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Outline

Setup: data-driven modeling

Problems: system identification, machine learning, . . .

Behavioral paradigm ↔ low-rank approximation

Algorithms: optimization, multistage, convex relaxations

Applications: missing data, data-driven simulation

Connections: TLS, EIV, PCA, rank minimization, . . .
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General setup

data
D ⊂ U

modeling
−−−−−−→

model
B ∈ M ∈ 2U

• D — data, e.g., a vector time series (Rq)N

• B — model (behavior): a (sub)set of the data space U

• M — model class: a set of models

work plan:

1. define a modeling problem

2. find an algorithm that solves the problem

3. implement the algorithm in software

4. use the software in applications
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The problem

prior knowledge, assumptions, and/or prejudices

about what the true or desirable model is

• model class — imposes hard constraints

e.g., bound on the model complexity

• optimization criteria — impose soft constraints

e.g., small misfit between the model and the data

• real-life problems are vaguely formulated

• often it is not clear what is the “best” problem formulation

“A well defined problem is a half solved problem.”
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System identification problems

U = (Rq ×·· ·×R
q

︸ ︷︷ ︸
T1

)×·· ·× (Rq ×·· ·×R
q

︸ ︷︷ ︸
TN

) —
N, q-variable
time series

M is, e.g., bounded complexity (# inputs and lags), LTI systems

• latency (ARMAX): Bextu
e y

minimize ‖e‖ subject to
(
(e,u),y) ∈ B̂ext ∈ M

• misfit (EIV):
Bū

ũ
ȳ
ỹ

u y

minimize ‖(∆u,∆y)‖ subject to
(

u+∆u︸ ︷︷ ︸
û

,y +∆y︸ ︷︷ ︸
ŷ

)∈ B̂ ∈M
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Special cases

• M with lag = 0  static modeling

• M with # inputs = 0  sum-of-damped-exp. modeling

• FIR systems  approximate deconvolution

• EIV with ∆u = 0 or special ARMAX  output error

u

e

B y

Bext
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Puzzles

• sensor speed-up (ELEC seminar 2011)

• static nonlinear modeling (poster ERNSI’11)

• missing data estimation (poster ERNSI’12)

• data-driven simulation and control (later in this talk)

• SYSID with pre-specified poles (easy)

• harmonic retrieval: poles on the unit circle (difficult)

• common dynamics identification

• nD system identification
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A unifying setting for data modeling

systems and control

model
reduction

system
identification

signal processing

spectral
estimation

image
deblurring

structured low-rank approximation

approx.
GCD

approx.
factorization

computational mathematics

dim.
reduction

clustering

machine learning
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Desirable features of a paradigm

simple: can be introduced in 1 slide

flexible: applies to a rich class of problems

practical: leads to solution methods and algorithms

optimal: in theory, finds the "best" solution

effective: in practice, can “solve” real-life problems

automatic: hyper param. correspond to prior knowledge

compact: software implementation requires short code
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Structured low-rank approximation

• structure specification S : Rnp → R
m×n

• vector of structure parameters p ∈ R
np

• weighted 2-norm ‖p‖2
w := p⊤Wp

• rank specification r

minimize over p̂ ∈ R
np ‖p− p̂‖2

w

subject to rank
(
S (p̂)

)
≤ r

(SLRA)
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Structure S ↔ Model class M

unstructured ↔ linear static

Hankel ↔ scalar LTI

q×1 Hankel ↔ q-variate LTI

q×N Hankel ↔ N equal length traj.

mosaic Hankel [Hei95] ↔ N general traj.
[
Hankel unstructured

]
↔ finite impulse response

block-Hankel Hankel-block ↔ 2D linear shift-invariant
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SYSID from N general trajectories

J. Schoukens, G. Vandersteen, Y. Rolain, R. Pintelon,

Frequency Response Function Measurements Using
Concatenated Subrecords With Arbitrary Length,

IEEE Transactions on Instrumentation and Measurement,

Vol. 61, No. 10, pp. 2682–2688
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(SLRA) ↔ approximate data modeling

• p ↔ vec(D)

