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Setup

to-be-measured measurement process measured
variable u variable y

the measurement process is a dynamical system

assumption 1: measured variable is a constant u(t) =0
(can be relaxed to “u’s change is slower than y’s change”)

y is a function of time and depends on both

e measurement device dynamics and

e environment dynamics

assumption 2: measurement process is stable LTI system
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Introduction

Example 1: temperature measurement

environment-thermometer
environmental heat transfer thermometer’s
temperature u reading y

measurement process: Newton'’s law of cooling

d _
qy =a-y)

the heat transfer coefficient a > 0
depends on thermometer and environment

first order stable LTI system

dc-gain of measurement process is 1 (independent of a)
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Introduction

Example 2: weight measurement

oy |

m

¥y(t)

Tr

SIS

e measurement process

2

d d
(M +m)d?y+ddty+ky gu

e the measurement process dynamics depends on M

e the dc-gain is —g/k (independent of M)
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Introduction

Naive measurement

assumption 3: measurement process’s dc-gain G is known
and nonzero (full column rank in the multivariable case)

ignore the dynamics; consider the process as static system
u(t):=Gy(t)
by the stability assumption, U(t) — T ast — o

in reality, one waits for the transient to die out before
reading the sensor measurement

how much one needs to wait depends on the process
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U (dashed), U (solid)
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Introduction Known model Unknown model Testing
Dynamic measurement: basic idea
e process the data y in real-time aiming to predict u
e problem: find system F, such that U :=Fy ~
e let H be process dynamics’ transfer function; with F = H !

U=Fy=H'y=H'Hi=a
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Dynamic measurement: basic idea

process the data y in real-time aiming to predict U

problem: find system F, such that U := Fy ~ U

let H be process dynamics’ transfer function; with F = H 1

U=Fy=H'y=H'Hi=a

F has to be causal
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Dynamic measurement: basic idea

process the data y in real-time aiming to predict U

problem: find system F, such that U := Fy ~ U

let H be process dynamics’ transfer function; with F = H 1

U=Fy=H'y=H'Hi=a

F has to be causal, perform “well” in presence of noise
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Dynamic measurement: basic idea

process the data y in real-time aiming to predict U

problem: find system F, such that U := Fy ~ U

let H be process dynamics’ transfer function; with F = H 1

U=Fy=H'y=H'Hi=a

F has to be causal, perform “well” in presence of noise,
we care about transient due to nonzero initial conditions

dynamic measurement with known process dynamics:

1. off-line: design causal compensator F
2. on-line: filter the data with F
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Dynamic measurement: state-of-the-art

e with unknown measurement process dynamics, the
approach being used in the literature is to on-line:

¢ identify the process dynamics
e tune the filter F according to the process parameters
o filter the data with F

e computational requirements become an issue for
implementation on DSP or specialised circuits

e as a result the developed solutions are specialised for
particular application

11/44



Introduction

Goals/results of this research

e generic solution for high order multivariable processes
~» application of linear algebra and system theory

e address the problem as an input estimation problem
without a priori bias towards a particular type of solution

~» data-driven estimation algorithm
(no need of on-line identification and filter tuning)

e treat noisy measurements in a statistically optimal way

~ Kalman filter in case of known process dynamics,
structured total least-squares otherwise
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Problem formulation

given output observations

y:(y(tl)aay(tT))a y(t)G]Rp
of stable LTI system with dc-gain G € RP*™ and step input

find the input step value u € R™

noisy observations model:

Yo is exact trajectory

Yy =Yo+Y Wwhere y iszeromean white Gaussian  (*)
measurement noise
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Known model

Reduction to state estimation

(us,y) is an input/output trajectory of nth order LTI system

)

y is a trajectory of autonomous (n+ m)th order LTI system
with m poles at 0 (continuous-time) or at 1 (discrete-time)

let (ox)(t) :=x(t+ 1) and, in the discrete-time case, let

B = PBs(A,B,C,D):={w =(u,y) | 3x, ox = Ax+Bu
y =Cx+Du}

be the I/O system; the corresponding autonomous system is

A B
PBat = PBss(Aat; Cart) = {y | 3X, OXar= [0 Im] Xaut, Y = [C D] Xaut}
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Known model Unknown model

