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Our goal is direct data-driven methods
for analysis and design of LTI systems

given
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the classical approach is “indirect data-driven”
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Motivation

no separation principle for model-based design

design objective not used in identification

incompatibility of identification and design
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Data-driven does not mean model-free

data-driven problems do assume model

however, specific representation is not fixed

the methods we review are non-parametric
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We use behavioral approach where
dynamical system B is set of signals

B is linear system :⇐⇒ B is subspace

B is time-invariant :⇐⇒ σB = B

(σw)(t) := w(t +1) — shift operator

σB :=
{

σw | w ∈B
}

“good definition should formalize sensible intuition”
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The set of linear time-invariant systems L
has structure characterized by set of integers

the dimension of B ∈L is determined by

m(B) — number of inputs

n(B) — order (= minimal state dimension)

`̀̀(B) — lag (= observability index)

J.C. Willems, From time series to linear systems.
Part I, Finite dimensional linear time invariant systems, Automatica, 22(561–580), 1986
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B1 less complex than B2 ⇐⇒ B1 ⊂B2

in the LTI case, complexity↔ dimension

complexity: (# inputs, order, lag)

c(B) :=
(
m(B),n(B), `̀̀(B)

)
Lc — bounded complexity LTI model class
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Data-driven representation (infinite horizon)

data: exact infinite trajectory wd of B ∈L

define B̂ := span{wd,σwd,σ
2wd, . . .}

identifiability condition: B = B̂
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Data-driven representation (finite horizon)

restriction of w and B to finite interval [1,L]

w |L :=
(
w(1), . . . ,w(L)

)
, B|L := {w |L | w ∈B }

for wd =
(
wd(1), . . . ,wd(T )

)
and 1≤ L≤ T

HL(wd) :=
[
(σ0wd)|L (σ1wd)|L · · · (σT−Lwd)|L

]

define B̂|L := imageHL(wd)
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Conditions for informativity of the data
B|L = imageHL(wd) if and only if

rankHL(wd) = Lm(B)+n(B) (GPE)

I. Markovsky and F. Dörfler, Identifiability in the Behavioral Setting, TAC, 2023

sufficient conditions (input design perspective):
1. wd =

[ud
yd

]
2. B controllable
3. HL+n(B)(ud) full row rank (PE)

J.C. Willems et al., A note on persistency of excitation
Systems & Control Letters, (54)325–329, 2005

PE — persistency of excitation, GPE — generalized PE
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Generic data-driven problem:
trajectory interpolation/approximation

given: “data” trajectory wd ∈B|T
partially specified trajectory w |Igiven

(w |Igiven selects the elements of w , specified by Igiven)

aim: minimize over ŵ ‖w |Igiven− ŵ |Igiven‖
subject to ŵ ∈B|L

ŵ = HL(wd)
(
HL(wd)|Igiven

)+w |Igiven (SOL)
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Special cases

simulation
I given data: initial condition and input
I to-be-found: output (exact interpolation)

smoothing
I given data: noisy trajectory
I to-be-found: `2-optimal approximation

tracking control
I given data: to-be-tracked trajectory
I to-be-found: `2-optimal approximation
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Generalizations

multiple data trajectories w1
d , . . . ,w

N
d

B = image
[
HL(w1

d ) · · · HL(wN
d )
]

wd not exact / noisy
maximum-likelihood estimation
 Hankel structured low-rank approximation/completion
nuclear norm and `1-norm relaxations
 nonparametric, convex optimization problems

nonlinear systems
results for special classes of nonlinear systems:
Volterra, Wiener-Hammerstein, bilinear, . . .
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Summary: data-driven signal processing

data-driven representation
leads to general, simple, practical methods

interpolation/approximation of trajectories
simulation, filtering and control are special cases
assumes only LTI dynamics; no hyper parameters

dealing with noise and nonlinearities
nonlinear optimization
convex relaxations
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The data wd being exact vs inexact / “noisy”

wd exact and satisfying (GPE)
I “system theory” problems
I imageHL(wd) is nonparametric finite-horizon model
I data-driven solution = model-based solution

wd inexact, due to noise and/or nonlinearities
I naive approach: apply the solution (SOL) for exact data
I rigorous: assume noise model ML estimation problem
I heuristics: convex relaxations of the ML estimator
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The maximum-likelihood estimation problem
in the errors-in-variables setup is nonconvex

errors-in-variables setup: wd = wd+ w̃d

I wd — true data, wd ∈B|T , B ∈L q
c

I w̃d — zero mean, white, Gaussian measurement noise

ML problem: given wd, c, and w |Igiven

minimize
g

‖w |Igiven−HL(ŵ∗d)|Igiveng‖

subject to ŵ∗d = arg minŵd,B̂
‖wd− ŵd‖

subject to ŵd ∈ B̂|T and B̂ ∈L q
c
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The ML estimation problem is equivalent to
Hankel structured low-rank approximation

minimize
g

‖w |Igiven−HL(ŵ∗d)|Igiveng‖

subject to ŵ∗d = arg minŵd,B̂
‖wd− ŵd‖

subject to ŵd ∈ B̂|T and B̂ ∈L q
c

m

minimize
g

‖w |Igiven−HL(ŵ∗d)|Igiveng‖

subject to ŵ∗d = arg minŵd
‖wd− ŵd‖

subject to rankH`+1(ŵd)≤ (`+1)m+n
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Solution methods

local optimization
I choose a parametric representation of B̂(θ)
I optimize over ŵ , ŵd, and θ

