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The classical approach is model-based
i.e., it is based on model parameters

systems
theory

matrix
polynomials

stat-space
representations
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There are new opportunities and challenges
in numerical methods for systems & control

data

model

solution

identific
atio

n model-based

direct data-driven
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Systems theory, signal processing, and
control are going through third paradigm shift

period paradigm types of systems
1940–60 classical SISO transfer funct.
1960–80 modern MIMO state space
1980–00 behavioral system as a set
2000– data-driven using directly data
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New paradigm brings new notion of system
and new techniques for solving problems

system techniques
transfer funct. Laplace/Z, Fourier transforms
state-space Lyapunov, Riccati eqn., LMIs
kernel repr. polynomial algebra
data-driven numerical linear algebra

for structured matrices
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We view systems as sets of signals

w ∈ (Rq)N — q-variate discrete-time signal

B ⊂ (Rq)N — q-variate dynamical model
I linear — B is a linear subspace of (Rq)N

I time-invariant — invariant under shifts: (σw)(t) := w(t +1)

w ∈B means “w is a trajectory of B”
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In practice, we deal with finite signals

restriction of w / B to finite horizon [1,T ]

w |T :=
(
w(1), . . . ,w(T )

)
, B|T := {w |T | w ∈B }

for wd =
(
wd(1), . . . ,wd(Td)

)
and 1≤ T ≤ Td

HT (wd) :=
[

(σ0wd)|T (σ1wd)|T · · · (σTd−T wd)|T
]

wd ∈B|Td — “exact data”
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The set of linear time-invariant systems L
has structure characterized by integers

m — number of inputs

n — order (= minimal state dimension)

` — lag (= observability index)

L(m,`,n) — bounded complexity LTI systems
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Nonparametric representation of
LTI system’s finite-horizon behavior

assumptions:
I wd ∈B|Td — exact offline data
I B ∈L(m,`,n) — bounded complexity LTI system
I informative data, for T ≥ `̀̀(B)

rankHT (wd) = mT + n (GPE)

then, the data-driven representation holds

imageHT (wd) = B|T (DDR)
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Generic problem:
trajectory interpolation and approximation

given:
“data trajectory” wd ∈B|Td

and elements w |Igiven

of a trajectory w ∈B|T

(w |Igiven selects the elements of w , specified by Igiven)

aim: minimize over ŵ ‖w |Igiven− ŵ |Igiven‖
subject to ŵ ∈B|T

ŵ = HT (wd)
(
HT (wd)|Igiven

)+w |Igiven (SOL)
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I. Markovsky and F. Dörfler. “Data-driven dynamic interpolation
and approximation”. In: Automatica 135 (2022), p. 110008

“In linear systems theory, results are either trivial
or wrong.” P. Antsaklis

“A good essay has to be surprising.” P. Graham
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Special cases

simulation
I given data: initial condition and input
I to-be-found: output (exact interpolation)

smoothing
I given data: noisy trajectory
I to-be-found: `2-optimal approximation

tracking control
I given data: to-be-tracked trajectory
I to-be-found: `2-optimal approximation
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Generalizations
multiple data trajectories w1

d , . . . ,w
N
d

B̂|L = image
[
HL(w1

d ) · · · HL(wN
d )
]

︸ ︷︷ ︸
mosaic-Hankel matrix

wd not exact / noisy
maximum-likelihood estimation
 Hankel structured low-rank approximation/completion
nuclear norm and `1-norm relaxations
 nonparametric, convex optimization problems

nonlinear systems
results for special classes of nonlinear systems:
Volterra, Wiener-Hammerstein, bilinear, LPV, . . .

