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Dynamic measurement takes into account
the dynamical properties of the sensor

model of sensor as dynamical system

to-be-measured
variable u

measurement process−−−−−−−−−−−−−−−→ measured
variable y

assumptions
1. measured variable is constant u(t) = ū
2. the sensor is stable LTI system
3. sensor’s DC-gain = 1 (calibrated sensor)
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I can’t understand anything in general unless
I’m carrying along in my mind a specific
example and watching it go. R. Feynman

examples of sensors:
1. thermometer
2. weighing scale
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Thermometer is 1st order dynamical system

environmental
temperature ū

heat transfer−−−−−−−−−→ thermometer’s
reading y

measurement process: Newton’s law of cooling
.
y = a

(
ū−y

)
the heat transfer coefficient a > 0 is in general unknown

DC-gain = 1 is a priori known
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Scale is 2nd order dynamical system

ū = M
m

kd

|
|

|
|

|

y(t)

| | | | | | | | | | | | | | | |

(M + m)
..
y + d

.
y + ky = gū

process dynamics depends on M =⇒ unknown

DC-gain = g/k — known for given scale (on the Earth)
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Measurement process dynamics
depends on the to-be-measured mass
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Sensor’s transient response
contributes to the measurement error

transient decays exponentially

however measuring longer is undesirable

main idea: predict the steady-state value

7 / 25



Plan

Dynamic measurement state-of-the-art

Model-based maximum-likelihood estimator

Data-driven maximum-likelihood estimator
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Classical approach of
design of compensator

sensor compensatorū û
y

goal: find a compensator, such that û = ū

idea: use the inverse system C = S−1, where
I S is the transfer function of the sensor
I C is the transfer function of the compensator
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Inverting the model is not a general solution

1. S−1 may not exist / be a non-causal system

2. initial conditions and noise on y are ignored

3. the sensor dynamics has to be known
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Modern approach of using
adaptive signal processing

real-time compensator tuning

requires real-time model identification

solutions specialized for 2nd order processes
W.-Q. Shu. Dynamic weighing under nonzero initial conditions.
IEEE Trans. Instrumentation Measurement, 42(4):806–811, 1993.
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There are opportunities for
SYSID community to contribute

ad-hock methods

restricted to 1st / 2nd order SISO processes

lack of general approach and solution
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Dynamic measurement is
non standard SYSID problem

of interest is the steady-state ū (not the model)

the input is unknown (blind identification)

the DC-gain is a priori known
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Plan
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Model-based maximum-likelihood estimator

Data-driven maximum-likelihood estimator
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The data is generated from LTI system
with output noise and constant input

yd︸︷︷︸
measured

data

= y︸︷︷︸
true

value

+ e︸︷︷︸
measurement

noise

y︸︷︷︸
true

value

= ū︸︷︷︸
steady-state

value

+ y0︸︷︷︸
transient
response

assumption 4: e is a zero mean, white, Gaussian noise

16 / 25



using state space representation of the sensor

x(t + 1) = Ax(t), x(0) = x0

y0(t) = cx(t)

we obtain
yd(1)

yd(2)
...

yd(T )


︸ ︷︷ ︸

yd

=


1
1
...

1


︸︷︷︸

1T

ū +


c

cA
...

cAT−1


︸ ︷︷ ︸

OT

x0 +


e(1)

e(2)
...

e(T )


︸ ︷︷ ︸

e
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Maximum-likelihood model-based estimator

solve approximately

[
1T OT

][ û
x̂0

]
≈ yd

standard least-squares problem

minimize over ŷ , û, x̂0 ‖yd− ŷ‖

subject to
[
1T OT

][ û
x̂0

]
= ŷ

recursive implementation  Kalman filter
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Subspace model-free method

goal: avoid using the model parameters (A, C, OT )

in the noise-free case, due to the LTI assumption,

∆y(t) := y(t)−y(t−1) = y0(t)−y0(t−1)

satisfies the same dynamics as y0, i.e.,

x(t + 1) = Ax(t), x(0) = ∆x
∆y(t) = cx(t)
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if ∆y is persistently exciting of order n

image(OT−n) = image
(
H (∆y)

)
where

H (∆y) :=


∆y(1) ∆y(2) · · · ∆y(n)

∆y(2) ∆y(3) · · · ∆y(n+ 1)

∆y(3) ∆y(4) · · · ∆y(n+ 2)
...

...
...

∆y(T −n) ∆y(T −n) · · · ∆y(T −1)


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model-based equation

[
1T OT

][ ū
x̂0

]
= y

data-driven equation

[
1T−n H (∆y)

][ū
`

]
= y |T−n (∗)

subspace method: solve (∗) by (recursive) least squares
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The subspace method is suboptimal

subspace method

minimize over ŷ , û, ̂̀ ‖yd|T−n− ŷ‖

subject to
[
1T−n H (∆yd)

][û̂̀
]

= ŷ

maximum likelihood model-free estimator

minimize over ŷ , û, ̂̀ ‖yd|T−n− ŷ‖

subject to
[
1T−n H (∆ŷ)

][û̂̀
]

= ŷ

structured total least-squares problem
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Summary

dynamic measurement is identification(-like) problem

however, the goal is to estimate the stead-state value

ML estimation structured total least squares
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Perspectives

recursive solution of the STLS problem

statistical analysis of the subspace method

generalization to non-constant input
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