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Outline

Setup: data-driven modeling

Problems: system identification, machine learning, . . .

Behavioral paradigm ↔ low-rank approximation

Algorithms: optimization, multistage, convex relaxations

Applications: missing data, data-driven simulation

Connections: TLS, EIV, PCA, rank minimization, . . .
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General setup

data
D ⊂ U

modeling
−−−−−−→

model
B ∈ M ∈ 2U

• D — data, e.g., a vector time series (Rq)N

• B — model (behavior): a (sub)set of the data space U

• M — model class: a set of models

work plan:

1. define a modeling problem

2. find an algorithm that solves the problem

3. implement the algorithm in software

4. use the software in applications
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The problem

prior knowledge, assumptions, and/or prejudices

about what the true or desirable model is

• model class — imposes hard constraints

e.g., bound on the model complexity

• optimization criteria — impose soft constraints

e.g., small misfit between the model and the data

• real-life problems are vaguely formulated

• often it is not clear what is the “best” problem formulation

“A well defined problem is a half solved problem.”
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System identification problems

U = (Rq ×·· ·×R
q

︸ ︷︷ ︸
T1

)×·· ·× (Rq ×·· ·×R
q

︸ ︷︷ ︸
TN

) —
N, q-variable
time series

M is, e.g., bounded complexity (# inputs and lags), LTI systems

• latency (ARMAX): Bextu
e y

minimize ‖e‖ subject to
(
(e,u),y) ∈ B̂ext ∈ M

• misfit (EIV):
Bū

ũ
ȳ
ỹ

u y

minimize ‖(∆u,∆y)‖ subject to
(

u+∆u︸ ︷︷ ︸
û

,y +∆y︸ ︷︷ ︸
ŷ

)∈ B̂ ∈M
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Special cases

• M with lag = 0  static modeling

• M with # inputs = 0  sum-of-damped-exp. modeling

• FIR systems  approximate deconvolution

• EIV with ∆u = 0 or special ARMAX  output error

u

e

B y

Bext
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A unifying setting for data modeling

systems and control

model
reduction

system
identification

signal processing

spectral
estimation

image
deblurring

structured low-rank approximation

approx.
GCD

approx.
factorization

computational mathematics

dim.
reduction

clustering

machine learning
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Desirable features of a paradigm

simple: can be introduced in 1 slide

flexible: applies to a rich class of problems

practical: leads to solution methods and algorithms

optimal: in theory, finds the "best" solution

effective: in practice, can “solve” real-life problems

automatic: hyper param. correspond to prior knowledge

compact: software implementation requires short code
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Structured low-rank approximation

• structure specification S : Rnp → R
m×n

• vector of structure parameters p ∈ R
np

• weighted 2-norm ‖p‖2
w := p⊤Wp

• rank specification r

minimize over p̂ ∈ R
np ‖p− p̂‖2

w

subject to rank
(
S (p̂)

)
≤ r

(SLRA)
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Structure S ↔ Model class M

unstructured ↔ linear static

Hankel ↔ scalar LTI

q×1 Hankel ↔ q-variate LTI

q×N Hankel ↔ N equal length traj.

mosaic Hankel ↔ N general traj.
[
Hankel unstructured

]
↔ finite impulse response

block-Hankel Hankel-block ↔ 2D linear shift-invariant
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(SLRA) ↔ approximate data modeling

• p ↔ vec(D)

• r ↔ model complexity

• W ↔ prior knowledge about the data accuracy

(SLRA) is a maximum likelihood estimator in the EIV setting
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Singular weight matrix ↔ fixed and missing values

• consider the special case of element-wise weights

‖p− p̂‖w =

√
∑np

i=1 wi(pi − p̂i)
2

specified by a vector w ∈R
np

• wi = ∞ imposes equality constraint p̂i = pi on (SLRA)

wi = ∞ =⇒ p̂i = pi

• wi = 0 makes the problem (SLRA) independent of pi

wi = 0 =⇒ pi is ignored

alternatively, problem (SLRA) is solved with pi missing
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Solution methods
• global solution methods

• SDP relaxations of rational function minimization problem

• systems of polynomial equations (computer algebra)

• resultant-based methods
• Stetter-Moller methods

• subdivision methods
• homotopy continuation

• local optimization methods

• variable projections

• alternating projections

• variations

parameterization
+

optimization method
=

method
• heuristics

• multistage methods • nuclear norm heuristic
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VARPRO-like solution method
• using the kernel parameterization

rank
(
S (p̂)

)
≤ r ⇐⇒ RS (p̂) = 0, rank(R) = m− r

• (SLRA) becomes

minimize over p̂ and R ‖p− p̂‖2
w

subject to RS (p̂) = 0, rank(R) = m− r
(SLRAR)

• (SLRAR) is separable in p̂ and R, i.e., it is equivalent to

minimize over R f (R)

subject to rank(R) = m− r
(OUTER)

where

f (R) := min
p̂

‖p− p̂‖2
w subject to RS (p̂) = 0 (INNER)

• p̂ is eliminated (projected out) of (SLRAR)
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• evaluation of f (R), i.e., solving (INNER), is least norm prob.

