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Setup

to-be-measured
variable u

measurement process
−−−−−−−−−−−−−−→

measured
variable y

• the measurement process is a dynamical system

• assumption 1: measured variable is a constant u(t) = ū
(can be relaxed to “u’s change is slower than y ’s change”)

• y is a function of time and depends on both

• measurement device dynamics and

• environment dynamics

• assumption 2: measurement process is stable LTI system
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Example 1: temperature measurement

environmental
temperature ū

environment–thermometer
heat transfer

−−−−−−−−−−−−−−−−−→
thermometer’s

reading y

• measurement process: Newton’s law of cooling

d
dt

y = a
(
ū−y

)

• the heat transfer coefficient a > 0
depends on thermometer and environment

• first order stable LTI system

• dc-gain of measurement process is 1 (independent of a)
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Example 2: weight measurement

ū = M
m

kd

|
|

|
|

|

y(t)

| | | | | | | | | | | | | | | |

• measurement process

(M +m)
d2

dt2 y +d
d
dt

y +ky = gū

• the measurement process dynamics depends on M

• the dc-gain is −g/k (independent of M)
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Naive measurement

• assumption 3: measurement process’s dc-gain G is known
and nonzero (full column rank in the multivariable case)

• ignore the dynamics; consider the process as static system

û(t) := G−1y(t)

• by the stability assumption, û(t)→ ū as t → ∞

• in reality, one waits for the transient to die out before
reading the sensor measurement

• how much one needs to wait depends on the process
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Dynamic measurement: basic idea

• process the data y in real-time aiming to predict ū

• problem: find system F , such that û := Fy ≈ ū

• let H be process dynamics’ transfer function; with F = H−1

û = Fy = H−1y = H−1Hū = ū
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• let H be process dynamics’ transfer function; with F = H−1
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û = Fy = H−1y = H−1Hū = ū
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Dynamic measurement: basic idea

• process the data y in real-time aiming to predict ū

• problem: find system F , such that û := Fy ≈ ū

• let H be process dynamics’ transfer function; with F = H−1

û = Fy = H−1y = H−1Hū = ū

• F has to be causal, perform “well” in presence of noise,
we care about transient due to nonzero initial conditions

• dynamic measurement with known process dynamics:

1. off-line: design causal compensator F

2. on-line: filter the data with F
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Dynamic measurement: state-of-the-art

• with unknown measurement process dynamics, the
approach being used in the literature is to on-line:

• identify the process dynamics

• tune the filter F according to the process parameters

• filter the data with F

• computational requirements become an issue for
implementation on DSP or specialised circuits

• as a result the developed solutions are specialised for
particular application
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Goals/results of this research

• generic solution for high order multivariable processes

 application of linear algebra and system theory

• address the problem as an input estimation problem
without a priori bias towards a particular type of solution

 data-driven estimation algorithm
(no need of on-line identification and filter tuning)

• treat noisy measurements in a statistically optimal way

 Kalman filter in case of known process dynamics,
structured total least-squares otherwise
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Problem formulation

given output observations

y =
(
y(t1), . . . ,y(tT )

)
, y(t) ∈ R

p

of stable LTI system with dc-gain G ∈ R
p×m and step input

find the input step value ū ∈ R
m

noisy observations model:

y = y0 + ỹ where
y0 is exact trajectory

ỹ is zero mean white Gaussian
measurement noise

(∗)
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Reduction to state estimation

(ūs,y) is an input/output trajectory of nth order LTI system

m

y is a trajectory of autonomous (n+m)th order LTI system
with m poles at 0 (continuous-time) or at 1 (discrete-time)

let (σx)(t) := x(t +1) and, in the discrete-time case, let

B = Bss(A,B,C,D) := {w = (u,y) | ∃x , σx = Ax +Bu

y = Cx +Du }

be the I/O system; the corresponding autonomous system is

Baut =Bss(Aaut,Caut) :=
{

y | ∃x , σxaut =

[
A B
0 Im

]
xaut, y =

[
C D

]
xaut

}
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Proof

(ūs,y) ∈ B = Bss(A,B,C,D)

