Structured low-rank approximation approach to sum-of-exponentials

Ivan Markovsky

NB
VRIJE
UNIVERSITEIT
BRUSSEL
BRUSSEL

Objective: show alternative solution methods for sum-of-exponentials modeling

Model representations

Modeling algorithms

Generalizations of the problem

Model is set of signals

discrete-time sum-of-damped-exponentials model

$$
\mathscr{B}_{z}=\left\{\sum_{i=1}^{n} c_{i} \exp _{z_{i}} \mid c \in \mathbb{C}^{n}\right\}, \quad \exp _{z_{i}}(t):=z_{i}^{t}, t \in \mathbb{Z}
$$

model complexity

$$
n:=\operatorname{dim}\left(\mathscr{B}_{z}\right)=\# \text { of exponents }
$$

model class

$$
\mathscr{L}_{n}:=\left\{\mathscr{B}_{z} \mid z \in \mathbb{C}^{n}\right\}
$$

Model representation is equation

pole representation

$$
\mathscr{B}_{z}=\left\{\sum_{i} c_{i} \exp _{z_{i}} \mid c \in \mathbb{C}^{n}\right\}
$$

kernel representation

$$
(\sigma y)(t):=y(t+1)
$$

$$
\mathscr{B}_{R}=\left\{y \mid R_{0} y+R_{1} \sigma y+\cdots+R_{n} \sigma^{n} y=0\right\}=: \operatorname{ker}(R(\sigma))
$$

state-space representation

$$
\mathscr{B}_{A, C}=\{y \mid y=C x, \sigma x=A x\}
$$

The representation parametrizes the model

representation	pole	kernel	state-space
model parameter	z	R	A, C
ini. condition	c	$y(-n+1), \ldots, y(0)$	$x(0)$

given $\mathscr{B}, \quad z$ is unique, $\quad R$ and (A, C) are not unique transitions among the representations are well understood
kernel and state space are more general than pole repr.
(polynomials \times exponentials)

Modeling problem: find optimal model

 measurement error model$$
\begin{array}{ll}
y=\bar{y}+\widetilde{y} & \bar{y} \in \overline{\mathscr{B}} \in \mathscr{L}_{n} \quad \text { true signal } \\
& \widetilde{y} \sim N(0, v \prime) \text { noise }
\end{array}
$$

maximum likelihood estimator

$$
\begin{array}{ll}
\text { minimize } & \text { over } \widehat{y} \text { and } \widehat{\mathscr{B}} \quad\|y-\widehat{y}\| \\
\text { subject to } & \widehat{y} \in \widehat{\mathscr{B}} \in \mathscr{L}_{n}
\end{array}
$$

Example: airline passenger data 1949-1960

solid line - $\quad T=144$ data points
dashed - fit by $n=6$ order model

Model validation problem:

find optimal approximation of y in $\widehat{\mathscr{B}}$

$$
\operatorname{error}(y, \widehat{\mathscr{B}}):=\min _{\widehat{y} \in \widehat{\mathscr{B}}}\|y-\widehat{y}\|
$$

likelihood of y, given $\widehat{\mathscr{B}}$
projection of y on $\widehat{\mathscr{B}}$
validation error of $\widehat{\mathscr{B}}$ on (new) data
fast algorithms: Kalman filter, displacement rank, ...

Summary

$\operatorname{model}\left(\mathscr{B}_{z}\right) \neq \quad$ representation $\left(\sum_{i} c_{i} \exp _{z_{i}}\right)$
define problems in terms of models (not representations)

- maximum likelihood estimator
- likelihood evaluation
use representation when solving the problem

Next ...

