Identification of autonomous Wiener systems

Ivan Markovsky and Philippe Dreesen

VRIJE
UNIVERSITEIT
BRUSSEL

Consider the familiar Wiener system, however, without an input signal

\mathscr{B} - autonomous linear time-invariant subsystem
g - static nonlinear subsystem
\mathscr{B}_{w} — autonomous Wiener system

The response y is due to initial conditions

existing methods assume zero initial conditions
main result: $\mathscr{B}_{w} \subseteq$ LTI system (of high order)
this result suggest an identification method

Parameterization of the model

order- n linear subsystem

$$
\begin{equation*}
\mathscr{B}=\mathscr{B}(\lambda):=\left\{z \in \mathbb{R}^{\mathbb{N}} \mid z=\sum_{i=1}^{n} \alpha_{i} \exp _{\lambda_{i}}, \alpha \in \mathbb{C}^{n}\right\} \tag{1}
\end{equation*}
$$

degree-d static nonlinear subsystem

$$
y=g(z):=\theta^{\top} v(z), \quad \text { where } \quad v(z)=\left[\begin{array}{c}
z^{0} \tag{2}\\
z^{1} \\
\vdots \\
z^{d}
\end{array}\right]
$$

autonomous Wiener system

$$
\mathscr{B}(\lambda, \theta):=\left\{y \in \mathbb{R}^{\mathbb{N}} \mid(1,2) \text { hold for } \alpha \in \mathbb{C}^{n}\right\}
$$

Main result: $\mathscr{B}(\lambda, \theta)$ is included in an autonomous linear time-invariant system
there is λ_{w}, such that

$$
\mathscr{B}(\lambda, \theta) \subseteq \mathscr{B}\left(\lambda_{\mathrm{w}}\right)
$$

the order of the embedding system $\mathscr{B}\left(\lambda_{\mathrm{w}}\right)$ is

$$
n_{\mathrm{w}}=\binom{n+d}{d}=\frac{(n+1)(n+2) \cdots(n+d)}{d!}
$$

its eigenvalues λ_{w} are products of d elements of $1 \cup \lambda$

$$
\lambda_{\mathrm{w}, i}=\prod_{j=1}^{d} \lambda_{k_{i, j}}, \quad \text { where }, \quad \lambda_{0}:=1, \quad k_{i, j} \in\{0,1, \ldots, n\}
$$

Strategy: compare the outputs of $\mathscr{B}\left(\lambda_{w}\right)$ and $\mathscr{B}(\lambda, \theta)$

the output of $\mathscr{B}\left(\lambda_{w}\right)$ is sum-of-damped-exponentials

$$
y=\beta_{1} \exp _{\lambda_{w, 1}}+\cdots+\beta_{n_{w}} \exp _{\lambda_{w}, n_{w}}, \quad \beta \in \mathbb{R}^{n_{w}}
$$

consider a general basis element

$$
v_{j}(z(t))=(z(t))^{j}=\left(\sum_{i=1}^{n} \alpha_{i} \lambda_{i}^{t}\right)^{j}
$$

v_{j} is a sum-of-damped-exponentials

$$
v_{j}(z(t))=\sum_{i=1}^{n_{j}} \gamma_{i} \mu_{i, j}^{t}, \quad \text { where } \mu_{i, j}^{t}=\prod_{\ell=1}^{j} \lambda_{k_{i, \ell}, \ell}
$$

then, the output

$$
y(t)=g(z(t))=\theta v(z(t))
$$

is also a sum-of-damped-exponentials

$$
y(t)=\sum_{i=1}^{n_{\mathbb{W}}} \zeta_{i} \lambda_{\mathrm{w}, i}^{t}, \quad \text { where } \lambda_{\mathrm{w}}=\bigcup_{j=0}^{d} \bigcup_{i=0}^{j} \mu_{i, j}
$$

$\lambda_{w}=$ all products of d elements of $1 \cup \lambda(\mathscr{B})$
however, $\zeta \in$ subset of $\mathbb{R}^{n_{\mathrm{w}}} \Longrightarrow \mathscr{B}(\lambda, \theta) \subseteq \mathscr{B}\left(\lambda_{\mathrm{w}}\right)$

Corollary: link between λ_{w} and λ

the symmetric, rank-1, d-way tensor

$$
T:=\lambda \times_{1} \lambda \times_{2} \cdots \times_{d-1} \lambda
$$

has as unique elements $\lambda_{w, 1}, \ldots, \lambda_{\mathrm{w}, n_{\mathrm{w}}}$

Identification problem

given: monomial basis v and a finite trajectory

$$
y_{\mathrm{d}}=\left(y_{\mathrm{d}}(1), \ldots, y_{\mathrm{d}}(T)\right)
$$

of an autonomous Wiener system $\mathscr{B}(\lambda, \theta)$
find: the order n and parameters $\hat{\lambda}, \widehat{\theta}$, such that

$$
\mathscr{B}(\lambda, \theta)=\mathscr{B}(\widehat{\lambda}, \widehat{\theta})
$$

Procedure for identification of autonomous Wiener system

1. identify \mathscr{B}_{w} from the given output data
2. compute the linear subsystem \mathscr{B} from $\mathscr{B}_{\text {w }}$
3. compute the nonlinear subsystem g from \mathscr{B}_{w} and \mathscr{B}

1) identification of \mathscr{B}_{w} from y

minimal number of samples needed: $T_{\text {min }}=2 n_{w}+1$
can be collected from n_{w} experiments with $n_{w}+1$ samples
issue: \mathscr{B}_{w} is a stiff system

2) computation of \mathscr{B} from \mathscr{B}_{w}

rank-1 factorization of symmetric, d-way tensor

$$
T\left(\lambda\left(\mathscr{B}_{w}\right)\right)=\lambda \times_{1} \lambda \times_{2} \cdots \times_{d-1} \lambda
$$

issue: order of the eigenvalues $\lambda\left(\mathscr{B}_{\mathrm{w}}\right)$
the combinatorial number of factorizations can be avoided

3) computation of g from \mathscr{B}_{w} and \mathscr{B}

simultaneous rank-1 factorization of d tensors
this is a structured data fusion problem
if g has first order term, there is a simple solution

