Motivation

- Partial realization problem: minimize over ?'s rank

\rightsquigarrow ?'s (missing values) are in the "future"
\rightsquigarrow extrapolation of sequence by LTI model
- Generalization: arbitrary missing values
\rightsquigarrow interpolation/extrapolation of a sequence by (multivariable, input/output) LTI model
\rightsquigarrow Hankel low-rank matrix completion

$$
\begin{array}{ll}
\text { minimize } & \text { over } \widehat{h} \quad \operatorname{rank}\left(\mathscr{H}_{L}(\widehat{h})\right) \\
\text { subject to } & \widehat{h}\left(\mathscr{I}_{\text {data }}\right)=h\left(\mathscr{I}_{\text {data }}\right)
\end{array}
$$

Solution methods

- nuclear norm heuristic
- local optimization methods
I. Markovsky and K. Usevich. Structured
low-rank approximation with missing values.
http://eprints.soton.ac.uk/340718
- subspace-type method (this poster)

Subspace-type method

- let rank $\left(\mathscr{H}_{r+1}(h)\right)=r$
- there is $p \neq 0,\left[\begin{array}{llll}p_{0} & p_{1} & \cdots & p_{r}\end{array}\right] \mathscr{H}_{r+1}(h)=0$
- consider the matrix $\mathscr{H}_{r+2}(h)$; we have

$$
\underbrace{\left[\begin{array}{ccccc}
p_{0} & p_{1} & \cdots & p_{r} & 0 \\
0 & p_{0} & p_{1} & \cdots & p_{r}
\end{array}\right]}_{\tilde{P}} \mathscr{H}_{r+2}(h)=0
$$

- \widetilde{P} is full row rank, so that for any i there is $\widetilde{p}^{i} \neq 0$,

$$
\tilde{p}^{i} \mathscr{H}_{r+2}(h)=0 \quad \text { and } \quad \tilde{p}_{i}^{i}=0
$$

- suppose that $\mathscr{H}_{r+2}(h)$ has at least $r+1$ columns with single missing value in the ith position and let \widetilde{H}^{i} be the corresponding submatrix of $\mathscr{H}_{r+2}(h)$
- left $\operatorname{ker}\left(\widetilde{H}^{i}\right)=\alpha \widetilde{p}^{i}$, for some $\alpha \neq 0$ $\rightsquigarrow \widetilde{p}^{i}$ can be identified (up to scaling factor)
- suppose also that $\mathscr{H}_{r+2}(h)$ has at least $r+1$ columns with single missing value in the j th position, where $j \neq i$
$\rightsquigarrow \widetilde{p}^{j}$ can be identified (up to scaling factor)
- $\operatorname{GCD}\left(p^{i}, p^{j}\right)=p \quad \rightsquigarrow \quad$ identification algorithm with missing values

Applications

- system identification with missing data
- data-driven simulation
- data-driven tracking

Extensions

$-\Delta>1$ missing values per frame

- multivariable time series
- input/output systems
- multiple time series
- noisy data require approx. kernel and GCD computations
$\min \left[\begin{array}{c}\operatorname{rank}\left(\mathscr{H}_{L}(\widehat{h})\right) \\ \left\|\widehat{h}\left(\mathscr{I}_{\text {data }}\right)-h\left(\mathscr{I}_{\text {data }}\right)\right\|\end{array}\right] \stackrel{\leftarrow \text { complexity }}{\leftarrow \text { approx. error }}$
Example: exact data, autonomous 6th order system

the data is available from

[^0]
[^0]: users.ecs.soton.ac.uk/im/d.mat

