Application of low-rank approximation in nonlinear system identification

Ivan Markovsky

General setup: linearly parameterized

 discrete-time nonlinear systemskernel: $R(\underbrace{w(t), w(t-1), \ldots, w(t-\ell)}_{x(t)})=0$
special case: input/output NARX system

$$
\mathscr{B}=\left\{\left.w=\left[\begin{array}{l}
u \\
y
\end{array}\right] \right\rvert\, y(t)=f(u(t), w(t-1), \ldots, w(t-\ell))\right\}
$$

linearly parameterized model \mathscr{B}_{θ}

$$
R(x)=\sum \theta_{i} \phi_{i}(x)=\theta \phi(x), \quad \phi-\text { model structure } \quad \theta-\text { parameter vector }
$$

Example: single-input single-output polynomially time-invariant model

ϕ is a vector of monomials $\phi_{i}:=\Pi_{j} x_{j}^{\mathrm{n}_{j}}$
the structure ϕ is defined by the degrees matrix

$$
\phi \leftrightarrow N:=\left[n_{i j}\right] \in \mathbb{N}^{n_{\phi} \times n_{x}}
$$

polynomially time-invariant (PTI) model class

$$
\mathscr{P}_{\ell, \mathrm{n}}:=\left\{\mathscr{B}_{\theta} \mid \theta \in \mathbb{R}^{\mathrm{n}_{\theta}}\right\}, \quad \quad \begin{aligned}
& \mathrm{n}
\end{aligned}=\max _{i, j} \mathrm{n}_{i j}
$$

Our goal is to find PTI model from data:

$$
(w(1), \ldots, w(T)) \mapsto \mathscr{B} \in \mathscr{P}_{\ell, \mathrm{n}}
$$

1. structure selection: find ϕ
2. parameter estimation: find θ
minimize over θ and $\widehat{w} \quad\|w-\widehat{w}\|$
subject to $\widehat{w} \in \mathscr{B}_{\theta}$
(NLSYSID)

Link to low-rank approximation

$$
\begin{gathered}
w \in \mathscr{B}_{\theta} \\
\mathbb{\Downarrow} \\
R(x(t))=\theta^{\top} \phi(x(t))=0, \quad \text { for } t=1, \ldots, T-\ell \\
\mathbb{\Downarrow} \\
\theta^{\top}[\phi(x(1)) \quad \phi(x(T-\ell))]=0 \\
\cdots \\
\operatorname{rank}(\Phi(w)) \leq n_{\phi}-1
\end{gathered}
$$

(NLSYSID) \Longleftrightarrow low-rank approximation

$$
\begin{array}{ll}
\text { minimize } & \text { over } \theta \text { and } \widehat{w} \quad\|w-\widehat{w}\|_{2} \\
\text { subject to } & \operatorname{rank}(\Phi(\widehat{w})) \leq n_{\phi}-1
\end{array}
$$

(SLRA)
non-convex optimization problem
there are no efficient solution methods
heuristic method: ignore the structure of $\Phi(\widehat{w})$
minimize over $\theta \neq 0 \quad\left\|\theta^{\top} \Phi(w)\right\|_{2}$
(LRA)

Structure selection via sparsity regularization

select "large" model class $\mathscr{P}_{\ell, \mathrm{n}}$ and impose sparsity on θ

$$
\text { minimize over } \theta \quad\left\|\theta^{\top} \Phi(w)\right\|_{2}+\gamma\|\theta\|_{1}
$$

γ controls the sparsity level

- $\gamma=0 \leadsto($ LRA $)$
- $\gamma \rightarrow \infty$$\leadsto$ full θ
selected, so that \# nonzero elements = given number

Perspectives / future work

bias correction procedure
Consistent least squares fitting of ellipsoids.
Numerische Mathematik, 98(1):177-194, 2004
Adjusted least squares fitting of algebraic hypersurfaces. Linear Algebra Appl., 502:243-274, 2016.
conditions under which the ℓ_{1}-regularizer "works"
benchmarking and comparison with alternative methods

Conic section fitting

the points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)$ lie on a conic section

$$
\Uparrow
$$

there are $A=A^{\top}, b, c$, at least one of them nonzero, s.t.

