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Our goal is direct data-driven methods
for analysis and design of LTI systems

model /))Oo'

given , desired
data direct data-driven design ~ solution

the classical approach is “indirect data-driven”

4/37



Motivation

no separation principle for model-based design
design objective not used in identification

incompatibility of identification and design

5/37



Data-driven does not mean model-free

data-driven problems do assume model
however, specific representation is not fixed

the methods we review are non-parametric
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We use behavioral approach where
dynamical system Z is set of signals

A is linear system «— A is subspace

A is time-invariant «~— oA =%
(ow)(t) := w(t+ 1) — shift operator
c#:={ow|weRB}

“good definition should formalize sensible intuition”
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The set of linear time-invariant systems .Z
has structure characterized by set of integers

the dimension of #Z € £ is determined by
m(%#) — number of inputs
n(#) — order (= minimal state dimension)

£(#) — lag (= observability index)

J.C. Willems, From time series to linear systems.
Part I, Finite dimensional linear time invariant systems, Automatica, 22(561-580), 1986
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A less complex than %, <— %1 C B>

in the LTI case, complexity <+ dimension

complexity: (# inputs, order, lag)
c(#) = (m(B),n(A),L(A))

% — bounded complexity LTI model class
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Data-driven representation (infinite horizon)

data: exact infinite trajectory wy of # € ¥
define % := span{wy,owy,c2Wy, ...}

identifiability condition: % = %
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Data-driven representation (finite horizon)

restriction of w and # to finite interval [1, L]
wip = (w(1),...,w(L)), SBl:={w|. |we ZB}

for wg = (wg(1),...,wg(T))and 1 <L <T

Hi(wa) = [(c"We)lL ("We)l - (o7 Lwar)le

define %, :=image 7 (wy)
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Conditions for informativity of the data
A =image i (wy) if and only if

rank 4 (We) = Lm(2) + (&) (GPE)

I. Markovsky and F. Dorfler, Identifiability in the Behavioral Setting, TAC, 2023

sufficient conditions (input design perspective):

1wy =[y;]
2. % controllable
3. A n(#)(Ug) full row rank (PE)

J.C. Willems et al., A note on persistency of excitation
Systems & Control Letters, (54)325-329, 2005

PE — persistency of excitation, GPE — generalized PE
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Generic data-driven problem:
trajectory interpolation/approximation

given: “data” trajectory Wy € BT
partially specified trajectory w| lsiven
(Wl Selects the elements of w, specified by given)
aim: minimize over w [ W]y, .. — W[yl

subjectto we 4|,

W = A (Wat) (W) fyen) (SOL)

W’ Igiven
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Special cases

simulation

» given data: initial condition and input
» to-be-found: output (exact interpolation)

smoothing

> given data: noisy trajectory
» to-be-found: />-optimal approximation

tracking control

> given data: to-be-tracked trajectory
> to-be-found: />-optimal approximation
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Generalizations
multiple data trajectories w ..., w}

# =image | A (wy) - (W)

Wy not exact / noisy

maximume-likelihood estimation

~ Hankel structured low-rank approximation/completion
nuclear norm and ¢{-norm relaxations

~ nonparametric, convex optimization problems

nonlinear systems

results for special classes of nonlinear systems:
Volterra, Wiener-Hammerstein, bilinear, . ..
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Summary: data-driven signal processing

data-driven representation

leads to general, simple, practical methods

interpolation/approximation of trajectories

simulation, filtering and control are special cases
assumes only LTl dynamics; no hyper parameters

dealing with noise and nonlinearities

nonlinear optimization
convex relaxations
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Outline

Methods for dealing with noise in the data
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The data wy being exact vs inexact / “noisy”

wy exact and satisfying (GPE)

» “system theory” problems
> image ./ (wy) is nonparametric finite-horizon model
» data-driven solution = model-based solution

Wy inexact, due to noise and/or nonlinearities

» naive approach: apply the solution (SOL) for exact data
» rigorous: assume noise model ~ ML estimation problem
» heuristics: convex relaxations of the ML estimator
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The maximum-likelihood estimation problem
in the errors-in-variables setup is nonconvex

errors-in-variables setup: wy = wgq + Wy

> Wy — true data, Wy € B|7, B L7
» wy — zero mean, white, Gaussian measurement noise

ML problem: given wy, ¢, and w|;, .

minimize. || W]y, — 7 (50)] 8|
subjectto  wj = arg ming 5 llwa— wy ||

subjectto Wy € Z|1 and % € £
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The ML estimation problem is equivalent to
Hankel structured low-rank approximation

minignize ||W|/gllven - ‘%(W*)hgiveng”

subjectto  wj = arg ming 5 IWa— A
subjectto Wy € %|7 and Z € £

)

minimize | W], ~ ()] I
subjectto wg =argming  [lwy— Wy
subject to rankyﬁﬂ(wd) ({+1)ym+n
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Solution methods

local optimization

» choose a parametric representation of @(9)
» optimize over w, wg, and 6
» depends on the initial guess

convex relaxation based on the nuclear norm

minimize over Wy and w ||w|_ | + || wg — wy|

given

|t @]

