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The classical approach is model-based
I.e., it is based on model parameters

systems
theory

PN

matrix stat-space
polynomials representations
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There are new opportunities and challenges
in numerical methods for systems & control

data : > solution
direct data-driven
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Systems theory, signal processing, and
control are going through third paradigm shift

period paradigm  types of systems
1940-60 classical SISO transfer funct.
1960-80 modern MIMO state space
1980—-00 behavioral system as a set
2000— data-driven using directly data
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New paradigm brings new notion of system
and new techniques for solving problems

system

techniques

transfer funct.
state-space
kernel repr.
data-driven

Laplace/Z, Fourier transforms
Lyapunov, Riccati eqn., LMIs
polynomial algebra

numerical linear algebra

for structured matrices
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Outline

Behavioral approach

Interpolation/approximation of trajectories

Special case: input estimation
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Outline

Behavioral approach
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We view systems as sets of signals

w € (R9N — g-variate discrete-time signal

% C (RN — g-variate dynamical model

> linear — Z is a linear subspace of (R%)N
> time-invariant — invariant under shifts: (ocw)(t) :== w(t+1)

w € % means “w is a trajectory of %"
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In practice, we deal with finite signals

restriction of w / % to finite horizon [1, T]

wir:=(w(1),...,w(T)), DBlr={w|r|we B}
for wy = (Wd(1),...,Wd(Td)) and1 < T <1y

Hr(ws) = [(c"Wo)l7 (owa)lr -+ (074 Tway)lr]

Wy € #|1, — “exact data”
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The set of linear time-invariant systems .Z
has structure characterized by integers

m — number of inputs
n — order (= minimal state dimension)
¢ — lag (= observability index)

<Z(m.e,ny — bounded complexity LTI systems
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Nonparametric representation of
LTI system’s finite-horizon behavior

assumptions:

> wy € #|1, — exact offline data
> P € L ms.n — bounded complexity LTI system
» informative data, for T > £(A)

rank 1 (wy) = mT +n (GPE)

then, the data-driven representation holds
image 777 (wy) = S|t (DDR)
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Outline

Interpolation/approximation of trajectories
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Generic problem:
trajectory interpolation and approximation

“data trajectory” wy € 4|7,
given: and elements  w|,

given

of a trajectory we Bt

(W]

given

selects the elements of w, specified by /yven)

minimize over w ||w|,,

i - iven Wl/ iven ||
aim: ] . 9 9
subjectto we A|r

W = A7 (Wa) (H7(W)ljen)  Wligen  (SOL)
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I. Markovsky and F. Dérfler. “Data-driven dynamic interpolation
and approximation”. In: Aufomatica 135 (2022), p. 110008

“In linear systems theory, results are either trivial
or wrong.” P. Antsaklis

“A good essay has to be surprising.” P. Graham

14/21


https://www3.nd.edu/~pantsakl/

Special cases

simulation

» given data: initial condition and input
» to-be-found: output (exact interpolation)

smoothing

> given data: noisy trajectory
» to-be-found: />-optimal approximation

tracking control

> given data: to-be-tracked trajectory
> to-be-found: />-optimal approximation

15/21



Generalizations

multiple data trajectories w,..., w}

-

Bl ~image | A (w)) - A(w)

~
mosaic-Hankel matrix

Wy not exact / noisy

maximume-likelihood estimation

~ Hankel structured low-rank approximation/completion
nuclear norm and ¢{-norm relaxations

~» nonparametric, convex optimization problems

nonlinear systems

results for special classes of nonlinear systems:
Volterra, Wiener-Hammerstein, bilinear, LPYV, ...
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Outline

Special case: input estimation
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Input estimation is an old problem, however
new results are still being published

S. Gillijns and B. De Moor. “Unbiased minimum-variance input
and state estimation for linear discrete-time systems”. In:
Automatica 43.1 (2007), pp. 111-116

