Tutorial on the behavioral approach
to data-driven system theory

Ivan Markovsky
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Premise: familiarity with classical approach

why is a different approach needed?
how is the behavioral approach different?

what new does it bring?

Thesis: behavioral approach has added value
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In the classical approach,
a system is an input-output map

input —| system |— output

the input causes the output

the system is a signal processor

the system is defined by equations
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Outline

Classical vs behavioral approaches

Data-driven interpolation and approximation

Convex relaxations and empirical validation
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Outline

Classical vs behavioral approaches
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Why is a different approach needed?

input/output maps assume zero initial conditions

modeling from first principles leads to relations

interconnection of systems is variables sharing
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Why is a different approach needed?

input/output maps assume zero initial conditions

> without input, what is a signal processor processing?
» initial conditions can be added as an afterthought

modeling from first principles leads to relations

interconnection of systems is variables sharing
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Why is a different approach needed?

input/output maps assume zero initial conditions

modeling from first principles leads to relations
> e.g.,ideal gaslaw: PV =cMT

(P — pressure, V — volume, M — mass, T — temperature, ¢ — constant)

interconnection of systems is variables sharing
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Why is a different approach needed?

input/output maps assume zero initial conditions

modeling from first principles leads to relations

interconnection of systems is variables sharing

» mechanical systems: position and velocity
> electrical systems: potential and current
» hydraulic systems: pressure and flow
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The behavioral approach was put forward by
Jan C. Willems in the 1980’s

3-part, 70-page, Automatica paper:

Part I. Finite dimensional linear time invariant systems
Part Il. Exact modelling
Part Ill. Approximate modelling

From Time Series to Linear System—
Part 1. Finite Dimensional Linear Time Invariant
Systems*

JAN C. WILLEMSt

Dynamical systems are defined in terms of their behaviour, and input/output systems
appear as particular repri ions. Finite di ional linear time invariant systems
are characterized by the fact that their behaviour is a linear shift invariant complete
(equivalently closed) subspace of (RY)? or (R9)+.
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“Good definition should formalize
sensible intuition” J.C. Willems

“l was not going to use the classical format where
a definition is given first, followed by illustrative
examples. | wanted this to go the other way
around: show how examples lead to definitions.”

some of the examples he used:

> Newton’s second law
» Maxwell's equations
> the first and second laws of thermodynamics
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How is the behavioral approach
different from the classical one?

dynamical system 4 is a set of signals w

we#A <+ "wistrajectory of A"
<~ "% is exact model for w"

no inputs and outputs, no causality, no equations
the system is detached from its representations

properties and problems are separated from methods
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How is the behavioral approach
similar to the classical one?

input/output partitioning w = T1[j] and
representations can be derived from 4, e.g.,

#={w=n[y]e RN Ixe®N, [§]=[2B]1]}

however

» given 4, an input/output partitioning is typically not unique
> also, properties and problems are defined in terms of %
> equivalent representations define the same system
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Example: what means that % is controllable?

controllability is the property of “patching”
any past trajectory with any future trajectory

Wp AW AW € B

: "sufficiently”

long

11/40



Compare with the classical definition:
transfer from any initial to any terminal state

property of a state-space representation of %

> is lack of controllability due to a “bad” choice of the state
or due to an intrinsic issue with the system?

> minimal (controllable and observable) state-space
representation can’t be assumed w.l.g.

> how to quantify the “distance” to uncontrollability?

does not apply to infinite dimensional system
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Separating problems from solution methods

different representations ~-» different methods

» with different properties (efficiency, robustness, . ..)
» their common feature is that they solve the same problem

clarifies links among methods

leads to new methods
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Example: back to the controllability example

how to check controllability of an LTI system?

using state-space representation:

1. ensure minimality (in the behavioral sense)
2. perform rank test for the controllability matrix

using matrix fraction representation:
Z={w=N[}] € RN | N(c)u=D(c)y}

» facts: A is controllable <= N and D are co-prime
» ~ rank test for the (generalized) Sylvester matrix
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The behavioral approach is naturally suited
for the “data-driven paradigm”

1940-1960 classical SISO transfer function
1960—-1980 modern MIMO state-space
1980-2000 behavioral the system as a set

2000—now data-driven using directly the data

15/40



Summary: behavioral approach

detach the system from its representations

> define properties and problems in terms of the behavior
> lead to new, more general, definitions and problems
> avoid inconsistencies of the classical approach

separate problem from solution methods

» different representations lead to different methods
» show links among different methods
> lead to new solutions

naturally suited for the “data-driven paradigm”
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Outline

Data-driven interpolation and approximation
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The new “data-driven” paradigm obtains
desired solution directly from given data

model %,

, desired
data data-driven design solution
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Data-driven does not mean model-free

data-driven problems do assume model
however, specific representation is not fixed

the methods we review are non-parametric
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A dynamical system Z is a set of signals

A is linear system «— A is subspace
A is time-invariant «<— oA =%
(ow)(t) := w(t+ 1) — shift operator
0% :={ow|we2B}

“good definition should formalize sensible intuition”
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The set of linear time-invariant systems .Z
has structure characterized by set of integers

the dimension of #Z € £ is determined by
m(%#) — number of inputs
n(#) — order (= minimal state dimension)

£(#) — lag (= observability index)

J.C. Willems, From time series to linear systems.
Part I, Finite dimensional linear time invariant systems, Automatica, 22(561-580), 1986
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A less complex than %, <— %1 C B>

in the LTI case, complexity <+ dimension

complexity: (# inputs, order, lag)
c(#) = (m(B),n(A),L(A))