Proof

(Us,y) € Z=%B«(A,B,C,D)

rree

oX = AX +Bus, y =Cx+Dus, x(0) = Xini
ox =Ax +Bus, ou=u, y =Cx+Dus, x(0)=Xin
OXat = AaitXaut, Y = CaXaut,  Xaut(0) = (Xini, U)

Yy € Bar= @ss(Aautv Baut)

Testing
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Known model

Algorithm for input est. with known model

e given # = A«(A,B,C,D), define

m(§ 2} )

Im

o (off-line) design a state estimator for By

o deadbeat observer (for exact data) or

o Kalman filter (for noisy data)

: . . - X
¢ (on-line) process y with the state estimator ~ Xg = [G}

e prior knowledge (mean and variance) about X4(0) can be
used in the Kalman filtering algorithm
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Comments

e deadbeat observer recovers u in at most n +m samples
o Kalman filter is statistically optimal estimator in the case (x)

« the computational cost per sample is O ((n+m)?)
(assuming the Kalman filter gain is precomputed)

e no new theory; just application of existing one in new setup
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Unknown model

The input est. problem with unknown model

given output observations

y=(y(ta),--,y(tr)),  y(t)eRP
of stable LTI system with dc-gain G € RP*™ and step input

find the input step value U € R™

resembles identification from step response data, except that
1. the input is unknown,
2. the dc-gain is constrained to be equal to G, and
3. the goal is to find U rather than the system dynamics

1 and 2 are easily dealt with, 3 leads to a data-driven solution
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Reduction to step response estimation

(us,y) is trajectory of LTI system with dcgain G Q)

)

(U’'s,y) is trajectory of LTI system with dcgain G’ = PG
where P is m x m nonsingular matrix, such that i = PU’

(@)

implication for input estimation: while in (1) u is unknown and G
is given, in (2), we can choose U’ # 0 and treat G’ as unknown

= input estimation problem with p > m and unknown model
is equivalent to identification from step response data (U’s,y)
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Algorithm based on identification from step response

Input: y and G
1
1. system identification: (1ys,y) — %', where 1, := [} eRM
1

2. solve for u the system Gu := dcgain(#')1m

Output: U

e use output error identification in case of noisy data (x)

e optimal (maximum likelihood) identification
= optimal estimation of U

e recursive identification method
— recursive method for estimation of u
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Reduction to autonomous system identification

(su,y) is a trajectory of nth order LTI system with dcgain G

)

y is a trajectory of (n+ 1)st order autonomous system
with pole at 0 (continuous-time) or 1 (discrete-time)

implication for input estimation: instead of modeling (su,y) as
response of nth order LTI system, one can model y as a
response of (n+ 1)th order autonomous system with pole at 1
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Proof

an output y of an LTI system % with input u = us is of the form

n
y(t)= ()7 +5 aiBi(t)Zit> s(t), for all t,
i=1
where z,,...,z, are #’s poles, a; € RP, and ; are polynomials

it follows that y is a trajectory of an autonomous system

w(f e )
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How to ensure a pole at 1?

ye%ssq'g‘ ?],[C d]> — Be(Pe,Co)

)

Ay = (1-01l)y € A% = %B<(A,C)
(Ay =y(t) —y(t—1))

Proof: let P be the characteristic polynomial of the matrix A
Y € #x(Pe,Ce) = P(o)(1-0)y=0
on the other hand, we have
Ay =(1-0lyeBgAC) «— PloHl-oly=0
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How to find u, given %ss(Ae, Ce)?

once A and C are determined, U is computed from

Y =V +Vat, where y=GuU and Yyax€ %Bs(A,C)

or
G C
t
: Xini| : ()
G CAT—l y(TtS)
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Algorithm based on autonomous system identification

Input: y and G
1. compute the finite differences Ay := (1 - o~ 1)y
2. autonomous system identification: Ay — A%
3. computed U by solving (xx*)
Output: U
e optimal (maximum likelihood) identification
— optimal estimation of U

e recursive identification method
= recursive method for estimation of u
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Data-driven method

C
CA
AP = span :
_CAT.—n—l
Ay(2) Ay(3)
Ay(3) Ay(4)
—span| AY(4) Ay(5)
|Ay(T—n) Ay(T—n+1)

Ay(n+1)]
Ay(n+2)
Ay(n+3)