Model representations

Modeling algorithms

Generalizations of the problem

Link to low-rank approximation

$$
y \in \mathscr{B} \in \mathscr{L}_{n}
$$

$$
\Uparrow
$$

there is $R(z)$, such that $R(\sigma) y=0$, i.e.,
$R_{0} y(t)+R_{1} y(t+1)+\cdots+R_{n} y(t+n)=0$, for $t=1, \ldots, T-n$

$$
\Uparrow
$$

there is $R=\left[\begin{array}{llll}R_{0} & R_{1} & \cdots & R_{n}\end{array}\right] \neq 0$, such that
$R\left[\begin{array}{cccc}y(1) & y(2) & \cdots & y(T-n) \\ y(2) & y(3) & \cdots & y(T-n+1) \\ \vdots & \vdots & & \vdots \\ y(n+1) & y(n+2) & \cdots & y(T)\end{array}\right]=0$
$y \in \mathscr{B} \in \mathscr{L}_{n} \Longleftrightarrow$ rank deficient Hankel matrix

$$
\begin{gathered}
y \in \mathscr{B} \in \mathscr{L}_{n} \\
\mathfrak{\imath} \\
\operatorname{rank}\left(\left[\begin{array}{cccc}
y(1) & y(2) & \cdots & y(T-n) \\
y(2) & y(3) & \cdots & y(T-n+1) \\
\vdots & \vdots & & \vdots \\
y(n+1) & y(n+2) & \cdots & y(T)
\end{array}\right]\right) \leq n
\end{gathered}
$$

Hankel structured matrix

Sum-of-exponential modeling is equivalent to Hankel structured low-rank approximation

minimize over \widehat{y} and $\widehat{\mathscr{B}} \quad\|y-\widehat{y}\|$

 subject to $\hat{y} \in \widehat{\mathscr{B}} \in \mathscr{L}_{n}$$$
\mathbb{N}
$$

minimize over $\hat{y}\|y-\hat{y}\|$
subject to $\operatorname{rank}\left(\mathscr{H}_{n+1}(\widehat{y})\right) \leq n$

Three solution approaches:

nuclear norm heuristic

subspace methods
local optimization

Nuclear norm heuristic: replace rank by nuclear norm constraint

rank: number of nonzero singular values
nuclear norm $\|\cdot\|_{*}: \ell_{1}$-norm of the singular values
minimization of the nuclear norm

- tends to increase sparsity \Longrightarrow reduce rank
- leads to a convex optimization problem

Nuclear norm minimization methods involve a hyper-parameter

$$
\begin{array}{ll}
\text { minimize } & \text { over } \widehat{y} \quad\|y-\hat{y}\| \\
\text { subject to } & \left\|\mathscr{H}_{n+1}(\widehat{y})\right\|_{*} \leq \gamma
\end{array}
$$

$$
\Uparrow
$$

minimize over $\hat{y} \quad \alpha\|y-\widehat{y}\|+\left\|\mathscr{H}_{n+1}(\hat{y})\right\|_{*}$
γ / α - determines the rank of $\mathscr{H}_{n+1}(\widehat{y})$
we want $\alpha_{\text {opt }}=\max \left\{\alpha \mid \operatorname{rank}\left(\mathscr{H}_{n+1}(\widehat{y})\right) \leq n\right\}$
α_{opt} can be found by bijection

Subspace methods $y \mapsto \mathscr{B}_{R}$ for exact data

find a basis R for the kernel of $\mathscr{H}_{n+1}(y)$
$\underbrace{\left[\begin{array}{llll}R_{0} & R_{1} & \cdots & R_{n}\end{array}\right]}_{R}\left[\begin{array}{cccc}y(1) & y(2) & \cdots & y(T-n) \\ y(2) & y(3) & \cdots & y(T-n+1) \\ \vdots & \vdots & & \vdots \\ y(n+1) & y(n+2) & \cdots & y(T)\end{array}\right]=0$
interpret R as a polynomial

$$
R(z)=R_{0}+R_{1} z+\cdots+R_{n} z^{n}
$$

Subspace methods for noisy data (Prony's method in mathematics)

find an approximate kernel of $\mathscr{H}_{n+1}(y)$ by, e.g.,

$$
\text { minimize over } R \quad\left\|R \mathscr{H}_{n+1}(y)\right\|
$$

equivalent to (unstructured) low-rank approximation
leads to an SVD solution method

