A missing data approach to data-driven filtering and control

Ivan Markovsky

Vrije Universiteit Brussel

prediction

Modern filtering/control is model-based: the design problem is split into two steps

System identification does not take into account the design objective

Data-driven methods avoid modeling

Combined modeling+design has benefits

identification ignores the design objective
the two-step approach is suboptimal
objective: define and solve a direct problem

observed
data
:---:
objective
:---:
signal

Plan

Example: data-driven Kalman smoothing

Generalization: missing data estimation

Solution approach: matrix completion

Plan

Example: data-driven Kalman smoothing

Generalization: missing data estimation

Solution approach: matrix completion

A dynamical system \mathscr{B} is a set of signals w

$w \in \mathscr{B}$

- the signal w is trajectory of the system \mathscr{B}
- \mathscr{B} is an exact model for w
- \mathscr{B} is unfalsified by w
we consider linear time-invariant systems

$$
\left(w=\left[\begin{array}{l}
u \\
y
\end{array}\right]\right)
$$

\mathscr{L} - linear time-invariant model class

Initial conditions are specified by "past" traj.

$$
w=w_{p} \wedge w_{f}
$$

Representation free definition of smoothing

observer: given model \mathscr{B} and exact trajectory w_{f}
find w_{p}, such that $w_{p} \wedge w_{\mathrm{f}} \in \mathscr{B}$
smoother: given model \mathscr{B} and noisy trajectory w_{f} minimize $\quad\left\|w_{\mathrm{f}}-\widehat{w}_{\mathrm{f}}\right\| \quad$ subject to $\quad \widehat{w}_{\mathrm{p}} \wedge \widehat{w}_{\mathrm{f}} \in \mathscr{B} \quad$ (MBS)

When does a trajectory $w_{\mathrm{d}} \in \mathscr{B}$ specify $\mathscr{B} ?$

identifiability conditions

1. u_{d} is persistently exciting of "sufficiently high order"
2. \mathscr{B} is controllable
how to obtain \mathscr{B} back from w_{d} ?
$w_{\mathrm{d}} \mapsto \mathscr{B}$ by choosing the simplest exact model for w_{d}

The most powerful unfalsified model of w_{d},

 $\mathscr{B}_{\text {mpum }}\left(W_{\mathrm{d}}\right)$ is the data generating systemcomplexity \leftrightarrow \# inputs m and \# states n

$$
\mathrm{c}(\mathscr{B})=(\mathrm{m}, \mathrm{n})
$$

the most powerful unfalsified model

$$
\mathscr{B} \text { mpum }\left(w_{\mathrm{d}}\right):=\arg \underbrace{\min _{\widehat{B} \in \mathscr{L}} \mathrm{c}(\widehat{\mathscr{B}})}_{\text {most powerful }} \text { subject to } \underbrace{w_{\mathrm{d}} \in \widehat{\mathscr{B}}}_{\text {unfalsified model }}
$$

$\mathscr{L}_{\mathrm{m}, \mathrm{n}}$ - set of models with complexity bounded by (m, n)

Data-driven smoothing replaces the model \mathscr{B} by trajectory $w_{\mathrm{d}} \in \mathscr{B}$

observer: given trajectories w_{d} and w_{f} of \mathscr{B}
find w_{p}, such that $w_{p} \wedge w_{f} \in \mathscr{B}_{\text {mpum }}\left(w_{d}\right)$
smoother: given noisy traj. w_{d} and w_{f} of \mathscr{B} and (m, ℓ)
$\operatorname{minimize} \underbrace{\left\|w_{\mathrm{f}}-\widehat{w}_{\mathrm{f}}\right\|_{2}^{2}}_{\text {estimation error }}+\underbrace{\left\|w_{\mathrm{d}}-\widehat{w}_{\mathrm{d}}\right\|_{2}^{2}}_{\text {identification error }}$
(DDS)
subject to $\quad \widehat{W}_{\mathrm{p}} \wedge \widehat{W}_{\mathrm{f}} \in \mathscr{B}_{\text {mpum }}\left(\widehat{W}_{\mathrm{d}}\right) \in \mathscr{L}_{\mathrm{m}, \ell}$