I depends on the initial guess

convex relaxation based on the nuclear norm

minimize over ŵd and ŵ ‖w |Igiven− ŵ |Igiven‖+‖wd− ŵd‖

+ γ ·
∥∥∥[H∆(ŵd) H∆(ŵ)

]∥∥∥
∗

convex relaxation based on `1-norm (LASSO)

minimize over g ‖w |Igiven−HL(wd)|Igiveng‖+λ‖g‖1
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Empirical validation on real-life datasets

data set name T m p
1 Air passengers data 144 0 1
2 Distillation column 90 5 3
3 pH process 2001 2 1
4 Hair dryer 1000 1 1
5 Heat flow density 1680 2 1
6 Heating system 801 1 1

G. Box, and G. Jenkins. Time Series Analysis: Forecasting and Control, Holden-Day, 1976

B. De Moor, et al.DAISY: A database for identification of systems. Journal A, 38:4–5, 1997
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`1-norm regularization with optimized λ

achieves the best performance

emissing :=
‖w |Imissing− ŵ |Imissing‖

‖w |Imissing‖
100%

data set name naive ML LASSO
1 Air passengers data 3.9 fail 3.3
2 Distillation column 19.24 17.44 9.30
3 pH process 38.38 85.71 12.19
4 Hair dryer 12.35 8.96 7.06
5 Heat flow density 7.16 44.10 3.98
6 Heating system 0.92 1.35 0.36
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Tuning of λ and sparsity of g (datasets 1, 2)
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Tuning of λ and sparsity of g (datasets 3, 4)
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Tuning of λ and sparsity of g (datasets 5, 6)
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Summary: convex relaxations
wd exact system theory
I exact analytical solution
I current work: efficient real-time algorithms

wd inexact nonconvex optimization
I subspace methods
I local optimization
I convex relaxations

empirical validation
I the naive approach works (surprisingly) well
I parametric local optimization is not robust
I `1-norm regularization gives the best results
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Problem formulation

given: “data” trajectory (ud,yd) ∈B|Td and z ∈ C

find: H(z), where H is the transfer function of B
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Direct data-driven solution
we are interested in trajectory

w =
[

u
y

]
=
[

expz
Ĥ expz

]
∈B|L, where expz(t) := z t

using the data-driven representation, we have[
HL(ud)

HL(yd)

]
g =

[
z

Ĥz

]
, where z :=

[
z1

...
zL

]

which leads to the system[
0 HL(ud)

−z HL(yd)

][
Ĥ
g

]
=

[
z
0

]
(SYS)
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Solution method: solve (SYS) for Ĥ

under (GPE) with L≥ `+1, Ĥ = H(z)

without prior knowledge of `

L = Lmax := b(Td +1)/3c

trivial generalization to
I multivariable systems
I multiple data trajectories {w1

d , . . . ,w
N
d }

I evaluation of H(z) at multiple points in {z1, . . . ,zK } ∈ CK
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Comparison with classical nonparametric
frequency response estimation methods

ignored initial/terminal conditions  leakage

DFT grid  limited frequency resolution

improvements by windowing and interpolation
I the leakage is not eliminated
I the methods involve hyper-parameters
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What about noise in the data wd?
Solving (SYS) with noisy data

preprocessing: rank-mL+n approx. of HL(wd)

I hyper-parameters L and n (L≥ `+1)
I if the approximation preserves the Hankel structure,

the method is maximum-likelihood in the EIV setting

regularization with ‖g‖1
I hyper-parameter: the 1-norm regularization parameter

regularization with the nuclear norm of HL(ŵd)

I hyper-parameters: L and the regularization parameter
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Matlab implementation
function Hh = dd_frest(ud, yd, z, n)
L = n + 1; t = (1:L)';
m = size(ud, 2); p = size(yd, 2);

%% preprocessing by low-rank approximation
H = [moshank(ud, L); moshank(yd, L)];
[U, ~, ~] = svd(H); P = U(:, 1:m * L + n);

%% form and solve the system of equations
for k = 1:length(z)
A = [[zeros(m * L, p); -kron(z(k) .^ t, eye(p))] P];
hg = A \ [kron(z(k) .^ t, eye(m)); zeros(p * L, m)];
Hh(:, :, k) = hg(1:p, :);

end
I 5 lines of essential code
I MIMO case, multiple evaluation points
I L = n+1 in order to have a single hyper-parameter
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Empirical validation: 4th order system
in the errors-in-variables setup

I dd_frest — proposed method
I ident — parametric maximum-likelihood estimator
I spa — nonparameteric estimator with Welch filter
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Monte-Carlo simulation over different
noise levels and number of samples

ea := 100% · |(|Hz |− |Ĥz |)| / |Hz |
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Conclusions

detach the system from its representations
I define properties and problems in terms of the behavior
I lead to new, more general, definitions and problems
I avoid inconsistencies of the classical approach

separate problem from solution methods
I different representations lead to different methods
I show links among different methods
I lead to new solutions

naturally suited for the “data-driven paradigm”
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