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Aims of this talk

identification from a "few" data points

regularize the problem by prior knowledge

use practically meaningful prior knowledge
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Motivation: "small data" is also challenging
and relevant problem

T [0,Tmin) [Tmin,2∼ 5Tmin) (5Tmin,∞)
problem ill-posed ill-conditioned well-conditioned
cost fun. — local minima → convex
solution non-unique sensitive robust
analysis — few results many results

T — number of data points

surprising often we are dealing with "small" T
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We are in the "small data" case when doing

nonparameteric identification
# parameters ≈ # samples =⇒ ill-posed problem

nonlinear identification
large number of parameters =⇒ large Tmin

fault detection
needs fast real-time identification =⇒ small T
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Solution by prior knowledge on parameters

estimation problem: minθ e(u,y ,θ )︸ ︷︷ ︸
model error

regularized problem: minθ e(u,y ,θ ) + γp(θ )︸ ︷︷ ︸
regularizer

(e.g., p(θ ) = ‖θ0−θ‖)

alternative problem: minθ∈Θ e(u,y ,θ )

(e.g., Θ := {θ | ‖θ0−θ‖ ≤ ρ })

θ may not be unique!
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Prior knowledge on the model behavior

examples of prior:
DC gain = 1
rise time < 5 sec
overshoot < 10%

prior is often specified on model trajectories

B|L — set of all L-samples long trajectories
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Two-stage identification method

1. (u,y) 7→ h — impulse response estimation

2. h 7→B — realization of h
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Plan

Impulse response estimation

Adding constraints

Numerical examples
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Model behavior = image of Hankel matrix

HL(w) :=




w(1) w(2) w(3) · · · w(T −L + 1)
w(2) w(3) w(4) · · · w(T −L + 2)
w(3) w(4) w(5) · · · w(T −L + 3)
...

...
...

...
w(L) w(L + 1) w(L + 2) · · · w(T )




for exact data wd = (ud,yd) and persistently exciting ud

image
(
HL(wd)

)
= B|L

therefore, for any w ∈B|L, there is g, such that

HL(wd)g = w
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Computing impulse response is linear prob.
impulse response

W =
(

0, . . . ,0︸ ︷︷ ︸
zero ini. cond.

,
[

I
h(0)

]
,
[

0
h(1)

]
, . . . ,

[
0

h(t)

])

define

H`+t(ud) =:

[
Up
Uf

]
and H`+t(yd) =:

[
Yp
Yf

]

we have



Up
Yp
Uf


g =




0
0[
I
0
]



}

zero ini. conditions

← impulse input
Yf g = h
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Plan

Impulse response estimation

Adding constraints

Numerical examples
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Prior Eh = f ; analytical solution

adding the constraint
Eh = f

to 


Up
Yp
Uf




︸ ︷︷ ︸
A

g =




0
0[
I
0
]




︸ ︷︷ ︸
v

leads to

h = Yf
(
(EYf)

+f + N(A N)+
(
v −A (EYf)

+f
))
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Prior E ′h ≤ f ′ ; quadratic program

minimize over g ‖A g−v‖
subject to EYfg = f and E ′Yfg ≤ f ′

convex problem

solved by active-set methods
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Simulation setup

mass-spring-damper system

m
d2

d t2 y + d
d
d t

y + ky = u

errors-in-variables setup

wd = w̄ + w̃ , w̄ ∈ B̄ and w̃ ∼ N(0,s2I)

T = 50 samples
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Methods compared

uy2ss_pk — two-stage method with prior knowledge

uy2ss — two-stage method without prior knowledge

n4sid — N4SID method (with default parameters)
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Validation criteria

eB =
1
N

N

∑
k=1

‖B̄− B̂(k)‖
‖B̄‖

— model error

eh =
1
N

N

∑
k=1

‖h̄− ĥ(k)‖
‖h̄‖

— impulse response error
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A single equality constraint

E =
[
1 · · · 1

]
f = Eh̄

uh2ss_pk uh2ss n4sid
eB 0.1925 0.2218 0.1597
eh 0.1828 0.2137 —
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Multiple equality constraints
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Multiple equality constraints
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Inequality constraints

uh2ss_pk uh2ss n4sid
eB 0.2291 0.2611 1.4984
eh 0.2022 0.3235 —
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Inequality constraints

5 10 15
-0.04

-0.02

0

0.02

0.04

0.06
true impulse response
uy2h_pk
uy2h

time

estimated impulse response
ĥ
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Inequality constraints
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Conclusions

prior knowledge makes the problem well conditioned

classical approach: Bayesian prior on the parameters

alternative approach: constraints on the model behavior
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