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Modern filtering/control is model-based:
the design problem is split into two steps
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System identification does not take
into account the design objective
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Data-driven methods avoid modeling
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Combined modeling+design has benefits

identification ignores the design objective

the two-step approach is suboptimal

objective: define and solve a direct problem

observed
data

+
filtering

objective
7→ filtered

signal
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Example: data-driven Kalman smoothing

Generalization: missing data estimation

Solution approach: matrix completion
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A dynamical system B is a set of signals w

w ∈B ⇐⇒
I the signal w is trajectory of the system B
I B is an exact model for w
I B is unfalsified by w

we consider linear time-invariant systems
(
w =

[u
y
])

L — linear time-invariant model class
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Initial conditions are specified by "past" traj.

w = wp∧wf

t

w

wp wf
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Representation free definition of smoothing

observer: given model B and exact trajectory wf

find wp, such that wp∧wf ∈B

smoother: given model B and noisy trajectory wf

minimize ‖wf− ŵf‖ subject to ŵp∧ ŵf ∈B (MBS)
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When does a trajectory wd ∈B specify B?

identifiability conditions
1. ud is persistently exciting of "sufficiently high order"
2. B is controllable

how to obtain B back from wd?

wd 7→B by choosing the simplest exact model for wd
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The most powerful unfalsified model of wd,
Bmpum(wd) is the data generating system

complexity ↔ # inputs m and # states n

c(B) = (m,n)

the most powerful unfalsified model

Bmpum(wd) := arg min
B̂∈L

c(B̂)︸ ︷︷ ︸
most powerful

subject to wd ∈ B̂︸ ︷︷ ︸
unfalsified model

Lm,n — set of models with complexity bounded by (m,n)
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Data-driven smoothing replaces
the model B by trajectory wd ∈B

observer: given trajectories wd and wf of B

find wp, such that wp∧wf ∈Bmpum(wd)

smoother: given noisy traj. wd and wf of B and (m, `)

minimize ‖wf− ŵf‖22︸ ︷︷ ︸
estimation error

+ ‖wd− ŵd‖22︸ ︷︷ ︸
identification error

subject to ŵp∧ ŵf ∈Bmpum(ŵd) ∈Lm,`

(DDS)
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Classical approach: divide and conquer

1. identification: given wd and (m, `)

minimize ‖wd− ŵd‖ subject to Bmpum(ŵd) ∈Lm,`

2. model-based filtering: given wf and B̂ := Bmpum(ŵd)

minimize ‖wf− ŵf‖ subject to ŵp∧ ŵf ∈ B̂
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Summary

model-based smoothing
given model B and trajectory wf

minimize ‖wf− ŵf‖ subject to ŵp∧ ŵf ∈B (MBS)

data-driven smoothing
given trajectories wd and wf and complexity (m, `)

minimize ‖wf− ŵf‖22 +‖wd− ŵd‖22
subject to ŵp∧ ŵf ∈Bmpum(ŵd) ∈Lm,`

(DDS)
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We aim to find missing part of trajectory

missing data — interpolated from w ∈B

exact data— kept fixed

inexact / "noisy" data — approximated by min‖error‖2
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Other examples fit in the same setting

? — missing, E — exact, N — noisy
w = Π

[u
y
]
, u — input, y — output

example wp uf yf

state estimation ? E E
EIV Kalman smoothing ? N N
classical Kalman smoothing ? E N
simulation E E ?
partial realization E E E/?
noisy realization E E N/?
output tracking E ? N
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classical Kalman filter
minimize ‖y − ŷ‖
subject to wp∧ (u, ŷ) ∈B

past future
input ? u

output ? y

output tracking control
minimize ‖yref− ŷ‖︸ ︷︷ ︸

tracking error

subject to wp∧ (û, ŷ) ∈B

past future
input up ?

output yp yref
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Weighted approximation criterion accounts
for exact, missing, and noisy data

error vector: e := w − ŵ

‖e‖v :=
√

∑t ∑i vi(t)e2
i (t)

weight used for to by
vi(t) = ∞ wi(t) exact interpolate wi(t) ei(t) = 0
vi(t) ∈ (0,∞) wi(t) noisy approx. wi(t) min ‖ei(t)‖
vi(t) = 0 wi(t) missing fill in wi(t) ŵ ∈ B̂
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Data-driven signal processing can be posed
as missing data estimation problem

minimize ‖wd− ŵd‖22 +‖w − ŵ‖2v
subject to ŵ ∈Bmpum(ŵd) ∈Lm,`

(DD-SP)

the recovered missing values of ŵ are the desired result
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w ∈B ⇐⇒ Hankel matrix is low-rank

exact trajectory w ∈B ∈Lm,`

m

R0w(t) + R1w(t + 1) + · · ·+ R`w(t + `) = 0

m

rank deficient

H (w) :=


w(1) w(2) · · · w(T − `)

w(2) w(3) · · · w(T − `+ 1)

w(3) w(4) · · · w(T − `+ 2)
...

