A missing data approach to data-driven filtering and control

Ivan Markovsky

Vrije Universiteit Brussel

Modern filtering/control is model-based: the design problem is split into two steps

System identification does not take into account the design objective

Data-driven methods avoid modeling

Combined modeling+design has benefits

identification ignores the design objective

the two-step approach is suboptimal

objective: define and solve a direct problem

Example: data-driven Kalman smoothing

Generalization: missing data estimation

Solution approach: matrix completion

Example: data-driven Kalman smoothing

Generalization: missing data estimation

Solution approach: matrix completion

A dynamical system \mathscr{B} is a set of signals w

 $W \in \mathscr{B} \iff$

- the signal w is trajectory of the system B
- *B* is an exact model for *w*
- *B* is unfalsified by w

we consider linear time-invariant systems $(w = \begin{bmatrix} u \\ y \end{bmatrix})$

 \mathscr{L} — linear time-invariant model class

Initial conditions are specified by "past" traj.

 $\textit{W} = \textit{W}_{\sf p} \land \textit{W}_{\sf f}$

Representation free definition of smoothing

observer: given model \mathscr{B} and exact trajectory $w_{\rm f}$

find w_p , such that $w_p \wedge w_f \in \mathscr{B}$

smoother: given model \mathscr{B} and noisy trajectory $w_{\rm f}$

minimize $\| \mathbf{w}_{f} - \widehat{\mathbf{w}}_{f} \|$ subject to $\widehat{\mathbf{w}}_{p} \wedge \widehat{\mathbf{w}}_{f} \in \mathscr{B}$ (MBS)

When does a trajectory $w_d \in \mathscr{B}$ specify \mathscr{B} ?

identifiability conditions

- 1. *u*_d is persistently exciting of "sufficiently high order"
- 2. *B* is controllable

how to obtain \mathscr{B} back from w_d ?

 $w_d \mapsto \mathscr{B}$ by choosing the simplest exact model for w_d

The most powerful unfalsified model of w_d , $\mathscr{B}_{mpum}(w_d)$ is the data generating system

complexity \leftrightarrow # inputs m and # states n

$$C(\mathcal{B}) = (m, n)$$

the most powerful unfalsified model

 $\mathscr{L}_{m,n}$ — set of models with complexity bounded by (m,n)

Data-driven smoothing replaces the model \mathscr{B} by trajectory $w_d \in \mathscr{B}$

observer: given trajectories w_d and w_f of \mathscr{B}

find w_p , such that $w_p \wedge w_f \in \mathscr{B}_{mpum}(w_d)$

smoother: given noisy traj. w_d and w_f of \mathscr{B} and (m, ℓ)

$$\begin{array}{ll} \mbox{minimize} & \underbrace{\| \textbf{\textit{w}}_{f} - \widehat{\textbf{\textit{w}}}_{f} \|_{2}^{2}}_{\mbox{estimation error}} + \underbrace{\| \textbf{\textit{w}}_{d} - \widehat{\textbf{\textit{w}}}_{d} \|_{2}^{2}}_{\mbox{identification error}} & (DDS) \\ \mbox{subject to} & \widehat{\textbf{\textit{w}}}_{p} \wedge \widehat{\textbf{\textit{w}}}_{f} \in \mathscr{B}_{mpum}(\widehat{\textbf{\textit{w}}}_{d}) \in \mathscr{L}_{m,\ell} \\ \end{array}$$

Classical approach: divide and conquer

1. identification: given w_d and (m, ℓ)

minimize $\| w_d - \widehat{w}_d \|$ subject to $\mathscr{B}_{mpum}(\widehat{w}_d) \in \mathscr{L}_{m,\ell}$

2. model-based filtering: given w_{f} and $\widehat{\mathscr{B}} := \mathscr{B}_{mpum}(\widehat{w}_{d})$

minimize $\| \mathbf{w}_{f} - \widehat{\mathbf{w}}_{f} \|$ subject to $\widehat{\mathbf{w}}_{p} \wedge \widehat{\mathbf{w}}_{f} \in \widehat{\mathscr{B}}$

Summary

model-based smoothing given model \mathscr{B} and trajectory $w_{\rm f}$

minimize $\|\mathbf{w}_{f} - \widehat{\mathbf{w}}_{f}\|$ subject to $\widehat{\mathbf{w}}_{p} \wedge \widehat{\mathbf{w}}_{f} \in \mathscr{B}$ (MBS)

data-driven smoothing

given trajectories w_d and w_f and complexity (m, ℓ)

$$\begin{array}{ll} \text{minimize} & \| \mathbf{w}_{\mathsf{f}} - \widehat{\mathbf{w}}_{\mathsf{f}} \|_2^2 + \| \mathbf{w}_{\mathsf{d}} - \widehat{\mathbf{w}}_{\mathsf{d}} \|_2^2 \\ \text{subject to} & \widehat{\mathbf{w}}_{\mathsf{p}} \wedge \widehat{\mathbf{w}}_{\mathsf{f}} \in \mathscr{B}_{\mathsf{mpum}}(\widehat{\mathbf{w}}_{\mathsf{d}}) \in \mathscr{L}_{\mathsf{m},\ell} \end{array}$$
 (DDS)