Subspace methods $y \mapsto \mathscr{B}_{A, C}$ for exact data

1. rank revealing factorization

$$
\mathscr{H}_{L}(y)=\underbrace{\left[\begin{array}{c}
C \\
C A \\
\vdots \\
C A^{L+1}
\end{array}\right]}_{\mathscr{O}} \underbrace{\left[\begin{array}{lllll}
x(0) & A x(0) & A^{2} x(0) & \cdots & \left.A^{T-L} x(0)\right]
\end{array}\right.}_{\mathscr{E}}
$$

2. shift equation

$$
\left[\begin{array}{c}
C \\
C A \\
\vdots \\
C A^{L-1}
\end{array}\right] A=\left[\begin{array}{c}
C A \\
C A^{2} \\
\vdots \\
C A^{L}
\end{array}\right] \Longleftrightarrow \mathscr{O}(1: L-1,:) A=\mathscr{O}(2: L,:)
$$

$T=2 n+1$ samples suffice, $\quad L \in[n+1, T-n]$

Subspace methods for noisy data (Kung's algorithm in system theory)

do steps 1 and 2 approximately:

1. singular value decomposition of $\mathscr{H}_{L}(y)$
2. least squares solution of the shift equation
L is a hyper-parameter, that affects the solution $\widehat{\mathscr{B}}$

Local optimization using variable projections

"double" optimization

$$
\min _{\widehat{\mathscr{B}} \in \mathscr{L}_{n}}\left(\min _{\widehat{y} \in \widehat{\mathscr{B}}}\|y-\widehat{y}\|\right)
$$

"inner" minimization

$$
\operatorname{error}(y, \widehat{\mathscr{B}})=\left\|\Pi_{\widehat{\mathscr{B}}} y\right\|
$$

"outer" minimization

$$
\min _{\widehat{\mathscr{B}} \in \mathscr{L}_{n}} \operatorname{error}(y, \widehat{\mathscr{B}})
$$

Parameter optimization problem

choosing kernel representation $\widehat{\mathscr{B}}=\mathscr{B}_{R}$

$$
\min _{\widehat{\mathscr{B}} \in \mathscr{L}_{n}} \operatorname{error}(y, \widehat{\mathscr{B}}) \Longleftrightarrow \min _{R \neq 0} \operatorname{error}(y, R)
$$

optimization over Euclidean spaces

$$
R \neq 0 \quad \Longleftrightarrow \quad \begin{array}{cc}
R=\left[\begin{array}{ll}
x & 1
\end{array}\right] \Pi \\
\Pi \text { permutation }
\end{array}
$$

- Π fixed \sim total least-squares
- П can be changed during the optimization

Software slra.github.io

"low-level" SLRA package

- C++ implementation
- mosaic-Hankel structure
- element-wise weights
"high-level" IDENT package
- system identification
- unstable systems
- missing data and multiple data sets

Summary

representations lead to parameter optimization problems
three different optimization approaches

- convex relaxation
- subspace methods
- local optimization
variable projection is effective when $n \ll T$

Next ...

Model representations

Modeling algorithms

Generalizations of the problem

Three generalizations

multiple experiments with missing values
models with inputs
nonlinear models

Using data from multiple experiments

for consistent estimation ($\widehat{\mathscr{B}} \rightarrow \overline{\mathscr{B}}$), T must go to infinity
however, long measurement is not possible in case of

- unstable system
- stable system

$$
\begin{aligned}
& (\bar{y}(t) \rightarrow \infty) \\
& (\bar{y}(t) \rightarrow 0)
\end{aligned}
$$

data from N experiments: $y=\left\{y^{1}, \ldots, y^{N}\right\}$

y exact $\Longleftrightarrow \operatorname{rank}\left(\mathscr{H}_{n+1}(y)\right) \leq n$

$$
\begin{gathered}
y \subset \mathscr{B} \in \mathscr{L}_{n} \\
\mathbb{1}
\end{gathered}
$$

$$
y^{k} \in \mathscr{B} \in \mathscr{L}_{n} \quad \text { for all } k=1, \ldots, N
$$

$$
\mathbb{\imath}
$$

$$
\operatorname{rank}(\underbrace{\left[\mathscr{H}_{n+1}\left(y^{1}\right) \cdots \mathscr{H}_{n+1}\left(y^{N}\right)\right]}_{\text {mosaic-Hankel matrix } \mathscr{H}_{n+1}(y)}) \leq n
$$

