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Premise: familiarity with classical approach

why is a different approach needed?

how is the behavioral approach different?

what new does it bring?

Thesis: behavioral approach has added value
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In the classical approach,
a system is an input-output map

systeminput output

the input causes the output

the system is a signal processor

the system is defined by equations
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Outline

Classical vs behavioral approaches

Data-driven interpolation and approximation

Convex relaxations and empirical validation
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Why is a different approach needed?

input/output maps assume zero initial conditions

I without input, what is a signal processor processing?
I initial conditions can be added as an afterthought

modeling from first principles leads to relations

I e.g., ideal gas law: PV = cMT
(P — pressure, V — volume, M — mass, T — temperature, c — constant)

interconnection of systems is variables sharing

I mechanical systems: position and velocity
I electrical systems: potential and current
I hydraulic systems: pressure and flow
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The behavioral approach was put forward by
Jan C. Willems in the 1980’s

3-part, 70-page, Automatica paper:

Part I. Finite dimensional linear time invariant systems
Part II. Exact modelling
Part III. Approximate modelling
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“Good definition should formalize
sensible intuition” J.C. Willems

“I was not going to use the classical format where
a definition is given first, followed by illustrative
examples. I wanted this to go the other way
around: show how examples lead to definitions.”

some of the examples he used:
I Newton’s second law
I Maxwell’s equations
I the first and second laws of thermodynamics
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How is the behavioral approach
different from the classical one?

dynamical system B is a set of signals w

w ∈B ↔ ”w is trajectory of B”

↔ ”B is exact model for w”

no inputs and outputs, no causality, no equations

the system is detached from its representations

properties and problems are separated from methods
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How is the behavioral approach
similar to the classical one?

input/output partitioning w = Π[ u
y ] and

representations can be derived from B, e.g.,

B =
{

w = Π
[u

y
]
∈ (Rq)N | ∃ x ∈ (Rn)N,

[
σx
y
]

=
[

A B
C D

]
[ x
u ]
}

however
I given B, an input/output partitioning is typically not unique
I also, properties and problems are defined in terms of B
I equivalent representations define the same system
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Example: what means that B is controllable?

controllability is the property of “patching”
any past trajectory with any future trajectory

wp∧wc∧wf ∈B

t

w

wp

wc wf

T1 T2

"sufficiently"
long
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Compare with the classical definition:
transfer from any initial to any terminal state

property of a state-space representation of B

I is lack of controllability due to a “bad” choice of the state
or due to an intrinsic issue with the system?

I minimal (controllable and observable) state-space
representation can’t be assumed w.l.g.

I how to quantify the “distance” to uncontrollability?

does not apply to infinite dimensional system
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Separating problems from solution methods

different representations  different methods
I with different properties (efficiency, robustness, . . . )
I their common feature is that they solve the same problem

clarifies links among methods

leads to new methods
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Example: back to the controllability example

how to check controllability of an LTI system?

using state-space representation:
1. ensure minimality (in the behavioral sense)
2. perform rank test for the controllability matrix

using matrix fraction representation:

B =
{

w = Π
[u

y
]
∈ (Rq)N | N(σ)u = D(σ)y

}
I facts: B is controllable ⇐⇒ N and D are co-prime
I  rank test for the (generalized) Sylvester matrix
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The behavioral approach is naturally suited
for the “data-driven paradigm”

1940–1960 classical SISO transfer function

1960–1980 modern MIMO state-space

1980–2000 behavioral the system as a set

2000–now data-driven using directly the data
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Summary: behavioral approach

detach the system from its representations
I define properties and problems in terms of the behavior
I lead to new, more general, definitions and problems
I avoid inconsistencies of the classical approach

separate problem from solution methods
I different representations lead to different methods
I show links among different methods
I lead to new solutions

naturally suited for the “data-driven paradigm”
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Outline