Classical approach: divide and conquer

1. identification: given w_{d} and (m, ℓ)
minimize $\left\|w_{\mathrm{d}}-\widehat{w}_{\mathrm{d}}\right\|$ subject to $\mathscr{B}_{\text {mpum }}\left(\widehat{w}_{\mathrm{d}}\right) \in \mathscr{L}_{\mathrm{m}, \ell}$
2. model-based filtering: given w_{f} and $\widehat{\mathscr{B}}:=\mathscr{B}_{\text {mpum }}\left(\widehat{w}_{\mathrm{d}}\right)$ minimize $\left\|w_{f}-\widehat{w}_{f}\right\|$ subject to $\widehat{w}_{p} \wedge \widehat{w}_{f} \in \widehat{\mathscr{B}}$

Summary

model-based smoothing
given model \mathscr{B} and trajectory w_{f}

$$
\text { minimize }\left\|w_{f}-\widehat{w}_{f}\right\| \text { subject to } \quad \widehat{w}_{p} \wedge \widehat{w}_{f} \in \mathscr{B}
$$

(MBS)
data-driven smoothing given trajectories w_{d} and w_{f} and complexity (m, ℓ)

$$
\begin{array}{ll}
\text { minimize } & \left\|w_{\mathrm{f}}-\widehat{W}_{\mathrm{f}}\right\|_{2}^{2}+\left\|w_{\mathrm{d}}-\widehat{W}_{\mathrm{d}}\right\|_{2}^{2} \tag{DDS}\\
\text { subject to } & \widehat{w}_{\mathrm{p}} \wedge \widehat{w}_{\mathrm{f}} \in \mathscr{B}_{\text {mpum }}\left(\widehat{w}_{\mathrm{d}}\right) \in \mathscr{L}_{\mathrm{m}, \ell}
\end{array}
$$

Plan

Example: data-driven Kalman smoothing

Generalization: missing data estimation

Solution approach: matrix completion

We aim to find missing part of trajectory

missing data - interpolated from $w \in \mathscr{B}$
exact data- kept fixed
inexact / "noisy" data — approximated by min $\|$ error $\|_{2}$

Other examples fit in the same setting

$$
\begin{aligned}
& ? \text { - missing, } \quad E-\text { exact, } \quad N \text { - noisy } \\
& w=\Pi\left[\begin{array}{l}
u \\
y
\end{array}\right], \quad u \text { - input, } \quad y \text { - output }
\end{aligned}
$$

example	w_{p}	u_{f}	y_{f}
state estimation	$?$	E	E
EIV Kalman smoothing	$?$	N	N
classical Kalman smoothing	$?$	E	N
simulation	E	E	$?$
partial realization	E	E	$\mathrm{E} / ?$
noisy realization	E	E	$\mathrm{N} / ?$
output tracking	E	$?$	N

classical Kalman filter

	past	future
input	$?$	u
output	$?$	y

minimize $\|y-\hat{y}\|$ subject to $\quad w_{p} \wedge(u, \widehat{y}) \in \mathscr{B}$
output tracking control

	past	future
input	u_{p}	$?$
output	y_{p}	$y_{\text {ref }}$

Weighted approximation criterion accounts for exact, missing, and noisy data

error vector: $e:=w-\widehat{w}$

$$
\|e\|_{v}:=\sqrt{\sum_{t} \sum_{i} v_{i}(t) e_{i}^{2}(t)}
$$

weight	used for	to	by		
$v_{i}(t)=\infty$	$w_{i}(t)$ exact	interpolate $w_{i}(t)$	$e_{i}(t)=0$		
$v_{i}(t) \in(0, \infty)$	$w_{i}(t)$ noisy	approx. $w_{i}(t)$	min $\left\\|e_{i}(t)\right\\|$		
$v_{i}(t)=0$	$w_{i}(t)$ missing	fill in $w_{i}(t)$	$\widehat{w} \in \mathscr{\mathscr { B }}$		

Data-driven signal processing can be posed as missing data estimation problem

minimize $\left\|w_{\mathrm{d}}-\widehat{w}_{\mathrm{d}}\right\|_{2}^{2}+\|w-\widehat{w}\|_{v}^{2}$
subject to $\widehat{W} \in \mathscr{B}_{\text {mpum }}\left(\widehat{W}_{\mathrm{d}}\right) \in \mathscr{L}_{\mathrm{m}, \ell}$
(DD-SP)
the recovered missing values of \widehat{w} are the desired result

