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Modern filtering/control is model-based:
the design problem is split into two steps

data-driven
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data control




System identification does not take
into account the design objective
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Data-driven methods avoid modeling
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Combined modeling+design has benefits

identification ignores the design objective

the two-step approach is suboptimal

objective: define and solve a direct problem

observed filtering filtered
+ o =
data objective signal
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Example: data-driven Kalman smoothing

Generalization: missing data estimation

Solution approach: matrix completion

6/37



Plan

Example: data-driven Kalman smoothing
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A dynamical system & is a set of signals w

WeB <—

» the signal w is trajectory of the system %
» % is an exact model for w
» A is unfalsified by w

we consider linear time-invariant systems (w=[}])

¥ — linear time-invariant model class



Initial conditions are specified by "past" traj.




Representation free definition of smoothing

observer: given model % and exact trajectory w;

find wp, such that w, Aw; € %

smoother: given model % and noisy trajectory w;

minimize ||ws— W subjectto WwyAWe B (MBS)
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When does a trajectory wy € % specify 4?

identifiability conditions
1. ug is persistently exciting of "sufficiently high order"
2. A is controllable

how to obtain % back from wy?

wy — 2% by choosing the simplest exact model for wy
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The most powerful unfalsified model of wy,
PBmpum(Wy) is the data generating system

complexity «> # inputs m and # states n
¢(#) = (m,n)

the most powerful unfalsified model

~

PBmpum(Wg) :=arg min c(#) subjectto wye B
BeL g
unfalsified model

most powerful

Znn — set of models with complexity bounded by (m, n)
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Data-driven smoothing replaces
the model % by trajectory wy € £

observer: given trajectories wy and w; of %

smoother: given noisy traj. wy and w; of 4 and (m, /)

minimize  [|w—will5 + |lwg— Wql3
—— ————
estimation error  identification error (DDS)

subjectto Wy A W € Bmpum(Wa) € Ly
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Classical approach: divide and conquer

1. identification: given wy and (m, ¢)

2. model-based filtering: given w; and B = PBrmpum(Wy)

minimize  |w;— W] subjectto W, AW € B
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Summary

model-based smoothing
given model # and trajectory w;

minimize ||ws—w| subjectto Wy AW € B (MBS)
data-driven smoothing
given trajectories wy and w; and complexity (m, /)

minimize  ||w; — w[|3 + || wg — Wgl3

. e R (DDS)
subjectto  Wp A Ws € Bmpum(Wa) € L
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Plan

Generalization: missing data estimation
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We aim to find missing part of trajectory

missing data — interpolated from w € #

exact data— kept fixed

inexact / "noisy" data — approximated by min ||error]||»
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Other examples fit in the same setting

? — missing, E —exact, N — noisy
w="M[y], u—input, y— output

example Wo U ¥
state estimation ?7 E E
EIV Kalman smoothing ?7 N N
classical Kalman smoothing | 7 E N
simulation E E 7
partial realization E E FE/?
noisy realization E E N/?
output tracking E ? N
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| | minimize ||y —¥|
classical Kalman filter N
subjectto wpA(u,y) e B
| past future
? u

? y

input
output

minimize || yrer — V||
output tracking control tmr
subjectto wp A (U,y) € B
| past future
Up ?
Yp Yref

input
output
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Weighted approximation criterion accounts
for exact, missing, and noisy data

error vector: e .= w — w

lelly == /L L vi(t)e(?)

weight used for to by

Vi(t) = oo w;(t) exact interpolate w;(t) ej(t)=0
Vi(t) € (0,0)  w;(t) noisy approx. w;(t) min | e;(t)]]
vi(t)=0 w;(t) missing fill in w;(t) we %
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Data-driven signal processing can be posed
as missing data estimation problem

minimize  |\wg — Wyl + |w — w||5

) R N (DD-SP)
subject to W € Bmpum(Wy) € Ly

the recovered missing values of w are the desired result
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Plan