Classical vs behavioral approaches

Data-driven interpolation and approximation

Convex relaxations and empirical validation
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The new “data-driven” paradigm obtains
desired solution directly from given data

given
data

model

desired
solution

model

identifi
ca

tio
n

model-based
design

data-driven design
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Data-driven does not mean model-free

data-driven problems do assume model

however, specific representation is not fixed

the methods we review are non-parametric
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A dynamical system B is a set of signals

B is linear system :⇐⇒ B is subspace

B is time-invariant :⇐⇒ σB = B

(σw)(t) := w(t + 1) — shift operator

σB :=
{

σw | w ∈B
}

“good definition should formalize sensible intuition”
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The set of linear time-invariant systems L
has structure characterized by set of integers

the dimension of B ∈L is determined by

m(B) — number of inputs

n(B) — order (= minimal state dimension)

`̀̀(B) — lag (= observability index)

J.C. Willems, From time series to linear systems.
Part I, Finite dimensional linear time invariant systems, Automatica, 22(561–580), 1986
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B1 less complex than B2 ⇐⇒ B1 ⊂B2

in the LTI case, complexity↔ dimension

complexity: (# inputs, order, lag)

c(B) :=
(
m(B),n(B), `̀̀(B)

)
Lc — bounded complexity LTI model class
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Data-driven representation (infinite horizon)

data: exact infinite trajectory wd of B ∈L

define B̂ := span{wd,σwd,σ
2wd, . . .}

identifiability condition: B = B̂
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Data-driven representation (finite horizon)

restriction of w and B to finite interval [1,L]

w |L :=
(
w(1), . . . ,w(L)

)
, B|L := {w |L | w ∈B }

for wd =
(
wd(1), . . . ,wd(T )

)
and 1≤ L≤ T

HL(wd) :=
[

(σ0wd)|L (σ1wd)|L · · · (σT−Lwd)|L
]

define B̂|L := imageHL(wd)
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Conditions for informativity of the data
B|L = imageHL(wd) if and only if

rankHL(wd) = Lm(B) + n(B) (GPE)

I. Markovsky and F. Dörfler, Identifiability in the Behavioral Setting, TAC, 2023

sufficient conditions (input design perspective):
1. wd =

[ud
yd

]
2. B controllable
3. HL+n(B)(ud) full row rank (PE)

J.C. Willems et al., A note on persistency of excitation
Systems & Control Letters, (54)325–329, 2005

PE — persistency of excitation, GPE — generalized PE
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Generic data-driven problem:
trajectory interpolation/approximation

given: “data” trajectory wd ∈B|T
partially specified trajectory w |Igiven

(w |Igiven selects the elements of w , specified by Igiven)

aim: minimize over ŵ ‖w |Igiven− ŵ |Igiven‖
subject to ŵ ∈B|L

ŵ = HL(wd)
(
HL(wd)|Igiven

)+w |Igiven (SOL)
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Special cases

simulation
I given data: initial condition and input
I to-be-found: output (exact interpolation)

smoothing
I given data: noisy trajectory
I to-be-found: `2-optimal approximation

tracking control
I given data: to-be-tracked trajectory
I to-be-found: `2-optimal approximation
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Generalizations

multiple data trajectories w1
d , . . . ,w

N
d

B = image
[
HL(w1

d ) · · · HL(wN
d )
]

wd not exact / noisy
maximum-likelihood estimation
 Hankel structured low-rank approximation/completion
nuclear norm and `1-norm relaxations
 nonparametric, convex optimization problems

nonlinear systems
results for special classes of nonlinear systems:
Volterra, Wiener-Hammerstein, bilinear, . . .