16 / 21



Outline

Behavioral approach

Interpolation/approximation of trajectories

Special case: input estimation

17 / 21



Input estimation is an old problem, however
new results are still being published

S. Gillijns and B. De Moor. “Unbiased minimum-variance input
and state estimation for linear discrete-time systems”. In:
Automatica 43.1 (2007), pp. 111–116

M. Abooshahab et al. “Simultaneous input & state estimation,
singular filtering and stability”. In: Automatica 137 (2022),
p. 110017

G. Gakis and M. Smith. “Simultaneous input and state
estimation for systems with arbitrary inherent delay”. In: IEEE
Conference on Decision and Control. 2024, pp. 2715–2720
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Problem statement and data-driven solution

given, wd,ext :=
[ ed

wd

]
∈B|Td and w ∈ ΠwB|T

find e, such that [ e
w ] ∈B|T

solution: ê =
(
ΠeHT (wd,ext)

)(
ΠwHT (wd,ext)

)+w

fact: exact recovery ê = e, assuming

rankΠwHT (wd,ext) = rankHT (wd,ext)
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Summary

assuming rankHL(wd) = m(B)L + n(B)

B|L = imageHL(wd) holds and

replaces parametric representations

data-driven solution = model-based solution

methods exploiting the structure are needed
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The data wd being exact vs inexact / “noisy”

wd exact and informative
I “systems theory” problems
I imageHL(wd) is nonparametric finite-horizon model
I data-driven solution = model-based solution

wd inexact, due to noise and/or nonlinearities
I naive approach: apply the solution (SOL) for exact data
I rigorous: assume noise model ML estimation problem
I heuristics: convex relaxations of the ML estimator
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The maximum-likelihood estimation problem
in the errors-in-variables setup is nonconvex

errors-in-variables setup: wd = wd + w̃d

I wd — true data, wd ∈B|Td , B ∈L q
c

I w̃d — zero mean, white, Gaussian measurement noise

ML problem: given wd, c, and w |Igiven

minimize
g

‖w |Igiven−HT (ŵ∗d)|Igiveng‖

subject to ŵ∗d = arg minŵd,B̂
‖wd− ŵd‖

subject to ŵd ∈ B̂|Td and B̂ ∈L q
c
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The ML estimation problem is equivalent to
Hankel structured low-rank approximation

minimize
g

‖w |Igiven−HT (ŵ∗d)|Igiveng‖

subject to ŵ∗d = arg minŵd,B̂
‖wd− ŵd‖

subject to ŵd ∈ B̂|Td and B̂ ∈L q
c

m

minimize
g

‖w |Igiven−HT (ŵ∗d)|Igiveng‖

subject to ŵ∗d = arg minŵd
‖wd− ŵd‖

subject to rankH`+1(ŵd)≤ (`+ 1)m + n
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Solution methods

local optimization (on a manifold)
I choose a parametric representation of B̂(θ)
I optimize over ŵ , ŵd, and θ

I depends on the initial guess

convex relaxation based on the nuclear norm

minimize over ŵd and ŵ ‖w |Igiven− ŵ |Igiven‖+‖wd− ŵd‖

+ γ ·
∥∥∥[H∆(ŵd) H∆(ŵ)

]∥∥∥
∗

convex relaxation based on `1-norm (LASSO)

minimize over g ‖w |Igiven−HT (wd)|Igiveng‖+λ‖g‖1
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Empirical validation on real-life datasets

data set name Td m p
1 Air passengers data 144 0 1
2 Distillation column 90 5 3
3 pH process 2001 2 1
4 Hair dryer 1000 1 1
5 Heat flow density 1680 2 1
6 Heating system 801 1 1

G. Box, and G. Jenkins. Time Series Analysis: Forecasting and Control, Holden-Day, 1976

B. De Moor, et al.DAISY: A database for identification of systems. Journal A, 38:4–5, 1997
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`1-norm regularization with optimized λ

achieves the best performance

emissing :=
‖w |Imissing− ŵ |Imissing‖

‖w |Imissing‖
100%

data set name naive ML LASSO
1 Air passengers data 3.9 fail 3.3
2 Distillation column 19.24 17.44 9.30
3 pH process 38.38 85.71 12.19
4 Hair dryer 12.35 8.96 7.06
5 Heat flow density 7.16 44.10 3.98
6 Heating system 0.92 1.35 0.36
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Tuning of λ and sparsity of g (datasets 1, 2)

0 2 4
8

10

12

14

16

18

20

10 20 30 40
0

1

2

3

4

9 / 11



Tuning of λ and sparsity of g (datasets 3, 4)
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Tuning of λ and sparsity of g (datasets 5, 6)
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