• in SYSID, evaluation of f (R) is a data smoothing operation

• in a stochastic setting, it is the likelihood evaluation

• efficient computation using Riccati recursion
(Kalman smoothing)

• in other applications, f (R) can also be evaluate efficiently,
by exploiting the matrix structure

• software implementation for mosaic Hankel-like matrices,
with fixed and missing data, and linearly structured kernel

http://github.com/slra/slra
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Structured kernel

• (OUTER) is a nonlinear least-squares problem

• it can be solved with additional constraints

• e.g., linear structure of the kernel

R = R(θ) := vec−1(θΨ)

• applications requiring structured kernel:

• harmonic retrieval  R palindromic

• SYSID with fixed poles  R = Rfixed ⋆Rfree

• SYSID with fixed observ. indices  R =

[× ··· × 1 0 0
...
. . .

. . .
. . . 0

× ··· × ··· × 1

]

• common dynamics estimation  R nonlinear
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Autonomous system identification with missing data

• M = L0,ℓ — LTI systems with 0 inputs and lag ≤ ℓ

• data y ∈ R
p
ext ×·· ·×R

p
ext︸ ︷︷ ︸

T

, where Rext = R∪NaN

• problem: given y and ℓ,

minimize over ŷ ∈ (Rp)T and B̂ ‖y − ŷ‖2
w

subject to ŷ ∈ B̂ ∈ L0,ℓ

• w assigns zeros to the missing data (yi(t) = NaN)

• ∃B̂, such that ŷ ∈ B̂ ∈ L0,ℓ ⇐⇒ rank
(
Hℓ+1(ŷ)

)
≤ ℓp

• the problem is Hankel structured low-rank approximation
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Simulation example

• p= 1, ℓ= 2, T = 50, y = ȳ +white noise, where

ȳ(t) = 1.456ȳ(t −1)−0.81ȳ(t −2), ȳ(0) = 0, ȳ(1) = 1

• missing values distributed periodically with period 3

• solved with the algorithm based on the VARPRO approach
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System identification with periodically missing data
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true — solid line optimal approximation — dashed blue
circles — data points crosses — location of missing data
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Classical simulation problem

given

• LTI system B (specified by some representation)

• initial condition wini (specified by trajectory of B)

• input u

find the output y of B, corresponding to wini and u

• there are many ways to solve the problem

• the algorithms depend on the model representation
(state-space, transfer function, impulse response, . . . )
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Data-driven simulation

given

• trajectory w ′ of LTI system B and the lag ℓ of B

• initial condition w ′′
p =

(
w ′′(1), . . . ,w ′′(ℓ)

)

• input u′′
f =

(
u′′(ℓ+1), . . . ,u′′(T2)

)

find the output y ′′
f of B, corresponding to w ′′

p and u′′

y ′′
f =

(
y ′′(ℓ+1), . . . ,y ′′(T2)

)

m

find y ′′
f and B ∈ Lm,ℓ

such that w ′ ∈ B̂ and w ′′
p ∧ (u′′

f ,y
′′
f )︸ ︷︷ ︸

w ′′

∈ B
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• there is B̂ ∈ Lm,ℓ, such that w ′ ∈ B̂ and w ′′ ∈ B̂

m

rank
([

Hℓ+1(w ′) Hℓ+1(w ′′)
])

≤ 2ℓ+1

mosaic Hankel matrix completion

• with noisy w ′, the problem is

minimize over ŵ ′, ŵ ′′, B̂ ∈ Lm,ℓ ‖w ′− ŵ ′‖2
2

subject to ŵ ′,ŵ ′′ ∈ B̂, ŵ ′′
p = w ′′

p , û′′
f = u′′

f

mosaic Hankel low-rank approximation
with exact and missing data
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Simulation example

• second order SISO system, defined by difference equation

ȳ(t) = 1.456ȳ(t −1)−0.81ȳ(t −2)+ ū(t)− ū(t −1)

• w ′ is noisy trajectory generated from random input

• y ′′
f is the impulse response h̄, i.e.,

u′′ = (0, . . . ,0︸ ︷︷ ︸
ℓ

,1,0, . . . ,0︸ ︷︷ ︸
pulse input

)

y ′′ = (0, . . . ,0︸ ︷︷ ︸
ℓ

, ĥ(0), ĥ(1), . . . , ĥ(T2 − ℓ−1)︸ ︷︷ ︸
impulse response

)
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Data-driven simulation of impulse response
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true — solid line optimal approximation — dashed blue
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Related frameworks

• behavioral approach: representation free modeling

• total least squares: (SLRA) with I/O representation

RS (p̂) =
[
X⊤ −I

]
[

Â⊤

B̂⊤

]
= 0 ⇐⇒ ÂX = B̂ (TLS)

• errors-in-variables: statistical setup for (TLS)

• principal component analysis: another statistical setup

• rank minimization: “dual” to (SLRA)

(soft constraint on complexity, hard constraint on accuracy)
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Current/future work

• comparison of different optimization methods for

minimize over R M(R) subject to RR⊤ = I

• fast misfit computation ↔ Kalman smoothing

M(R) = vec⊤(w)Γ−1(R)vec(w)

efficient computation in the case of missing data

• singularity of Γ (poles/zeros on the unit circle)

• solution of ARMAX identification problems (latency min.)

• static nonlinear modeling is nonlinear SLRA (kernel PCA)

• nD system identification (block-Hankel Hankel-block SLRA)
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