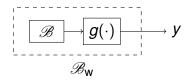
Identification of autonomous Wiener systems

Ivan Markovsky and Philippe Dreesen

Consider the familiar Wiener system, however, without an input signal



— autonomous linear time-invariant subsystem

g — static nonlinear subsystem

 \mathscr{B}_{w} — autonomous Wiener system

The response *y* is due to initial conditions

existing methods assume zero initial conditions

main result: $\mathscr{B}_{w} \subseteq LTI$ system (of high order)

this result suggest an identification method

Parameterization of the model

order-n linear subsystem

$$\mathscr{B} = \mathscr{B}(\lambda) := \left\{ z \in \mathbb{R}^{\mathbb{N}} \mid z = \sum_{i=1}^{n} \alpha_{i} \exp_{\lambda_{i}}, \ \alpha \in \mathbb{C}^{n} \right\}$$
 (1)

degree-d static nonlinear subsystem

$$y = g(z) := \theta^{\top} v(z), \text{ where } v(z) = \begin{bmatrix} z^0 \\ z^1 \\ \vdots \\ z^d \end{bmatrix}$$
 (2)

autonomous Wiener system

$$\mathscr{B}(\lambda,\theta) := \{ y \in \mathbb{R}^{\mathbb{N}} \mid (1,2) \text{ hold for } \alpha \in \mathbb{C}^n \}$$

Main result: $\mathcal{B}(\lambda, \theta)$ is included in an autonomous linear time-invariant system

there is λ_w , such that

$$\mathscr{B}(\lambda, \theta) \subseteq \mathscr{B}(\lambda_{\mathsf{W}})$$

the order of the embedding system $\mathscr{B}(\lambda_w)$ is

$$n_{\mathsf{w}} = \binom{n+d}{d} = \frac{(n+1)(n+2)\cdots(n+d)}{d!}$$

its eigenvalues λ_w are products of d elements of $1 \cup \lambda$

$$\lambda_{\mathsf{w},i} = \prod_{j=1}^d \lambda_{k_{i,j}}, \quad \mathsf{where}, \quad \lambda_0 := 1, \quad k_{i,j} \in \{\,0,1,\ldots,n\,\}$$

Strategy: compare the outputs of $\mathscr{B}(\lambda_w)$ and $\mathscr{B}(\lambda, \theta)$

the output of $\mathcal{B}(\lambda_w)$ is sum-of-damped-exponentials

$$y = \beta_1 \exp_{\lambda_{w,1}} + \dots + \beta_{n_w} \exp_{\lambda_{w,n_w}}, \quad \beta \in \mathbb{R}^{n_w}$$

consider a general basis element

$$v_j(z(t)) = (z(t))^j = \left(\sum_{i=1}^n \alpha_i \lambda_i^t\right)^j$$

 v_i is a sum-of-damped-exponentials

$$v_jig(z(t)ig) = \sum_{i=1}^{n_j} \gamma_i \mu_{i,j}^t, \quad ext{where } \mu_{i,j}^t = \prod_{\ell=1}^j \lambda_{k_{i,j,\ell}}$$

then, the output

$$y(t) = g(z(t)) = \theta v(z(t))$$

is also a sum-of-damped-exponentials

$$y(t) = \sum_{i=1}^{n_{\mathsf{w}}} \zeta_i \lambda_{\mathsf{w},i}^t$$
, where $\lambda_{\mathsf{w}} = \bigcup_{j=0}^d \bigcup_{i=0}^j \mu_{i,j}$

 λ_{w} = all products of d elements of $1 \cup \lambda(\mathscr{B})$

however, $\zeta \in \text{subset of } \mathbb{R}^{n_{\mathsf{W}}} \implies \mathscr{B}(\lambda, \theta) \subseteq \mathscr{B}(\lambda_{\mathsf{W}})$

Corollary: link between λ_w and λ

the symmetric, rank-1, d-way tensor

$$T := \lambda \times_1 \lambda \times_2 \cdots \times_{d-1} \lambda$$

has as unique elements $\lambda_{w,1},\dots,\lambda_{w,n_w}$

Identification problem

given: monomial basis v and a finite trajectory

$$y_d = (y_d(1), \dots, y_d(T))$$

of an autonomous Wiener system $\mathscr{B}(\lambda,\theta)$

find: the order n and parameters $\hat{\lambda}, \hat{\theta}$, such that

$$\mathscr{B}(\pmb{\lambda},\pmb{ heta})=\mathscr{B}(\widehat{\pmb{\lambda}},\widehat{\pmb{ heta}})$$

Procedure for identification of autonomous Wiener system

- 1. identify \mathcal{B}_{w} from the given output data
- 2. compute the linear subsystem \mathscr{B} from \mathscr{B}_{W}
- 3. compute the nonlinear subsystem g from \mathcal{B}_w and \mathcal{B}

1) identification of \mathscr{B}_{w} from y

minimal number of samples needed: $T_{min} = 2n_w + 1$ can be collected from n_w experiments with $n_w + 1$ samples issue: \mathcal{B}_w is a stiff system

2) computation of \mathscr{B} from \mathscr{B}_w

rank-1 factorization of symmetric, d-way tensor

$$T(\lambda(\mathscr{B}_{\mathsf{w}})) = \lambda \times_1 \lambda \times_2 \cdots \times_{d-1} \lambda$$

issue: order of the eigenvalues $\lambda(\mathscr{B}_w)$

the combinatorial number of factorizations can be avoided

3) computation of g from \mathcal{B}_w and \mathcal{B}

simultaneous rank-1 factorization of d tensors this is a structured data fusion problem if g has first order term, there is a simple solution