Solution approach: matrix completion
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w e ¥ <— Hankel matrix is low-rank

exact trajectory w € # € £, ¢

T
Row(t)+ Ryw(t+1)+---+Rw(t+¢)=0
T
rank deficient
[ w(1) w2) - w(T-¢) ]
w(2) w(3) - w(T—-(+1)
A (w):=| w@)  w@E) - w(lT-{(+2)
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relation at time t = 1
Row(1)+Ryw(2)+---+ Rw({+1)=0

in matrix form:
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relation at time t =2
Row(2)+Ryw(3)+ -+ Rw({+2)=0

in matrix form:

[Ro R, - Rg] =0
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relation attime t=T — /¢
Row(T —0)+Ryw(T —(+1)+---+Rw(T)=0

in matrix form:

[ w(T—¢) ]
w(T—0+1)
[/:;0 R, - /:,vg] w(T—(+2)| —o

W(.T)
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relationfort=1,..., T -/
Row(t)+ Ryw(t+1)+---+Rw(t+¢)=0

in matrix form:

w(1) w2) - w(T—10) ]
w(2) w(@) - w(T—/(+1)

[Ro Ry - /:gg] w(3) w(4) - w(T—(+2)| =0
" _W(f'—l-‘l) W(f‘%-Z) W(‘T) |
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wWeBeLn
T

there is R € R(@™xa(+1) 41| row rank,
such that R7Z(w)=0
(i
rank (#(w)) < gl+m

q — # of variables
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W € Bmpum(Wq) is equivalent to rank
constraint on a mosaic-Hankel matrix

|7V € %mpum(p\vd) € o%m’g

I
WgeBe Ly and WeH

i
rank ([ (#g) #/(W)] ) < qt+m

g
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Data-driven signal processing
<= structured low-rank approximation

minimize  ||wy — Wy + |w — W|)2
subjectto W € Bmpum(Wy) € Ly

0
minimize ||w —W'||
subject to rank (sZ(w')) <r
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Three main classes of solution methods

local optimization
nuclear norm relaxation

subspace methods

considerations

» generality
» user defined hyper parameters
» availability of efficient algorithms/software
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Local optimization using variable projections:
analytical elimination of w

kernel representation

min (min |w—w| subject to R,%”(VAV):O)
Rfrr. w

variable projection (VARPRO): elimination of w leads to

minimize f(R) subjectto R full row rank
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Dealing with the "R full row rank" constraint

1. impose a quadratic equality constraint RR' = |

2. using specialized methods for optimization on a manifold
3. Rfullrowrank <= RN = [x /] with N permutation

» [1fixed ~~ total least-squares
» [1 can be changed during the optimization
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Summary of the VARPRO approach

kernel representation ~»  parameter opt. problem

_min ||w—w| subjectto RsZ(w)=0
w,Rf.rr.

elimination of w ~»  optimization on a manifold

in f(R
ain 1R)

in case of mosaic-Hankel .77, f can be evaluated fast
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Numerical example with Kalman smoothing

simulation setup

> B € % o — 2nd order LTI system
> W; = W;+noise, W; € & — step response
> Wy = Wq-+nhoise, Wqe A

smoothing with known model

» state space solution
» solution of (MBS)

smoothing with unknown model

» identification + model-based design
» solution of (DDS)
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Known model: the missing data approach
(MBS) recovers the state space solution

state space solution
Ut
)4

representation free solution

minimize

0 / 5(\|n|
O7(A.C) %(H)] H ‘ (559

(MBS) is a generalized least squares

approximation error e = (||ws— w||)/||wi

method | (MBS) (SSS)
error e \0.083653 0.083653
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Unknown model: (DDS) gives better results
than the model-based approach

classical approach
identification + (SSS)

data-driven approach
solution of (DDS) with local optimization

simulation result
method \ (MBS) (DDS) classical
error e \ 0.083653 0.087705 0.091948
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Conclusion

motivation: combine the modeling and design problems

we aim to find the missing part of a trajectory w € #

reformulation as weighted structured low-rank approx.
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Future work

statistical analysis

computational efficiency / recursive computation

other methods: subspace, convex relaxation, ...

37/37



	Example: data-driven Kalman smoothing
	Generalization: missing data estimation
	Solution approach: matrix completion