Example: data-driven Kalman smoothing

Generalization: missing data estimation

Solution approach: matrix completion

We aim to find missing part of trajectory

missing data — interpolated from $w \in \mathscr{B}$

exact data-kept fixed

inexact / "noisy" data — approximated by min ||error||2

Other examples fit in the same setting

? — missing, E — exact, N — noisy $w = \Pi \begin{bmatrix} u \\ y \end{bmatrix}$, u — input, y — output

example	<i>w</i> _p	Uf	У _f
state estimation	?	Е	Е
EIV Kalman smoothing	?	Ν	Ν
classical Kalman smoothing	?	Е	Ν
simulation	E	Е	?
partial realization	E	Е	E/ ?
noisy realization	E	Е	N/?
output tracking	E	?	Ν

classical Kalman filter

minimize	$\ \mathbf{y} - \widehat{\mathbf{y}}\ $
subject to	$w_{p} \wedge (u, \widehat{y}) \in \mathscr{B}$

	past	future
input	?	u
output	?	У

minimize	$\underbrace{\ \mathbf{y}_{ref} - \widehat{\mathbf{y}}\ }_{ref}$
subject to	tracking error $w_{p} \land (\widehat{u}, \widehat{y}) \in \mathscr{B}$

outpu	t tracking	control

	past	future
input	Ир	?
output	Уp	y _{ref}

Weighted approximation criterion accounts for exact, missing, and noisy data

error vector: $\boldsymbol{e} := \boldsymbol{w} - \widehat{\boldsymbol{w}}$

$$\|\boldsymbol{e}\|_{\boldsymbol{v}} := \sqrt{\sum_{t} \sum_{i} v_i(t) \boldsymbol{e}_i^2(t)}$$

weight	used for	to	by
$v_i(t) = \infty$	$w_i(t)$ exact	interpolate $w_i(t)$	$e_i(t) = 0$
$v_i(t) \in (0,\infty)$	$w_i(t)$ noisy	approx. $w_i(t)$	min $\ e_i(t)\ $
$v_i(t) = 0$	$w_i(t)$ missing	fill in $w_i(t)$	$\widehat{w} \in \widehat{\mathscr{B}}$

Data-driven signal processing can be posed as missing data estimation problem

$$\begin{array}{ll} \text{minimize} & \|w_{\mathsf{d}} - \widehat{w}_{\mathsf{d}}\|_{2}^{2} + \|w - \widehat{w}\|_{v}^{2} \\ \text{subject to} & \widehat{w} \in \mathscr{B}_{\mathsf{mpum}}(\widehat{w}_{\mathsf{d}}) \in \mathscr{L}_{\mathsf{m},\ell} \end{array} \tag{DD-SP}$$

the recovered missing values of \hat{w} are the desired result

Example: data-driven Kalman smoothing

Generalization: missing data estimation

Solution approach: matrix completion

$w \in \mathscr{B} \iff$ Hankel matrix is low-rank exact trajectory $w \in \mathscr{B} \in \mathscr{L}_{m,\ell}$ € $R_0 w(t) + R_1 w(t+1) + \dots + R_\ell w(t+\ell) = 0$ ⚠ rank deficient $\mathscr{H}(w) := egin{bmatrix} w(1) & w(2) & \cdots & w(T-\ell) \ w(2) & w(3) & \cdots & w(T-\ell+1) \ w(3) & w(4) & \cdots & w(T-\ell+2) \ dots & dots & dots \ w(\ell+1) & w(\ell+2) & \cdots & w(T) \end{bmatrix}$

relation at time t = 1

$$R_0 w(1) + R_1 w(2) + \cdots + R_\ell w(\ell+1) = 0$$

$$\begin{bmatrix} R_0 & R_1 & \cdots & R_\ell \end{bmatrix} \begin{bmatrix} w(1) \\ w(2) \\ \vdots \\ w(\ell+1) \end{bmatrix} = 0$$

relation at time t = 2

$$R_0 w(2) + R_1 w(3) + \dots + R_\ell w(\ell + 2) = 0$$

$$\begin{bmatrix} R_0 & R_1 & \cdots & R_\ell \end{bmatrix} \begin{bmatrix} w(2) \\ w(3) \\ \vdots \\ w(\ell+2) \end{bmatrix} = 0$$

