Applications of common factor computation in signal processing

Ivan Markovsky, Antonio Fazzi, and Nicola Guglielmi

Issue: exact properties are lost under noise

data a set of polynomials

exact property existence of a common factor

distance problem:

how far is the data from having the property?

Approximate GCD computation ...

given polynomials p^1, \ldots, p^N and a natural number d

minimize over
$$\hat{p}^1, \dots, \hat{p}^N = \sum_{i=1}^N \|p^i - \hat{p}^i\|_2^2$$

subject to deg $(\gcd(\hat{p}^1, \dots, \hat{p}^N)) \ge d$

 $gcd(\hat{\rho}^1,\ldots,\hat{\rho}^N)$ — greatest common divisor of $\hat{\rho}^1,\ldots,\hat{\rho}^N$

... has applications in signal processing

Blind FIR system identification

Distance to uncontrollability

Common dynamics estimation

Problem formulation (exact data)

given: output observations $y^1, ..., y^N$ of FIR system (generated by unknown inputs $u^1, ..., u^N$)

find: the impulse response *h* of the FIR system

Result: it is a GCD problem

if

- at least N = 2 responses y^1, \ldots, y^N are given
- u^1, \ldots, u^N have finite support, and

•
$$gcd(u^1(z),\ldots,u^N(z)) = 1$$

then

$$h(z) = \alpha \operatorname{gcd} \left(y^1(z), \dots, y^N(z) \right)$$

 α — unknown scaling factor

Problem formulation (noisy data)

assumption:

$$y_d^i = \bar{y}^i + \tilde{y}^i$$
, for $i = 1, \dots, N$

 \tilde{y} — zero mean, white, Gaussian noise

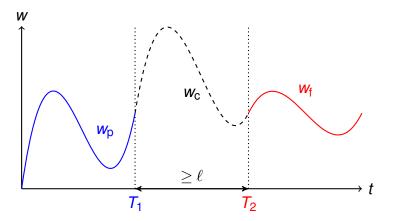
maximum-likelihood estimator:

minimize
$$\sum_{i=1}^{N} \|y_{d}^{i} - \widehat{y}^{i}\|_{2}^{2}$$

subject to $\widehat{y}^{i} = \widehat{h} \star \widehat{u}^{i}$, for $i = 1, ..., N$

~ approximate common factor computation

Controllability property, defined in terms of the system's trajectories $w = \begin{bmatrix} u \\ y \end{bmatrix}$



for all w_p , $w_f \in \mathscr{B}$, there is w_c , such that $w_p \wedge w_c \wedge w_f \in \mathscr{B}$ (" \wedge " denotes "concatenation" of trajectories)

Linear time-invariant systems

polynomial representation (σ — unit shift)

$$\mathscr{B}_{\mathsf{i/o}}(p,q) := \left\{ \begin{bmatrix} u \\ y \end{bmatrix} \mid p(\sigma)y = q(\sigma)u \right\}$$

fact: $\mathscr{B}_{i/o}(p,q)$ is controllable iff (p,q) are co-prime

distance between systems

$$\mathsf{dist}\left(\mathscr{B}_{\mathsf{i/o}}(\boldsymbol{\rho},\boldsymbol{q}),\mathscr{B}_{\mathsf{i/o}}(\widehat{\boldsymbol{\rho}},\widehat{\boldsymbol{q}})\right):=\left\| \begin{bmatrix} \boldsymbol{q} \\ \boldsymbol{\rho} \end{bmatrix} - \begin{bmatrix} \widehat{\boldsymbol{q}} \\ \widehat{\boldsymbol{\rho}} \end{bmatrix} \right\|_2$$

Distance to uncontrollability problem

given $\mathscr{B}_{i/o}(p,q)$, find the uncontrollability radius

$$\mathsf{dist}_{\mathsf{unctr}}(\mathscr{B}) := \min_{\widehat{\mathscr{B}} \in \overline{\mathscr{L}_{\mathsf{ctrb}}}} \mathsf{dist}(\mathscr{B}, \widehat{\mathscr{B}})$$

 $\overline{\mathscr{L}_{\mathrm{ctrb}}}$ — set of uncontrollable LTI systems

 \rightarrow approximate common factor computation with d = 1

Model-based common dynamics estimation

given systems $\mathscr{B}_1, \ldots, \mathscr{B}_N$, find their "common dynamics"

$$\mathscr{B} := \mathscr{B}_1 \cap \cdots \cap \mathscr{B}_N$$

kernel representation $\mathscr{B}_i = \{ y \mid R^i(\sigma) y = 0 \}$

fact

$$R(z) = \gcd\left(R^1(z), \ldots, R^N(z)\right)$$

Data-driven common dynamics estimation

given data $y_1 \in \mathscr{B}_1, \ldots, y_N \in \mathscr{B}_N$

find the common dynamics $\mathscr{B} := \mathscr{B}_1 \cap \cdots \cap \mathscr{B}_N$

model-based approach: $(y_1, \ldots, y_N) \mapsto (R^1, \ldots, R^N) \mapsto \mathscr{B}$

data-driven approach: $(y_1, \ldots, y_N) \mapsto \mathscr{B}$

Subspace common dynamics estimation

assume that rank $(hankel(y^i))$ is maximal

then $\mathscr{B}_i = \operatorname{span}(\operatorname{hankel}(y^i))$

finding ${\mathscr B}$ is a common subspace computation problem