Plan

Example: data-driven Kalman smoothing

Generalization: missing data estimation

Solution approach: matrix completion

$w \in \mathscr{B} \Longleftrightarrow$ Hankel matrix is low-rank

 exact trajectory $w \in \mathscr{B} \in \mathscr{L}_{\mathrm{m}, \ell}$$\uparrow$
$R_{0} w(t)+R_{1} w(t+1)+\cdots+R_{\ell} w(t+\ell)=0$
॥
rank deficient

$$
\mathscr{H}(w):=\left[\begin{array}{cccc}
w(1) & w(2) & \cdots & w(T-\ell) \\
w(2) & w(3) & \cdots & w(T-\ell+1) \\
w(3) & w(4) & \cdots & w(T-\ell+2) \\
\vdots & \vdots & & \vdots \\
w(\ell+1) & w(\ell+2) & \cdots & w(T)
\end{array}\right]
$$

relation at time $t=1$

$$
R_{0} w(1)+R_{1} w(2)+\cdots+R_{\ell} w(\ell+1)=0
$$

in matrix form:

$$
\left[\begin{array}{llll}
R_{0} & R_{1} & \cdots & R_{\ell}
\end{array}\right]\left[\begin{array}{c}
w(1) \\
w(2) \\
\vdots \\
w(\ell+1)
\end{array}\right]=0
$$

relation at time $t=2$

$$
R_{0} w(2)+R_{1} w(3)+\cdots+R_{\ell} w(\ell+2)=0
$$

in matrix form:

$$
\left[\begin{array}{llll}
R_{0} & R_{1} & \cdots & R_{\ell}
\end{array}\right]\left[\begin{array}{c}
w(2) \\
w(3) \\
\vdots \\
w(\ell+2)
\end{array}\right]=0
$$

relation at time $t=T-\ell$

$$
R_{0} w(T-\ell)+R_{1} w(T-\ell+1)+\cdots+R_{\ell} w(T)=0
$$

in matrix form:

$$
\left[\begin{array}{llll}
R_{0} & R_{1} & \cdots & R_{\ell}
\end{array}\right]\left[\begin{array}{c}
w(T-\ell) \\
w(T-\ell+1) \\
w(T-\ell+2) \\
\vdots \\
w(T)
\end{array}\right]=0
$$

relation for $t=1, \ldots, T-\ell$

$$
R_{0} w(t)+R_{1} w(t+1)+\cdots+R_{\ell} w(t+\ell)=0
$$

in matrix form:
$\underbrace{\left[\begin{array}{llll}R_{0} & R_{1} & \cdots & R_{\ell}\end{array}\right]}_{R} \underbrace{\left[\begin{array}{cccc}w(1) & w(2) & \cdots & w(T-\ell) \\ w(2) & w(3) & \cdots & w(T-\ell+1) \\ w(3) & w(4) & \cdots & w(T-\ell+2) \\ \vdots & \vdots & & \vdots \\ w(\ell+1) & w(\ell+2) & \cdots & w(T)\end{array}\right]}_{\mathscr{H}(w)}=0$

$$
w \in \mathscr{B} \in \mathscr{L}_{\mathrm{m}, \ell}
$$

$$
\mathbb{1}
$$

there is $R \in \mathbb{R}^{(q-m) \times q(\ell+1)}$ full row rank, such that $R \mathscr{H}(w)=0$

$$
\mathfrak{x}
$$

$\operatorname{rank}(\mathscr{H}(w)) \leq q \ell+\mathrm{m}$
q — \# of variables
$\widehat{w} \in \mathscr{B}_{\text {mpum }}\left(\widehat{W}_{\mathrm{d}}\right)$ is equivalent to rank constraint on a mosaic-Hankel matrix

$$
\widehat{w} \in \mathscr{B}_{\mathrm{mpum}}\left(\widehat{w}_{\mathrm{d}}\right) \in \mathscr{L}_{\mathrm{m}, \ell}
$$

\Downarrow
$\widehat{w}_{\mathrm{d}} \in \widehat{\mathscr{B}} \in \mathscr{L}_{\mathrm{m}, \ell} \quad$ and $\quad \widehat{w} \in \widehat{\mathscr{B}}$

$$
\Uparrow
$$

$$
\operatorname{rank}(\underbrace{\left[\mathscr{H}\left(\widehat{w}_{\mathrm{d}}\right) \quad \mathscr{H}(\widehat{w})\right]}_{\mathscr{H}\left(\widehat{w}_{\mathrm{d}}, \widehat{w}\right)}) \leq q \ell+\mathrm{m}
$$