M. Abooshahab et al. “Simultaneous input & state estimation,
singular filtering and stability”. In: Automatica 137 (2022),
p. 110017

G. Gakis and M. Smith. “Simultaneous input and state
estimation for systems with arbitrary inherent delay”. In: |[EEE
Conference on Decision and Control. 2024, pp. 2715-2720

18/21



Problem statement and data-driven solution
given, Wyext == [ ] € |7, and w e Ny A7
find e, such that [§] € S|t
solution: @ = (Me 7 (Wy ext)) (FIW,%”T(Wdﬁxt))JFW

fact: exact recovery e = e, assuming

rank My, 527 (Wy ext) = rank 27 (Wy ext)
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Summary
assuming rank. 71 (wy) = m(B)L+n(AH)
2P| =image .#i(wgq) holds and
replaces parametric representations
data-driven solution = model-based solution

methods exploiting the structure are needed
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FROM THEORY TO APPLICATIONS IN POWER SYSTEMS
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Outline

Dealing with noise
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The data wy being exact vs inexact / “noisy”

wy exact and informative

> “systems theory” problems
» image ./ (wy) is nonparametric finite-horizon model
> data-driven solution = model-based solution

Wy inexact, due to noise and/or nonlinearities

» naive approach: apply the solution (SOL) for exact data
» rigorous: assume noise model ~~ ML estimation problem
> heuristics: convex relaxations of the ML estimator

2/11



The maximum-likelihood estimation problem
in the errors-in-variables setup is nonconvex

errors-in-variables setup: wy = wgq + Wy
> Wy — true data, Wy € %|71,, B <€ L5
» wy — zero mean, white, Gaussian measurement noise

ML problem: given wy, ¢, and w|

/given
minigniZe “W|/g|ven %T(A*)llgweng”

subjectto  wj = argmin |wy — wyl|

Wy ,%’
subjectto Wy € |7, and B € ZJ
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The ML estimation problem is equivalent to
Hankel structured low-rank approximation

given %T( )l gweng”

subjectto  wj =argmin_,

minignize W,
a5 |IWa— Wl
subjectto Wy € #|r, and % € ¢

)
miniénize HW|Ig|ven _']afT(/\(;]k)llgivengH

subjectto wg=argming  [lwy— Wyl
subject to rankyﬁﬂ(wd) ({+1)ym+n
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Solution methods

local optimization (on a manifold)

» choose a parametric representation of @(9)
» optimize over w, wg, and 6
» depends on the initial guess

convex relaxation based on the nuclear norm

minimize over Wy and w ||w|_ | + || wg — wy|

given

|t @]

W‘/

given

convex relaxation based on /4-norm (LASSO)

minimize over g [[W|., — T (Wa)| 56, 91l + 21191l
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Empirical validation
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Empirical validation on real-life datasets

data set name Tq¢ m p
1 Airpassengersdata| 144 0 1
2 Distillation column 90 5 38
3 pH process 2001 2 1
4 Hair dryer 1000 1 1
5 Heat flow density 1680 2 1
6 Heating system 801 1 1

G. Box, and G. Jenkins. Time Series Analysis: Forecasting and Control, Holden-Day, 1976

B. De Moor, et al.DAISY: A database for identification of systems. Journal A, 38:4-5, 1997
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¢1-norm regularization with optimized A
achieves the best performance

H W| Imissing - W| Imissing H 0
100%

missing - = ||W|/missing||

data set name naive ML LASSO
1 Air passengers data 3.9 fail 3.3
2 Distillation column 19.24 17.44 9.30
3 pH process 38.38 85.71 12.19
4 Hair dryer 12.35 8.96 7.06
5 Heat flow density 7.16 4410 3.98
6 Heating system 092 1.35 0.36
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Tuning of A and sparsity of g (datasets 1, 2)
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Tuning of A and sparsity of g (datasets 3, 4)
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Tuning of A and sparsity of g (datasets 5, 6)
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