$$
\left[\begin{array}{ll}
x_{i} & y_{i}
\end{array}\right] A\left[\begin{array}{l}
x_{i} \\
y_{i}
\end{array}\right]+\left[\begin{array}{ll}
x_{i} & y_{i}
\end{array}\right] b+c=0, \quad \text { for } i=1, \ldots, N
$$

$$
\Uparrow
$$

there is $\theta=\left[\begin{array}{llllll}a_{11} & a_{12} & a_{22} & b_{1} & b_{2} & c\end{array}\right] \neq 0$, such that

$$
\theta\left[\begin{array}{ccc}
x_{1}^{2} & \cdots & x_{N}^{2} \\
x_{1} y_{1} & \cdots & x_{N} y_{N} \\
x_{1} & \cdots & x_{N} \\
y_{1}^{2} & \cdots & y_{N}^{2} \\
y_{1} & \cdots & y_{N} \\
1 & \cdots & 1
\end{array}\right]=0
$$

Conic section fitting \Longleftrightarrow rank deficiency

the points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)$ lie on a conic section

$$
\begin{gathered}
\mathscr{B}(\theta)=\left\{w \mid w^{\top} A w+w^{\top} b+c=0\right\} \\
\operatorname{rank}\left(\left[\begin{array}{ccc}
x_{1}^{2} & \cdots & x_{N}^{2} \\
x_{1} y_{1} & \cdots & x_{N} y_{N} \\
x_{1} & \cdots & x_{N} \\
y_{1}^{2} & \cdots & y_{N}^{2} \\
y_{1} & \cdots & y_{N} \\
1 & \cdots & 1
\end{array}\right]\right) \leq 5
\end{gathered}
$$

Examples

rank $<5 \quad \Longrightarrow \quad$ nonunique fit
rank $=5 \quad \Longrightarrow \quad$ unique fit

rank $=6 \quad \Longrightarrow \quad$ no exact fit by a conic section

Unstructured LRA is biased

easy to compute, but biased in the EIV setup

$$
w=\bar{w}+\widetilde{w}, \quad \text { where } \quad \bar{w} \in \overline{\mathscr{B}} \quad \text { and } \quad \widetilde{w} \sim \mathrm{~N}\left(0, \sigma^{2} l\right)
$$

define $\quad \Psi:=\Phi(w) \Phi^{\top}(w)$ and $\bar{\Psi}:=\Phi(\bar{w}) \Phi^{\top}(\bar{w})$
goal: construct "corrected" matrix Ψ_{c}, such that

$$
\mathbf{E}\left(\Psi_{\mathrm{C}}\right)=\bar{\Psi}
$$

Derivation of the correction

Hermite polynomials $h_{k}(x)$ have the property

$$
\begin{equation*}
\mathrm{E}\left(h_{k}(\bar{x}+\widetilde{x})\right)=\bar{x}^{k}, \quad \text { where } \quad \widetilde{x} \sim \mathrm{~N}\left(0, \sigma^{2}\right) \tag{*}
\end{equation*}
$$

with $w=(u, y)$, the (i, j) th element of $\Psi=\Phi \Phi^{\top}$ is

$$
\sum(\bar{u}+\widetilde{u})^{n_{u, i}+n_{u, j}}(\bar{y}+\widetilde{y})^{n_{y, i}+n_{y, j}}
$$

then, by (*)

$$
\phi_{\mathrm{c}, i j}:=\sum h_{n_{u, i}+n_{u, j}}(u) n_{n_{y, i}+n_{y, j}}(y)
$$

has the desired property

$$
\mathbf{E}\left(\psi_{c, i j}\right)=\sum \bar{u}^{n_{u, i}+n_{u, j}} \bar{y}_{y, i}+n_{y, j}=: \bar{\psi}_{i j}
$$

Unbiased estimator

the corrected Ψ_{c} is an even polynomial in σ

$$
\Psi_{\mathrm{c}}\left(\sigma^{2}\right)=\Psi_{\mathrm{c}, 0}+\sigma^{2} \Psi_{\mathrm{c}, 1}+\cdots+\sigma^{2 n_{\psi}} \Psi_{\mathrm{c}, n_{\psi}}
$$

estimate: $\Psi_{\mathrm{c}}\left(\sigma^{2}\right) \theta=0$
computing simultaneously σ and θ is polynomial EVP

