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Aims of this talk

identification from a "few" data points
regularize the problem by prior knowledge

use practically meaningful prior knowledge
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Motivation: "small data" is also challenging

and relevant problem

T [0, Trin) [ Tmin; 2 ~ 5 Tmin) (5 Timin, )
problem | ill-posed ill-conditioned  well-conditioned
cost fun. — local minima — convex
solution | non-unique sensitive robust
analysis — few results many results

T — number of data points

surprising often we are dealing with "small" T



We are in the "small data" case when doing

nonparameteric identification
# parameters ~ # samples — ill-posed problem

nonlinear identification
large number of parameters — large Tmin

fault detection
needs fast real-time identification — small T



Solution by prior knowledge on parameters

estimation problem: ming e(u,y,0)
————

model error

regularized problem: ming e(u,y,0) + vp(6)
N——
regularizer

(e.9., p(6) = [|60—61)
alternative problem: mingco e(u,y,0)
(.9.0:={0]6—06]<p})

6 may not be unique!



Prior knowledge on the model behavior

examples of prior:
DC gain = 1
rise time < 5 sec
overshoot < 10%

prior is often specified on model trajectories

A|, — set of all L-samples long trajectories



Two-stage identification method

1. (u,y) — h— impulse response estimation

2. h— % — realization of h



Plan

Impulse response estimation
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Model behavior = image of Hankel matrix

w(l) w(2) w(3) - w(T—L+1)]
w(2)  w(3) w4) - w(T-L+2)
S (W) = W('3) W(.4) W(.5) W(T—~ L+3)
_W('L) W(L.+ 1) W(L.+ 2) .- W(.T) |

for exact data wy = (ug, yq) and persistently exciting uy
image (1 (wg)) = %I,
therefore, for any w € 4|, there is g, such that

A1 (Wg)g =w



Computing impulse response is linear prob.
impulse response

W:( 0,...,0 ,[h(lo)]7[h?1)]7""[h?f)])

zero ini. cond.

define

] } zero ini. conditions

< impulse input
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Plan

Adding constraints
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Prior Eh = f ~» analytical solution

adding the constraint
Eh=f

to

leads to

h=Y; ((EY;)"f+N(oZ/N)* (v —o/ (EY;)*1))
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Prior E'’h < f’ ~» quadratic program

minimize overg |&/g— V|
subjectto EY;g=f and E'Yig<f

convex problem

solved by active-set methods
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Plan

Numerical examples
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Simulation setup

mass-spring-damper system

2

d
Ky =
d t2y+ dd y+Kky=u
errors-in-variables setup
wg=w+w, weZ and w~N(0,s?/)

T =50 samples
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Methods compared

uy2ss_pk — two-stage method with prior knowledge
uy2ss — two-stage method without prior knowledge

n4sid — N4SID method (with default parameters)
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Validation criteria

||,@ ZQl
Z — model error
N /= &l
N |lh—hk)| hk)|| .
Z — impulse response error

= ]
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A single equality constraint

E=[1 - 1] f=Eh

‘ uh2ss_pk uh2ss nédsid
ez 0.1925 0.2218 0.1597
€h 0.1828 0.2137 —
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Multiple equality constraints
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Multiple equality constraints
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Inequality constraints

‘ uh2ss_pk uh2ss nédsid
ey 0.2291 0.2611 1.4984
eh 0.2022 0.3235 —

21/24



Inequality constraints

estimated impulse response

0.06 T T
e ——true impulse response

0.04 t NN LT
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-0.04
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Inequality constraints

impulse response of %
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Conclusions

prior knowledge makes the problem well conditioned
classical approach: Bayesian prior on the parameters

alternative approach: constraints on the model behavior
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