Ay'(T)

K5 _n(AY)
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Data-driven algorithm
Input: y and G

1. compute the finite differences Ay := (1-0~ 1)y

2. computed U by solving
o [y((h+ 1))
u

[1T_n®G %_n(Ay)] [E = (* * %)
y (Tts)
Output: U
¢ in the case of noisy data y, (x * %) is solved approximately

e recursive least-squares method
— recursive method for estimation of u

e O((m+n)?p) computations per sample
same order of magnitude as methods using given model
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with exact data, the estimate is exact, provided T > 2n+m
and G is full column rank

the methods based on system identification require
stronger (identifiability) considtion

with noisy data, ML estimation requires approximate
solution of (x x %) in a structured total least-squares sense

the (recursive) least-squares approximate solution yields a
suboptimal estimate of u
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Testing
dashed — true parameter value u
solid — true output trajectory yq
dotted — naive estimate U =Gty
dashed — Kalman filter
bashed-dotted — data-driven

1 N . n
estimation error: e := — 5 ||a—a® x|y =S |x
Ni;H [F— i;| il)

where G()(t) is an estimate of G using the data y(1),...,y(t)
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Unknown model Testing
Dynamic coolinga=0.5, xjhi=1, 0=0
results of one run 08 average errors
_0.2 .
~0.4 0.6
= 06 T 04
-0.8 0.2
1 6 8 10 12 14 S 6 8 10 12
t

14
t
exact data = exact estimate after 2n +m = 3 samples
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Dynamic cooling a = 0.5, xj,i =1, 0 =0.02

noisy data — e(t) — 0 as t — oo (at different rates!)

note: Kalman filter is maximum likelihood estimator in this setup
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Temperature and pressure sensors
Otemp = 0.02, Opressure = 0.05

assuming constant volume and ideal gas

temperature = constant x pressure

so properly calibrated pressure sensor measures temperature
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Known model

Unknown model Testing

Pressure sensor only o = 0.05

R T

5 10 15

t

10 15

Note: in the noisy case, the methods give improvement in

accuracy as well as speed
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Dynamic weighing
m=1,M=1k=1,d=1,xpn=01[1], 0=0.02
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Known model

Dynamic weighing M =10

Unknown model

Testing
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Unknown model

Dynamic weighing M =100
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Time-varying parameter
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e dynamic cooling setup with a jump in the temperature u

e exponentially weighted recursive least squares
with forgetting factor f = 0.5
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Known model

Unknown model

Experiment with Lego NXT Mindstorms

Testing

D) QC
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Results with real-life data

model for the KF is fitted ts=0.5 sec, y=1u:=y(40)
using all measurements

t, sec
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Results with real-life data

Q: Why f =0.9? A: Gives better results (trail and error).

f=0.8

30 40

10 20 30 20
t, sec t, sec
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Testing

Conclusions
methods for speeding up measurement devices
improvement in both dynamical response and accuracy
requirement: DSP attached to the sensor
with a priori given model, optimal estimator is Kalman filter
without model, standard identification methods are used

main contribution: model-free algorithm, which is
computationally as expensive as an LTI compensator

link between step response and autonomous identification
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Current/future work

optimal data-driven algorithm (structured TLS problem)
implementation and testing on DSP

building laboratory prototypes (with Lego Mindstorms NXT)
contact and get feedback from the metrology community

contact and pursue uptake by industry

Testing

42/44



Introduction

Adtemp V 418 Super Fast DI

£dit

Known model

Unknown model Testing

Thermometer - $10.00: ITXMedical, Sales and Marke!

\ page-product i

1 Adtemp v 418 Super Fast Digl

MEDICAL EQUIPMENT

% Find

Done

Move your mouse over image

Product 3/16

Adtemp V 418 Super Fast Digital Thermometer

$10.00
ADTEMP V™ Super Fast Flex thermometer features:

m8 second measurment using proprietary predictive technology.

mAuto off function conserves battery life

mRange 90°F-109.9°F +.2°F or 32°C - 43.9°C +.1°C depending
upon scale selection

mReplaceable 1.55v (LR41) type battery provides up to 1,500
measurements

mintegral carry case

mincludes 5 probe sheaths

mContemporary Euro design

Matchcase
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Questions?
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