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In the classical approach,
a system is an input-output map

systeminput output

the input causes the output

the system is a signal processor

the system is defined by equations

2 / 30



Premise: familiarity with classical approach

why is a different approach needed?

how is the behavioral approach different?

what new does it bring?

Thesis: behavioral approach has added value
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Outline

A 10 minutes introduction to the behavioral approach

Data-driven representation of LTI systems

Showcase: Nonparametric frequency response estimation

4 / 30



Why is a different approach needed?

input/output maps assume zero initial conditions
I without input, what is a signal processor processing?
I initial conditions can be added as an afterthought

modeling from first principles leads to relations
I e.g., ideal gas law: PV = cMT

(P — pressure, V — volume, M — mass, T — temperature, c — constant)

interconnection of systems is variables sharing
I mechanical systems: position and velocity
I electrical systems: potential and current
I hydraulic systems: pressure and flow
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The behavioral approach was put forward
by Jan C. Willems in the 1980’s

3-part, 70-page, Automatica paper:

Part I. Finite dimensional linear time invariant systems
Part II. Exact modelling
Part III. Approximate modelling
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“Good definition should formalize
sensible intuition” Jan C. Willems

“I was not going to use the classical format where
a definition is given first, followed by illustrative
examples. I wanted this to go the other way
around: show how examples lead to definitions.”

some of the examples he used:
I Newton’s second law
I Maxwell’s equations
I the first and second laws of thermodynamics
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How is the behavioral approach
different from the classical one?

dynamical system B is a set of signals w

w ∈B ↔ w is trajectory of B

↔ B is exact model for w

no inputs and outputs, no causality, no equations

the system is detached from its representations

properties and problems are separated from methods

9 / 30



How is the behavioral approach
similar to the classical one?

input/output partitioning w = Π[ u
y ] and

representations can be derived from B, e.g.,

B =
{

w = Π
[u

y
]
∈ (Rq)N | ∃ x ∈ (Rn)N,

[
σx
y
]

=
[

A B
C D

]
[ x
u ]
}

however
I given B, an input/output partitioning is typically not unique
I also, properties and problems are defined in terms of B
I equivalent representations define the same system
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Example: what means that B is controllable?

controllability is the property of patching
any past trajectory with any future trajectory

wp∧wc∧wf ∈B

t

w

wp

wc wf

T1 T2

sufficiently
long
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Compare with the classical definition:
transfer from any initial to any terminal state

property of a state-space representation of B

I is lack of controllability due to a bad choice of the state
or due to an intrinsic issue with the system?

I in the LTI case, does it make sense to talk about
controllability of a transfer function representation?

I how to quantify the distance to uncontrollability?

does not apply to infinite dimensional system
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Separating problems from solution methods

different representations  different methods
I with different properties (efficiency, robustness, . . . )
I their common feature is that they solve the same problem

clarifies links among methods

leads to new methods
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Back to the controllability example:
how to check controllability of LTI system?

using state-space representation:
1. ensure minimality in the behavioral sense
2. perform rank test for the controllability matrix

using matrix fraction representation:

B =
{

w = Π
[u

y
]
∈ (Rq)N | N(σ)u = D(σ)y

}
I facts: B is controllable ⇐⇒ N and D are co-prime
I  rank test for the (generalized) Sylvester matrix
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The behavioral approach is naturally suited
for the data-driven paradigm

1940–1960 classical SISO transfer function

1960–1980 modern MIMO state-space

1980–2000 behavioral the system as a set

2000–now data-driven using directly the data
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A linear time-invariant system
is a shift-invariant subspace

B is linear system :⇐⇒ B is subspace

B is time-invariant :⇐⇒ σB = B

(σw)(t) := w(t + 1) σB :=
{

σw | w ∈B
}

restriction of w and B to finite interval [1,L]

w |L :=
(
w(1), . . . ,w(L)

)
B|L := {w |L | w ∈B }
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The set of linear time-invariant systems L
has structure characterized by set of integers

the dimension of B ∈L is determined by

m — # of inputs (p := q−m # of outputs)

n — order (= minimal state dimension)

` — lag (= observability index)

J.C. Willems, From time series to linear systems.
Part I, Finite dimensional linear time invariant systems, Automatica, 22(561–580), 1986
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dimB|L is a piecewise affine function of L

L

dimB|L

`0 `1 `2 `p−1 `p = `

qL

(q
−1)L

. . .
(q−p + 1)L mL

n

irregular increase regular increase

in particular, dimB|L = mL + n, for all L≥ `
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Identifiability: wd ∈B specifies B ∈L
(infinite data length case)

define B̂ := span{wd,σwd,σ
2wd, . . .}

fact: B̂ ∈L and B̂ ⊆B

identifiability condition: B̂ = B

J.C. Willems, From time series to linear systems.
Part II, Exact modelling, Automatica, 22(675–694), 1986
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In the finite data length case, shifting and
cutting wd leads to the Hankel matrix

for wd =
(
wd(1), . . . ,wd(T )