• r ↔ model complexity

• W ↔ prior knowledge about the data accuracy

(SLRA) is a maximum likelihood estimator in the EIV setting
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Singular weight matrix ↔ fixed and missing values

• consider the special case of element-wise weights

‖p− p̂‖w =

√
∑np

i=1 wi(pi − p̂i)
2

specified by a vector w ∈R
np

• wi = ∞ imposes equality constraint p̂i = pi on (SLRA)

wi = ∞ =⇒ p̂i = pi

• wi = 0 makes the problem (SLRA) independent of pi

wi = 0 =⇒ pi is ignored

alternatively, problem (SLRA) is solved with pi missing
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Solution methods
• global solution methods [UM12]

• SDP relaxations of rational function minimization problem

• systems of polynomial equations (computer algebra)

• resultant-based methods
• Stetter-Moller methods

• subdivision methods
• homotopy continuation

• local optimization methods

• variable projections

• alternating projections

• variations

parameterization
+

optimization method
=

method
• heuristics

• multistage methods • nuclear norm heuristic
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VARPRO-like solution method
• using the kernel parameterization

rank
(
S (p̂)

)
≤ r ⇐⇒ RS (p̂) = 0, rank(R) = m− r

• (SLRA) becomes

minimize over p̂ and R ‖p− p̂‖2
w

subject to RS (p̂) = 0, rank(R) = m− r
(SLRAR)

• (SLRAR) is separable in p̂ and R, i.e., it is equivalent to

minimize over R f (R)

subject to rank(R) = m− r
(OUTER)

where

f (R) := min
p̂

‖p− p̂‖2
w subject to RS (p̂) = 0 (INNER)

• p̂ is eliminated (projected out) of (SLRAR)
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• evaluation of f (R), i.e., solving (INNER), is least norm prob.

• in SYSID, evaluation of f (R) is a data smoothing operation

• in a stochastic setting, it is the likelihood evaluation

• efficient computation using Riccati recursion
(Kalman smoothing)

• in other applications, f (R) can also be evaluate efficiently,
by exploiting the matrix structure

• software implementation for mosaic Hankel-like matrices,
with fixed and missing data, and linearly structured kernel

http://github.com/slra/slra (see, [MU12])
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Pseudo-Jacobian for nonlinear least squares

P. Guillaume and R. Pintelon,

A Gauss–Newton-like optimization algorithm for “weighted”
nonlinear least-squares problems,

IEEE Transactions on Signal Processing,

Vol. 44, No. 9, September 1996, pp. 2222–2228
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Structured kernel

• (OUTER) is a nonlinear least-squares problem

• it can be solved with additional constraints

• e.g., linear structure of the kernel

R = R(θ) := vec−1(θΨ)

• applications requiring structured kernel:

• harmonic retrieval  R palindromic

• SYSID with fixed poles  R = Rfixed ⋆Rfree

• SYSID with fixed observ. indices  R =

[× ··· × 1 0 0
...
. . .

. . .
. . . 0

× ··· × ··· × 1

]

• common dynamics estimation  R nonlinear
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Autonomous system identification with missing data

• M = L0,ℓ — LTI systems with 0 inputs and lag ≤ ℓ

• data y ∈ R
p
ext ×·· ·×R

p
ext︸ ︷︷ ︸

T

, where Rext = R∪NaN

• problem: given y and ℓ,

minimize over ŷ ∈ (Rp)T and B̂ ‖y − ŷ‖2
w

subject to ŷ ∈ B̂ ∈ L0,ℓ

• w assigns zeros to the missing data (yi(t) = NaN)

• ∃B̂, such that ŷ ∈ B̂ ∈ L0,ℓ ⇐⇒ rank
(
Hℓ+1(ŷ)

)
≤ ℓp

• the problem is Hankel structured low-rank approximation
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SYSID with missing data

R. Pintelon and J. Schoukens,

Frequency Domain System Identification with Missing Data,

IEEE Transactions on Automatic Control,

Vol. 45, No. 2, February 2000, pp. 364–369
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Simulation example