relation at time $t = T - \ell$

$$R_0 w(T-\ell) + R_1 w(T-\ell+1) + \dots + R_\ell w(T) = 0$$

$$\begin{bmatrix} R_0 & R_1 & \cdots & R_\ell \end{bmatrix} \begin{bmatrix} w(T-\ell) \\ w(T-\ell+1) \\ w(T-\ell+2) \\ \vdots \\ w(T) \end{bmatrix} = 0$$

relation for $t = 1, \ldots, T - \ell$

$$R_0 w(t) + R_1 w(t+1) + \dots + R_\ell w(t+\ell) = 0$$

q - # of variables

 $\widehat{w} \in \mathscr{B}_{mpum}(\widehat{w}_d)$ is equivalent to rank constraint on a mosaic-Hankel matrix

Data-driven signal processing ↔ structured low-rank approximation

$$\begin{array}{ll} \text{minimize} & \|w_{\mathsf{d}} - \widehat{w}_{\mathsf{d}}\|_{2}^{2} + \|w - \widehat{w}\|_{v}^{2} \\ \text{subject to} & \widehat{w} \in \mathscr{B}_{\mathsf{mpum}}(\widehat{w}_{\mathsf{d}}) \in \mathscr{L}_{\mathsf{m},\ell} \\ & &$$

Three main classes of solution methods

local optimization

nuclear norm relaxation

subspace methods

considerations

- generality
- user defined hyper parameters
- availability of efficient algorithms/software

Local optimization using variable projections: analytical elimination of \widehat{w}

kernel representation

$$\min_{R \text{ f.r.r.}} \left(\min_{\widehat{w}} \| w - \widehat{w} \| \text{ subject to } R\mathscr{H}(\widehat{w}) = 0 \right)$$

variable projection (VARPRO): elimination of \hat{w} leads to minimize f(R) subject to R full row rank

Dealing with the "R full row rank" constraint

- 1. impose a quadratic equality constraint $RR^{\top} = I$
- 2. using specialized methods for optimization on a manifold
- 3. *R* full row rank \iff $R\Pi = \begin{bmatrix} X & I \end{bmatrix}$ with Π permutation
 - Π fixed ~→ total least-squares
 - Π can be changed during the optimization

Summary of the VARPRO approach

kernel representation \rightsquigarrow parameter opt. problem $\min_{\widehat{w}, R \text{ f.r.r.}} \|w - \widehat{w}\| \text{ subject to } R\mathscr{H}(\widehat{w}) = 0$

elimination of
$$\widehat{w} \rightsquigarrow$$
 optimization on a manifold
min $_{R \text{ f.r.r.}} f(R)$

in case of mosaic-Hankel \mathcal{H} , f can be evaluated fast

Numerical example with Kalman smoothing

simulation setup

- ▶ $\overline{\mathscr{B}} \in \mathscr{L}_{1,2}$ 2nd order LTI system
- $w_f = \overline{w}_f + \text{noise}, \quad \overline{w}_f \in \mathscr{B} \text{step response}$
- $w_d = \overline{w}_d + \text{noise}, \quad \overline{w}_d \in \mathscr{B}$

smoothing with known model

- state space solution
- solution of (MBS)

smoothing with unknown model

- identification + model-based design
- solution of (DDS)

Known model: the missing data approach (MBS) recovers the state space solution

state space solution

minimize
$$\left\| \begin{bmatrix} u_{f} \\ y_{f} \end{bmatrix} - \begin{bmatrix} 0 & I \\ \mathscr{O}_{T}(A, C) & \mathscr{T}_{T}(H) \end{bmatrix} \begin{bmatrix} \widehat{x}_{ini} \\ \widehat{u}_{f} \end{bmatrix} \right\|$$
 (SSS)

representation free solution

(MBS) is a generalized least squares

approximation error $\boldsymbol{e} := (\|\overline{\boldsymbol{w}}_{f} - \widehat{\boldsymbol{w}}_{f}\|) / \|\overline{\boldsymbol{w}}_{f}\|$

method	(MBS)	(SSS)
error e	0.083653	0.083653

Unknown model: (DDS) gives better results than the model-based approach

classical approach

identification + (SSS)

data-driven approach

solution of (DDS) with local optimization

simulation result

method	(MBS)	(DDS)	classical
error e	0.083653	0.087705	0.091948

Conclusion

motivation: combine the modeling and design problems

we aim to find the missing part of a trajectory $w \in \mathscr{B}$

reformulation as weighted structured low-rank approx.

Future work

statistical analysis

computational efficiency / recursive computation

other methods: subspace, convex relaxation, ...