...
...

w(`+ 1) w(`+ 2) · · · w(T )


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relation at time t = 1

R0w(1) + R1w(2) + · · ·+ R`w(`+ 1) = 0

in matrix form:

[
R0 R1 · · · R`

]


w(1)

w(2)
...

w(`+ 1)

= 0
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relation at time t = 2

R0w(2) + R1w(3) + · · ·+ R`w(`+ 2) = 0

in matrix form:

[
R0 R1 · · · R`

]


w(2)

w(3)
...

w(`+ 2)

= 0
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relation at time t = T − `

R0w(T − `) + R1w(T − `+ 1) + · · ·+ R`w(T ) = 0

in matrix form:

[
R0 R1 · · · R`

]


w(T − `)

w(T − `+ 1)

w(T − `+ 2)
...

w(T )

= 0
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relation for t = 1, . . . ,T − `

R0w(t) + R1w(t + 1) + · · ·+ R`w(t + `) = 0

in matrix form:

[
R0 R1 · · · R`

]
︸ ︷︷ ︸

R


w(1) w(2) · · · w(T − `)

w(2) w(3) · · · w(T − `+ 1)

w(3) w(4) · · · w(T − `+ 2)
...

...
...

w(`+ 1) w(`+ 2) · · · w(T )


︸ ︷︷ ︸

H (w)

= 0
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w ∈B ∈Lm,`

m
there is R ∈ R(q−m)×q(`+1) full row rank,

such that RH (w) = 0

m
rank

(
H (w)

)
≤ q`+m

q — # of variables
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ŵ ∈Bmpum(ŵd) is equivalent to rank
constraint on a mosaic-Hankel matrix

ŵ ∈Bmpum(ŵd) ∈Lm,`

⇓
ŵd ∈ B̂ ∈Lm,` and ŵ ∈ B̂

m
rank

([
H (ŵd) H (ŵ)

]
︸ ︷︷ ︸

H (ŵd,ŵ)

)
≤ q`+m
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Data-driven signal processing
⇐⇒ structured low-rank approximation

minimize ‖wd− ŵd‖22 +‖w − ŵ‖2v
subject to ŵ ∈Bmpum(ŵd) ∈Lm,`

m

minimize ‖w ′− ŵ ′‖v ′
subject to rank

(
H (ŵ ′)

)
≤ r
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Three main classes of solution methods

local optimization

nuclear norm relaxation

subspace methods

considerations
I generality
I user defined hyper parameters
I availability of efficient algorithms/software
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Local optimization using variable projections:
analytical elimination of ŵ

kernel representation

min
R f.r.r.

(
min

ŵ
‖w − ŵ‖ subject to RH (ŵ) = 0

)

variable projection (VARPRO): elimination of ŵ leads to

minimize f (R) subject to R full row rank
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Dealing with the "R full row rank" constraint

1. impose a quadratic equality constraint RR> = I

2. using specialized methods for optimization on a manifold

3. R full row rank ⇐⇒ RΠ =
[
X I

]
with Π permutation

I Π fixed total least-squares
I Π can be changed during the optimization
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Summary of the VARPRO approach

kernel representation  parameter opt. problem

min
ŵ ,R f.r.r.

‖w − ŵ‖ subject to RH (ŵ) = 0

elimination of ŵ  optimization on a manifold

min
R f.r.r.

f (R)

in case of mosaic-Hankel H , f can be evaluated fast
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Numerical example with Kalman smoothing

simulation setup
I B ∈L1,2 — 2nd order LTI system
I wf = w f + noise, w f ∈B — step response
I wd = wd + noise, wd ∈B

smoothing with known model
I state space solution
I solution of (MBS)

smoothing with unknown model
I identification + model-based design
I solution of (DDS)
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Known model: the missing data approach
(MBS) recovers the state space solution

state space solution

minimize

∥∥∥∥∥
[

uf

yf

]
−
[

0 I
OT (A,C) TT (H)

][
x̂ini

ûf

]∥∥∥∥∥ (SSS)

representation free solution

(MBS) is a generalized least squares

approximation error e := (‖w f− ŵf‖)/‖w f‖

method (MBS) (SSS)
error e 0.083653 0.083653
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Unknown model: (DDS) gives better results
than the model-based approach

classical approach

identification + (SSS)

data-driven approach

solution of (DDS) with local optimization

simulation result
method (MBS) (DDS) classical
error e 0.083653 0.087705 0.091948
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Conclusion

motivation: combine the modeling and design problems

we aim to find the missing part of a trajectory w ∈B

reformulation as weighted structured low-rank approx.
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Future work

statistical analysis

computational efficiency / recursive computation

other methods: subspace, convex relaxation, . . .
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