Dealing with exact and missing data values

$$
\begin{array}{ll}
\text { minimize } & \text { over } \widehat{y}\|y-\widehat{y}\|_{v} \\
\text { subject to } & \operatorname{rank}\left(\mathscr{H}_{n+1}(\hat{y})\right) \leq n
\end{array}
$$

weighted 2-norm approximation

$$
\|y-\widehat{y}\|_{v}:=\sqrt{\sum_{k, t} v^{k}(t)\left(y^{k}(t)-\hat{y}^{k}(t)\right)^{2}}
$$

with element-wise weights

$$
\begin{array}{lll}
v^{k}(t) \in(0, \infty) & \text { if } y^{k}(t) \text { is noisy } & \text { approximate } y^{k}(t) \\
v^{k}(t)=0 & \text { if } y^{k}(t) \text { is missing } & \text { interpolate } y^{k}(t) \\
v^{k}(t)=\infty & \text { if } y^{k}(t) \text { is exact } & \hat{y}^{k}(t)=y^{k}(t)
\end{array}
$$

Example: airline passenger data 1949-1960

[5:10 20:30 50:70 100:140] are missing

piecewise cubic interpolation, 6th order LTI model

In control and signal processing, models may have inputs

the model maps input u to output y

the model is specified by a function $y=f(u)$
how to incorporate inputs in the sum-of-exp. model?

Behavioral definition of model

a model is a subset

$$
\mathscr{B}=\{\widehat{w} \mid g(\widehat{w})=0 \text { holds }\}
$$

represented by relation
$\widehat{y}=f(\widehat{u})$ is special case of $g(\widehat{w})=0 \quad(g(\widehat{u}, \widehat{y})=\widehat{y}-f(\widehat{u}))$

Nonlinear (static quadratic) model

\mathscr{B} - model: conic section
\mathscr{M} - model class: all conic sections

Conic section fitting

the points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)$ lie on a conic section

$$
\Uparrow
$$

there are $A=A^{\top}, b, c$, at least one of them nonzero, s.t.

$$
\left[\begin{array}{ll}
x_{i} & y_{i}
\end{array}\right] A\left[\begin{array}{l}
x_{i} \\
y_{i}
\end{array}\right]+\left[\begin{array}{ll}
x_{i} & y_{i}
\end{array}\right] b+c=0, \quad \text { for } i=1, \ldots, N
$$

$$
\Uparrow
$$

there is $\theta=\left[\begin{array}{llllll}a_{11} & a_{12} & a_{22} & b_{1} & b_{2} & c\end{array}\right] \neq 0$, such that

$$
\theta\left[\begin{array}{ccc}
x_{1}^{2} & \cdots & x_{N}^{2} \\
x_{1} y_{1} & \cdots & x_{N} y_{N} \\
x_{1} & \cdots & x_{N} \\
y_{1}^{2} & \cdots & y_{N}^{2} \\
y_{1} & \cdots & y_{N} \\
1 & \cdots & 1
\end{array}\right]=0
$$

Conic section fitting \Longleftrightarrow rank deficiency

the points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)$ lie on a conic section

$$
\begin{gathered}
\mathscr{B}(\theta)=\left\{w \mid w^{\top} A w+w^{\top} b+c=0\right\} \\
\operatorname{rank}\left(\left[\begin{array}{ccc}
x_{1}^{2} & \cdots & x_{N}^{2} \\
x_{1} y_{1} & \cdots & x_{N} y_{N} \\
x_{1} & \cdots & x_{N} \\
y_{1}^{2} & \cdots & y_{N}^{2} \\
y_{1} & \cdots & y_{N} \\
1 & \cdots & 1
\end{array}\right]\right) \leq 5
\end{gathered}
$$

Conclusion

considering alternative representations of the model

- poles
- kernel
- state-space
allows us to unify different solution methods
- nuclear norm
- subspace (Prony, Kung, ...)
- local optimization
and generalize the sum-of-exponentials problem to
- data from multiple experiments with fixed/missing values
- models with inputs
- nonlinear models

Scope of structured low-rank approximation