• p= 1, ℓ= 2, T = 50, y = ȳ +white noise, where

ȳ(t) = 1.456ȳ(t −1)−0.81ȳ(t −2), ȳ(0) = 0, ȳ(1) = 1

• missing values distributed periodically with period 3

• solved with the algorithm based on the VARPRO approach
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System identification with periodically missing data

0 10 20 30 40 50
−1

−0.5

0
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y
(t
),

ŷ
(t
) ,

ȳ
(t
)

true — solid line optimal approximation — dashed blue
circles — data points crosses — location of missing data
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Classical simulation problem

given

• LTI system B (specified by some representation)

• initial condition wini (specified by trajectory of B)

• input u

find the output y of B, corresponding to wini and u

• there are many ways to solve the problem

• the algorithms depend on the model representation
(state-space, transfer function, impulse response, . . . )
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Data-driven simulation

given

• trajectory w ′ of LTI system B and the lag ℓ of B

• initial condition w ′′
p =

(
w ′′(1), . . . ,w ′′(ℓ)

)

• input u′′
f =

(
u′′(ℓ+1), . . . ,u′′(T2)

)

find the output y ′′
f of B, corresponding to w ′′

p and u′′

y ′′
f =

(
y ′′(ℓ+1), . . . ,y ′′(T2)

)

m

find y ′′
f and B ∈ Lm,ℓ

such that w ′ ∈ B̂ and w ′′
p ∧ (u′′

f ,y
′′
f )︸ ︷︷ ︸

w ′′

∈ B
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• there is B̂ ∈ Lm,ℓ, such that w ′ ∈ B̂ and w ′′ ∈ B̂

m

rank
([

Hℓ+1(w ′) Hℓ+1(w ′′)
])

≤ 2ℓ+1

mosaic Hankel matrix completion

• with noisy w ′, the problem is

minimize over ŵ ′, ŵ ′′, B̂ ∈ Lm,ℓ ‖w ′− ŵ ′‖2
2

subject to ŵ ′,ŵ ′′ ∈ B̂, ŵ ′′
p = w ′′

p , û′′
f = u′′

f

mosaic Hankel low-rank approximation
with exact and missing data
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Simulation example

• second order SISO system, defined by difference equation

ȳ(t) = 1.456ȳ(t −1)−0.81ȳ(t −2)+ ū(t)− ū(t −1)

• w ′ is noisy trajectory generated from random input

• y ′′
f is the impulse response h̄, i.e.,

u′′ = (0, . . . ,0︸ ︷︷ ︸
ℓ

,1,0, . . . ,0︸ ︷︷ ︸
pulse input

)

y ′′ = (0, . . . ,0︸ ︷︷ ︸
ℓ

, ĥ(0), ĥ(1), . . . , ĥ(T2 − ℓ−1)︸ ︷︷ ︸
impulse response

)
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Data-driven simulation of impulse response
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true — solid line optimal approximation — dashed blue
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Related frameworks

• behavioral approach: representation free modeling

• total least squares: (SLRA) with I/O representation

RS (p̂) =
[
X⊤ −I

]
[

Â⊤

B̂⊤

]
= 0 ⇐⇒ ÂX = B̂ (TLS)

• errors-in-variables: statistical setup for (TLS)

• principal component analysis: another statistical setup

• rank minimization: “dual” to (SLRA)

(soft constraint on complexity, hard constraint on accuracy)
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Work in progress

• bias correction for static polynomial model identification

• subspace method for identification with missing data

• local optimization methods for (SLRA) with missing data

• global optimization methods for (SLRA)
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New problems

• convex relaxations for (SLRA)

• time-recursive methods for (SLRA)

• common dynamics identification

• data-driven tracking control

• nD system identification
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Questions?
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Deterministic vs stochastic

exact deterministic → approximate deterministic
↓ ↓

exact stochastic → approximate stochastic

“The noise model . . . is just an alibi for determining the
predictor.”

“. . . the difference between a "stochastic system" (3.1)
and a "deterministic" one (3.35) is not fundamental.”

[Lju99, page 74]
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