta_2+ heta_4 z} \quad,\quad G_{w_2\mapsto w_1}(z)=-rac{ heta_2+ heta_4 z}{ heta_1+ heta_3 z}$$

state space, convolution, ..., representations

Problem formulation vs solution method

- ▶ in the classical setting, model = representation
- ightarrow \Rightarrow problems are mixed with solution methods
- ▶ e.g., "total least-squares" is both problem and method
- the behavioral setting distinguishes

used forabstractproblem formulationconcretesolution methods

involves

 $\mathcal{B}, \mathcal{L}_{\mathrm{m},\ell}$ $\mathcal{B}(\theta), \theta \in \Theta$

Iow-rank approx. is abstract problem formulation

Parameter optimization problem

model representation

$$\mathscr{B}(\theta) = \{ \widehat{w} \mid g_{\theta}(\widehat{w}) = 0 \}$$

parameterized model class

$$\mathscr{M} = \{ \mathscr{B}(\boldsymbol{\theta}) \mid \boldsymbol{\theta} \in \Theta \}$$

optimization problem

 $\begin{array}{ll} \text{minimize} & \text{over } \theta \in \Theta, \ \widehat{w} & \|w - \widehat{w}\|_{\alpha} \\ \text{subject to} & g_{\theta}(\widehat{w}) = 0 \end{array} \tag{SYSID}_{\theta} \end{array}$

Bilinear structure of the problem

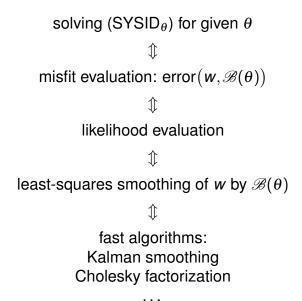
- $(SYSID_{\theta})$ constrained nonlinear least-squares
- *B* linear

 $\implies g_{\theta}(\widehat{w})$ bilinear (in θ and \widehat{w})

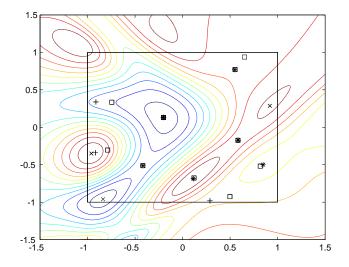
 \implies (SYSID_{θ}) can be solved globally for given θ

- variable projection (VARPRO) for separable nonlinear least-squares problems
- if $T \gg \ell$, elimination of \widehat{w} leads to big reduction

System theoretic view of VARPRO



Non-convexity of error $(w, \mathscr{B}(\theta))$



Computational details

- O(T) evaluation of error $(w, \mathscr{B}(\theta))$ and its derivatives
 - using the Kalman smoother
 - Cholesky factorization of banded Toeplitz matrix
 - ▶ ...

•
$$\mathscr{B}(\theta) = \mathscr{B}(\alpha \theta)$$
, for all $\alpha \neq 0$

- $\Theta = \{ \theta \mid \|\theta\|_2 = 1 \} \implies$ optimization on a manifold
 - generic methods (optimization theory)
 - custom methods (system identification)
 - data driven local coordinates (McKelvey)

▶ ...

Summary: solution methods

- solution methods involve two choices:
 - 1. model representation
 - 2. optimization method
- ► in the linear case, bilinear structure ~> VARPRO
- constraint nonlinear least-squares problem

 $\min_{\theta \in \Theta} \, \mathsf{error} \big(w, \mathscr{B}(\theta) \big)$

• Θ is a manifold \rightsquigarrow optimization on a manifold

Outline

Introduction: data, model class, approximation

Approximation error-model complexity trade-off

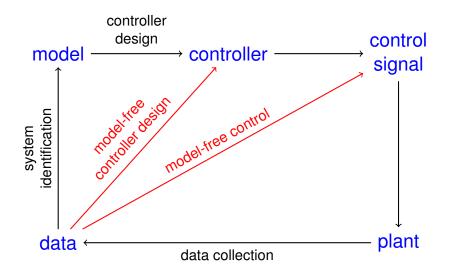
System identification ↔ low-rank approximation

Solution methods: variable projection

Example: model-free control

Conclusions

Model-free control



Classical LTI optimal tracking control

- ► given:
 - system $\mathscr{B} \in \mathscr{L}$
 - desired output y_r
- ▶ find: input *u*, such that

 $\min_{(u,y)\in\mathscr{B}} \|y_{\mathsf{r}} - y\|$

- there are different algorithms to solve the problem (Riccati equation, spectral factorization, ...)
- they depend on the representation of the model *B* (state-space, transfer function, ...)

Model-free LTI optimal tracking control

- ► given:
 - trajectory w^1 (of a system $\bar{\mathscr{B}} \in \mathscr{L}_{m,\ell}$)
 - desired output $y_r = y^2$
- find: input \hat{u}^2 , such that

$$\begin{array}{ll} \text{minimize} & \underbrace{\|\boldsymbol{w}^{1} - \widehat{\boldsymbol{w}}^{1}\|^{2}}_{\substack{\text{misfit} \\ \text{error}}} + \underbrace{\|\boldsymbol{y}_{r} - \widehat{\boldsymbol{y}}^{2}\|^{2}}_{\substack{\text{tracking} \\ \text{error}}} & (\text{MFT}) \end{array}$$
$$\text{subject to} \quad \widehat{\boldsymbol{w}}^{1}, \widehat{\boldsymbol{w}}^{2} \in \widehat{\mathscr{B}} \in \mathscr{L}_{m,\ell} \end{array}$$

- $\widehat{\mathscr{B}}$ in (MFT) is needed to define the problem
- in a model-free method, $\widehat{\mathscr{B}}$ is not identified explicitly

Solution by SLRA with missing data

(MFT) is equivalent to

 $\begin{array}{ll} \text{minimize} & \text{over } \widehat{w} \text{ and } \widehat{\mathscr{B}} & \|w - \widehat{w}\|_{\alpha} \\ \text{subject to} & \widehat{w} \subset \widehat{\mathscr{B}} \in \mathscr{L}_{\mathrm{m},\ell} \end{array}$

the control input u^2 is missing data

this leads to mosaic-Hankel SLRA with missing data

minimize over
$$\widehat{w} \| w - \widehat{w} \|_{\alpha}$$

subject to rank $(\mathscr{H}_{\ell+1}(\widehat{w})) \leq q\ell + m$

the only truly model free solution methods I know of are based on the nuclear norm heuristic

Outline

Introduction: data, model class, approximation

Approximation error-model complexity trade-off

System identification ↔ low-rank approximation

Solution methods: variable projection

Example: model-free control

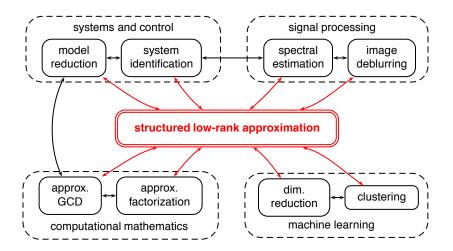
Conclusions

Conclusions

- representation free problem formulation:
 - LTI system identification complexity bound ↓ ↓ ↓ ↓ Hankel matrix approximation rank constraint
- solution methods based on model representations:
 Kalman smoothing
 tikelihood evaluation
 Cholesky factorization
 variable projection
- ► SLRA with other types of structure →

other applications

One problem, one method, many applications



Thanks and acknowledgments

- this work is in collaboration with Konstantin Usevich and Mariya Ishteva
- financial support from European Research Council
- project webpage:

http://slra.github.io/