Data-driven signal processing

 \Longleftrightarrow structured low-rank approximationminimize $\left\|w_{\mathrm{d}}-\widehat{w}_{\mathrm{d}}\right\|_{2}^{2}+\|w-\widehat{w}\|_{V}^{2}$ subject to $\quad \widehat{w} \in \mathscr{B}_{\text {mpum }}\left(\widehat{W}_{\mathrm{d}}\right) \in \mathscr{L}_{\mathrm{m}, \ell}$

$$
\mathbb{\imath}
$$

minimize $\left\|w^{\prime}-\widehat{w}^{\prime}\right\|_{v^{\prime}}$
subject to $\operatorname{rank}\left(\mathscr{H}\left(\widehat{w}^{\prime}\right)\right) \leq r$

Three main classes of solution methods

local optimization
nuclear norm relaxation
subspace methods
considerations

- generality
- user defined hyper parameters
- availability of efficient algorithms/software

Local optimization using variable projections: analytical elimination of \widehat{w}

kernel representation

$$
\min _{R \text { f.r.r. }}\left(\min _{\widehat{w}}\|w-\widehat{w}\| \text { subject to } R \mathscr{H}(\widehat{w})=0\right)
$$

variable projection (VARPRO): elimination of \widehat{w} leads to

minimize $f(R)$ subject to R full row rank

Dealing with the " R full row rank" constraint

1. impose a quadratic equality constraint $R R^{\top}=I$
2. using specialized methods for optimization on a manifold
3. R full row rank $\Longleftrightarrow R \Pi=\left[\begin{array}{ll}x & 1\end{array}\right]$ with Π permutation

- П fixed \rightsquigarrow total least-squares
- Π can be changed during the optimization

Summary of the VARPRO approach

kernel representation \rightsquigarrow parameter opt. problem

$$
\min _{\widehat{w}, R \text { f.r.r. }}\|w-\widehat{w}\| \text { subject to } R \mathscr{H}(\widehat{w})=0
$$

elimination of $\widehat{w} \rightsquigarrow \quad$ optimization on a manifold

$$
\min _{R \text { f.r.r. }} f(R)
$$

in case of mosaic-Hankel \mathscr{H}, f can be evaluated fast

Numerical example with Kalman smoothing

simulation setup

- $\overline{\mathscr{B}} \in \mathscr{L}_{1,2}$ - 2nd order LTI system
- $w_{\mathrm{f}}=\bar{W}_{\mathrm{f}}+$ noise,$\quad \bar{W}_{\mathrm{f}} \in \mathscr{B}$ - step response
- $w_{\mathrm{d}}=\bar{w}_{\mathrm{d}}+$ noise,$\quad \bar{w}_{\mathrm{d}} \in \mathscr{B}$
smoothing with known model
- state space solution
- solution of (MBS)
smoothing with unknown model
- identification + model-based design
- solution of (DDS)

Known model: the missing data approach (MBS) recovers the state space solution

state space solution

$$
\text { minimize }\left\|\left[\begin{array}{l}
u_{\mathrm{f}} \tag{SSS}\\
y_{\mathrm{f}}
\end{array}\right]-\left[\begin{array}{cc}
0 & l \\
\mathscr{O}_{T}(A, C) & \mathscr{T}_{T}(H)
\end{array}\right]\left[\begin{array}{c}
\widehat{x}_{\mathrm{ini}} \\
\widehat{u}_{\mathrm{f}}
\end{array}\right]\right\|
$$

representation free solution
(MBS) is a generalized least squares
approximation error $\quad e:=\left(\left\|\bar{W}_{\mathrm{f}}-\widehat{W}_{\mathrm{f}}\right\|\right) /\left\|\bar{W}_{\mathrm{f}}\right\|$

method	(MBS)	(SSS)
error e	0.083653	0.083653

Unknown model: (DDS) gives better results than the model-based approach

classical approach

> identification + (SSS)
data-driven approach
solution of (DDS) with local optimization
simulation result

method	(MBS)	$(D D S)$	classical
error e	0.083653	0.087705	0.091948

Conclusion

motivation: combine the modeling and design problems
we aim to find the missing part of a trajectory $w \in \mathscr{B}$
reformulation as weighted structured low-rank approx.

Future work

statistical analysis
computational efficiency / recursive computation
other methods: subspace, convex relaxation, ...