% — bounded complexity LTI model class
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Data-driven representation (infinite horizon)

data: exact infinite trajectory wy of # € ¥
define % := span{wy,owy,c2Wy, ...}

identifiability condition: % = %
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Data-driven representation (finite horizon)

restriction of w and # to finite interval [1, L]
wip = (w(1),...,w(L)), SBl:={w|. |we ZB}

for wg = (wg(1),...,wg(T))and 1 <L <T

Hi(wa) = [(c"We)lL ("We)l - (o7 Lwar)le

define %, :=image 7 (wy)
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Conditions for informativity of the data
A =image i (wy) if and only if

rank 4 (We) = Lm(2) + (&) (GPE)

I. Markovsky and F. Dorfler, Identifiability in the Behavioral Setting, TAC, 2023

sufficient conditions (input design perspective):

1wy =[y;]
2. % controllable
3. A n(#)(Ug) full row rank (PE)

J.C. Willems et al., A note on persistency of excitation
Systems & Control Letters, (54)325-329, 2005

PE — persistency of excitation, GPE — generalized PE
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Generic data-driven problem:
trajectory interpolation/approximation

given: “data” trajectory Wy € BT
partially specified trajectory w| lsiven
(Wl Selects the elements of w, specified by given)
aim: minimize over w [ W]y, .. — W[yl

subjectto we 4|,

W = A (Wat) (W) fyen) (SOL)

W’ Igiven
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Special cases

simulation

» given data: initial condition and input
» to-be-found: output (exact interpolation)

smoothing

> given data: noisy trajectory
» to-be-found: />-optimal approximation

tracking control

> given data: to-be-tracked trajectory
> to-be-found: />-optimal approximation
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Generalizations
multiple data trajectories w ..., w}

# =image | A (wy) - (W)

Wy not exact / noisy

maximume-likelihood estimation

~ Hankel structured low-rank approximation/completion
nuclear norm and ¢{-norm relaxations

~ nonparametric, convex optimization problems

nonlinear systems

results for special classes of nonlinear systems:
Volterra, Wiener-Hammerstein, bilinear, . ..

28/40



Summary: data-driven signal processing

data-driven representation

leads to general, simple, practical methods

interpolation/approximation of trajectories

simulation, filtering and control are special cases
assumes only LTl dynamics; no hyper parameters

dealing with noise and nonlinearities

nonlinear optimization
convex relaxations
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Outline

Convex relaxations and empirical validation
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The data wy being exact vs inexact / “noisy”

wy exact and satisfying (GPE)

» “system theory” problems
> image ./ (wy) is nonparametric finite-horizon model
» data-driven solution = model-based solution

Wy inexact, due to noise and/or nonlinearities

» naive approach: apply the solution (SOL) for exact data
» rigorous: assume noise model ~ ML estimation problem
» heuristics: convex relaxations of the ML estimator
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The maximum-likelihood estimation problem
in the errors-in-variables setup is nonconvex

errors-in-variables setup: wy = wgq + Wy

> Wy — true data, Wy € B|7, B L7
» wy — zero mean, white, Gaussian measurement noise

ML problem: given wy, ¢, and w|;, .

minimize. || W]y, — 7 (50)] 8|
subjectto  wj = arg ming 5 llwa— wy ||

subjectto Wy € Z|1 and % € £
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The ML estimation problem is equivalent to
Hankel structured low-rank approximation

minignize ||W|/gllven - ‘%(W*)hgiveng”

subjectto  wj = arg ming 5 IWa— A
subjectto Wy € %|7 and Z € £

)

minimize | W], ~ ()] I
subjectto wg =argming  [lwy— Wy
subject to rankyﬁﬂ(wd) ({+1)ym+n
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Solution methods

local optimization

» choose a parametric representation of @(9)
» optimize over w, wg, and 6
» depends on the initial guess

convex relaxation based on the nuclear norm

minimize over Wy and w ||w|_ | + || wg — wy|

given

|t @]

W‘/

given

convex relaxation based on /4-norm (LASSO)

minimize over g |[[W|,., — H1(Wa)l e, 91l + 2119111
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Empirical validation on real-life datasets

data set name T mp
1 Airpassengersdata| 144 0 1
2 Distillation column 90 5 38
3 pH process 2001 2 1
4 Hair dryer 1000 1 1
5 Heat flow density 1680 2 1
6 Heating system 801 1 1

G. Box, and G. Jenkins. Time Series Analysis: Forecasting and Control, Holden-Day, 1976

B. De Moor, et al.DAISY: A database for identification of systems. Journal A, 38:4-5, 1997
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¢1-norm regularization with optimized A
achieves the best performance

H W| Imissing - W| Imissing H 0
100%

missing - = ||W|/missing||

data set name naive ML LASSO
1 Air passengers data 3.9 fail 3.3
2 Distillation column 19.24 17.44 9.30
3 pH process 38.38 85.71 12.19
4 Hair dryer 12.35 8.96 7.06
5 Heat flow density 7.16 4410 3.98
6 Heating system 092 1.35 0.36
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Tuning of A and sparsity of g (datasets 1, 2)
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Tuning of A and sparsity of g (datasets 3, 4)
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Tuning of A and sparsity of g (datasets 5, 6)
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Summary: convex relaxations
wy exact ~~ system theory

> exact analytical solution
» current work: efficient real-time algorithms
Wy inexact ~» nonconvex optimization

» subspace methods
> local optimization
» convex relaxations

empirical validation

> the naive approach works (surprisingly) well
» parametric local optimization is not robust
> /i-norm regularization gives the best results
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