W‘/

given

convex relaxation based on /4-norm (LASSO)

minimize over g |[[W|,., — H1(Wa)l e, 91l + 2119111
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Empirical validation on real-life datasets

data set name T mp
1 Airpassengersdata| 144 0 1
2 Distillation column 90 5 38
3 pH process 2001 2 1
4 Hair dryer 1000 1 1
5 Heat flow density 1680 2 1
6 Heating system 801 1 1

G. Box, and G. Jenkins. Time Series Analysis: Forecasting and Control, Holden-Day, 1976

B. De Moor, et al.DAISY: A database for identification of systems. Journal A, 38:4-5, 1997
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¢1-norm regularization with optimized A
achieves the best performance

H W| Imissing - W| Imissing H 0
100%

missing - = ||W|/missing||

data set name naive ML LASSO
1 Air passengers data 3.9 fail 3.3
2 Distillation column 19.24 17.44 9.30
3 pH process 38.38 85.71 12.19
4 Hair dryer 12.35 8.96 7.06
5 Heat flow density 7.16 4410 3.98
6 Heating system 092 1.35 0.36
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Tuning of A and sparsity of g (datasets 1, 2)
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Tuning of A and sparsity of g (datasets 3, 4)
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Tuning of A and sparsity of g (datasets 5, 6)
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Summary: convex relaxations
wy exact ~~ system theory

> exact analytical solution
» current work: efficient real-time algorithms
Wy inexact ~» nonconvex optimization

» subspace methods
> local optimization
» convex relaxations

empirical validation

> the naive approach works (surprisingly) well
» parametric local optimization is not robust
> /i-norm regularization gives the best results
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Outline

Showcase: frequency response estimation
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Problem formulation

given: “data” trajectory (ug, yq) € #|1,and z€ C

find: H(z), where H is the transfer function of %

29/37



Direct data-driven solution
we are interested in trajectory

u exp,
W= [}/] - [F/expz} e'95)|L7 where expz(t) —

using the data-driven representation, we have

Hi(ug)| _ |7
[%i(yd)] =gl where z .= LL]
which leads to the system
0 H(uw)| |H| _ |2
= SYS
[—z Hi(ya)| |9 0] (SYS)
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Solution method: solve (SYS) for H

under (GPE) with L > ¢+ 1, H= H(z2)

without prior knowledge of ¢
L=Lna:=[(Tg+1)/3]

trivial generalization to

> multivariable systems
> multiple data trajectories { w],...,w}'}
> evaluation of H(z) at multiple points in { z;,...,zx } € CK
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Comparison with classical nonparametric
frequency response estimation methods

ignored initial/terminal conditions ~- leakage
DFT grid ~-» limited frequency resolution

improvements by windowing and interpolation

» the leakage is not eliminated
> the methods involve hyper-parameters
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What about noise in the data wy?
Solving (SYS) with noisy data

preprocessing: rank-mL + n approx. of 77 (wy)

» hyper-parameters Land n (L>/{+1)
» if the approximation preserves the Hankel structure,
the method is maximum-likelihood in the EIV setting

regularization with || g||4

» hyper-parameter: the 1-norm regularization parameter

regularization with the nuclear norm of 7 (wy)

» hyper-parameters: L and the regularization parameter
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Matlab implementation

function Hh = dd_frest (ud, yd, z, n)
L=n+1; t = (1:L)"';
m = size(ud, 2); p = size(yd, 2);

preprocessing by low-rank approximation
H = [moshank (ud, L); moshank (yd, L)];
(v, ~, ~] = svd(H); P =U(:, 1:m « L + n);

%% form and solve the system of equations

for k = 1:1length(z)
A = [[zeros(m * L, p); —kron(z(k) .~ t, eye(p))]
hg A \ [kron(z(k) .~ t, eye(m)); zeros(p * L, m
Hh(:, :, k) = hg(l:p, :);

end

> 5 lines of essential code
» MIMO case, multiple evaluation points
» L =n+1in order to have a single hyper-parameter
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Empirical validation: 4th order system
in the errors-in-variables setup

> dd_frest — proposed method
» ident — parametric maximume-likelihood estimator
> spa — nonparameteric estimator with Welch filter

4
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Monte-Carlo simulation over different
noise levels and number of samples
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Conclusions

detach the system from its representations

> define properties and problems in terms of the behavior
> lead to new, more general, definitions and problems
> avoid inconsistencies of the classical approach

separate problem from solution methods

» different representations lead to different methods
» show links among different methods
> lead to new solutions

naturally suited for the “data-driven paradigm”
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