)
and 1≤ L≤ T

HL(wd) :=
[

(σ0wd)|L (σ1wd)|L · · · (σT−Lwd)|L
]

define B̂L := imageHL(wd)

fact: B̂L ⊆B|L
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Identifiability condition
verifiable from wd ∈B|T and

(
m, `,n

)
fact: B = B′ ⇐⇒ B|`+1 = B′|`+1, then

B̂ = B ⇐⇒ B̂|`+1 = B|`+1

⇐⇒ dimB̂|`+1 = dimB|`+1

B is identifiable from wd ∈B|T if and only if

rankH`+1(wd) =
(
`+ 1

)
m + n
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Nonparametric repr. B|L = imageHL(wd)

B̂L ⊆B|L, L≥ `, equality holds if and only if

rankHL(wd) = Lm + n (GPE)

sufficient conditions (the “fundamental lemma”):
1. wd =

[ud
yd

]
2. B controllable
3. HL+n(ud) full row rank

J.C. Willems et al., A note on persistency of excitation
Systems & Control Letters, (54)325–329, 2005
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Problem formulation

given: “data” trajectory (ud,yd) ∈B|Td and z ∈ C

find: H(z), where H is the transfer function of B
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Direct data-driven solution
we are interested in trajectory

w =
[

u
y

]
=
[

expz
Ĥ expz

]
∈B|L, where expz(t) := z t

using the data-driven representation, we have[
HL(ud)

HL(yd)

]
g =

[
z

Ĥz

]
, where z :=

[
z1

...
zL

]

which leads to the system[
0 HL(ud)

−z HL(yd)

][
Ĥ
g

]
=

[
z
0

]
(SYS)
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Solution method: solve (SYS) for Ĥ

under (GPE) with L≥ `+ 1, Ĥ = H(z)

without prior knowledge of `

L = Lmax := b(Td + 1)/3c

trivial generalization to
I multivariable systems
I multiple data trajectories {w1

d , . . . ,w
N
d }

I evaluation of H(z) at multiple points in {z1, . . . ,zK } ∈ CK
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Comparison with classical nonparametric
frequency response estimation methods

ignored initial/terminal conditions  leakage

DFT grid  limited frequency resolution

improvements by windowing and interpolation
I the leakage is not eliminated
I the methods involve hyper-parameters
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Summary

why is the behavioral approach needed?
I respects physics
I suited for the data-driven paradigm

how is the behavioral approach different?
I a system is a set of trajectories — the behavior
I properties/problems are defined in terms of the behavior

what does it bring?
I broad framework where new questions can be asked
I data-driven representation B|L = imageHL(wd)
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“Telling people something they didn’t know
doesn’t always mean surprising them. Some-
times it means telling them something they knew
unconsciously but had never put into words.
In fact those may be the more valuable insights,
because they tend to be more fundamental.”

P. Graham
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What about noise in the data wd?
Solving (SYS) with noisy data

preprocessing: rank-mL + n approx. of HL(wd)

I hyper-parameters L and n (L≥ `+1)
I if the approximation preserves the Hankel structure,

the method is maximum-likelihood in the EIV setting

regularization with ‖g‖1
I hyper-parameter: the 1-norm regularization parameter

regularization with the nuclear norm of HL(ŵd)

I hyper-parameters: L and the regularization parameter
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Matlab implementation

function Hh = dd_frest(ud, yd, z, n)
L = n + 1; t = (1:L)';
m = size(ud, 2); p = size(yd, 2);

%% preprocessing by low-rank approximation
H = [moshank(ud, L); moshank(yd, L)];
[U, ~, ~] = svd(H); P = U(:, 1:m * L + n);

%% form and solve the system of equations
for k = 1:length(z)

A = [[zeros(m * L, p); -kron(z(k) .^ t, eye(p))] P];
hg = A \ [kron(z(k) .^ t, eye(m)); zeros(p * L, m)];
Hh(:, :, k) = hg(1:p, :);

end

I 5 lines of essential code
I MIMO case, multiple evaluation points
I L = n+1 in order to have a single hyper-parameter
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Empirical validation: 4th order system
in the errors-in-variables setup

I dd_frest — proposed method
I ident — parametric maximum-likelihood estimator
I spa — nonparameteric estimator with Welch filter
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Monte-Carlo simulation over different
noise levels and number of samples

ea := 100% · |(|Hz |− |Ĥz |)| / |Hz |
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