28 / 40



Summary: data-driven signal processing

data-driven representation
leads to general, simple, practical methods

interpolation/approximation of trajectories
simulation, filtering and control are special cases
assumes only LTI dynamics; no hyper parameters

dealing with noise and nonlinearities
nonlinear optimization
convex relaxations
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Outline

Classical vs behavioral approaches

Data-driven interpolation and approximation

Convex relaxations and empirical validation
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The data wd being exact vs inexact / “noisy”

wd exact and satisfying (GPE)
I “system theory” problems
I imageHL(wd) is nonparametric finite-horizon model
I data-driven solution = model-based solution

wd inexact, due to noise and/or nonlinearities
I naive approach: apply the solution (SOL) for exact data
I rigorous: assume noise model ML estimation problem
I heuristics: convex relaxations of the ML estimator
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The maximum-likelihood estimation problem
in the errors-in-variables setup is nonconvex

errors-in-variables setup: wd = wd + w̃d

I wd — true data, wd ∈B|T , B ∈L q
c

I w̃d — zero mean, white, Gaussian measurement noise

ML problem: given wd, c, and w |Igiven

minimize
g

‖w |Igiven−HL(ŵ∗d)|Igiveng‖

subject to ŵ∗d = arg minŵd,B̂
‖wd− ŵd‖

subject to ŵd ∈ B̂|T and B̂ ∈L q
c
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The ML estimation problem is equivalent to
Hankel structured low-rank approximation

minimize
g

‖w |Igiven−HL(ŵ∗d)|Igiveng‖

subject to ŵ∗d = arg minŵd,B̂
‖wd− ŵd‖

subject to ŵd ∈ B̂|T and B̂ ∈L q
c

m

minimize
g

‖w |Igiven−HL(ŵ∗d)|Igiveng‖

subject to ŵ∗d = arg minŵd
‖wd− ŵd‖

subject to rankH`+1(ŵd)≤ (`+ 1)m + n
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Solution methods

local optimization
I choose a parametric representation of B̂(θ)
I optimize over ŵ , ŵd, and θ

I depends on the initial guess

convex relaxation based on the nuclear norm

minimize over ŵd and ŵ ‖w |Igiven− ŵ |Igiven‖+‖wd− ŵd‖

+ γ ·
∥∥∥[H∆(ŵd) H∆(ŵ)

]∥∥∥
∗

convex relaxation based on `1-norm (LASSO)

minimize over g ‖w |Igiven−HL(wd)|Igiveng‖+λ‖g‖1
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Empirical validation on real-life datasets

data set name T m p
1 Air passengers data 144 0 1
2 Distillation column 90 5 3
3 pH process 2001 2 1
4 Hair dryer 1000 1 1
5 Heat flow density 1680 2 1
6 Heating system 801 1 1

G. Box, and G. Jenkins. Time Series Analysis: Forecasting and Control, Holden-Day, 1976

B. De Moor, et al.DAISY: A database for identification of systems. Journal A, 38:4–5, 1997
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`1-norm regularization with optimized λ

achieves the best performance

emissing :=
‖w |Imissing− ŵ |Imissing‖

‖w |Imissing‖
100%

data set name naive ML LASSO
1 Air passengers data 3.9 fail 3.3
2 Distillation column 19.24 17.44 9.30
3 pH process 38.38 85.71 12.19
4 Hair dryer 12.35 8.96 7.06
5 Heat flow density 7.16 44.10 3.98
6 Heating system 0.92 1.35 0.36
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Tuning of λ and sparsity of g (datasets 1, 2)
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Tuning of λ and sparsity of g (datasets 3, 4)
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Tuning of λ and sparsity of g (datasets 5, 6)

0 5 10

4

5

6

7

0 0.5 1
0

1

2

3

4

200 400 600 800
0

0.05

0.1

0.15

100 200 300 400
0

0.1

0.2

0.3

0.4

0.5

39 / 40



Summary: convex relaxations
wd exact system theory
I exact analytical solution
I current work: efficient real-time algorithms

wd inexact nonconvex optimization
I subspace methods
I local optimization
I convex relaxations

empirical validation
I the naive approach works (surprisingly) well
I parametric local optimization is not robust
I `1-norm regularization gives the best results
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