⇐⇒ σx = Ax +Būs, y = Cx +Dūs, x(0) = xini

⇐⇒ σx = Ax +Būs, σ ū = ū, y = Cx +Dūs, x(0) = xini

⇐⇒ σxaut = Aautxaut, y = Cautxaut, xaut(0) = (xini, ū)

⇐⇒ y ∈ Baut = Bss (Aaut,Baut)
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Algorithm for input est. with known model

• given B = Bss(A,B,C,D), define

Baut = Bss

([
A B
0 Im

]
,
[
C D

])

• (off-line) design a state estimator for Baut

• deadbeat observer (for exact data) or

• Kalman filter (for noisy data)

• (on-line) process y with the state estimator x̂aut =

[
x̂
û

]

• prior knowledge (mean and variance) about xaut(0) can be
used in the Kalman filtering algorithm
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Comments

• deadbeat observer recovers ū in at most n+m samples

• Kalman filter is statistically optimal estimator in the case (∗)

• the computational cost per sample is O
(
(n+m)2

)

(assuming the Kalman filter gain is precomputed)

• no new theory; just application of existing one in new setup
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The input est. problem with unknown model

given output observations

y =
(
y(t1), . . . ,y(tT )

)
, y(t) ∈ R

p

of stable LTI system with dc-gain G ∈ R
p×m and step input

find the input step value ū ∈ R
m

resembles identification from step response data, except that

1. the input is unknown,

2. the dc-gain is constrained to be equal to G, and

3. the goal is to find ū rather than the system dynamics

1 and 2 are easily dealt with, 3 leads to a data-driven solution
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Reduction to step response estimation

(ūs,y) is trajectory of LTI system with dcgain G (1)

m

(ū′s,y) is trajectory of LTI system with dcgain G′ = PG

where P is m×m nonsingular matrix, such that ū = Pū′
(2)

implication for input estimation: while in (1) ū is unknown and G
is given, in (2), we can choose ū′ 6= 0 and treat G′ as unknown

=⇒ input estimation problem with p ≥ m and unknown model
is equivalent to identification from step response data (ū′s,y)
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Algorithm based on identification from step response

Input: y and G

1. system identification: (1ms,y) 7→B′, where 1m :=

[
1
...
1

]
∈R

m

2. solve for ū the system Gū := dcgain(B′)1m

Output: ū

• use output error identification in case of noisy data (∗)

• optimal (maximum likelihood) identification
=⇒ optimal estimation of ū

• recursive identification method
=⇒ recursive method for estimation of ū
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Reduction to autonomous system identification

(sū,y) is a trajectory of nth order LTI system with dcgain G

m

y is a trajectory of (n+1)st order autonomous system
with pole at 0 (continuous-time) or 1 (discrete-time)

implication for input estimation: instead of modeling (sū,y) as
response of nth order LTI system, one can model y as a
response of (n+1)th order autonomous system with pole at 1
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Proof

an output y of an LTI system B with input u = ūs is of the form

y(t) =

(
ȳ +

n

∑
i=1

αiβi(t)z
t
i

)
s(t), for all t ,

where z1, . . . ,zn are B’s poles, αi ∈ R
p, and βi are polynomials

it follows that y is a trajectory of an autonomous system

Bss

([
A b
0 1

]
,
[
C d

])
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How to ensure a pole at 1?

y ∈ Bss

([
A b
0 1

]
,
[
C d

])
=: Bss(Ae,Ce)

m

∆y := (1−σ−1)y ∈∆B := Bss(A,C)
(∆y = y(t)−y(t −1))

Proof: let P be the characteristic polynomial of the matrix A

y ∈ Bss(Ae,Ce) ⇐⇒ P(σ−1)(1−σ−1)y = 0

on the other hand, we have

∆y := (1−σ−1)y ∈ Bss(A,C) ⇐⇒ P(σ−1)(1−σ−1)y = 0
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How to find ū, given Bss(Ae,Ce)?

once A and C are determined, ū is computed from

y = ȳ +yaut, where ȳ = Gū and yaut ∈ Bss(A,C)

or 


G C
G CA
...

...

G CAT−1




[
ū

xini

]
=




y(ts)
...

y(Tts)


 (∗∗)
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Algorithm based on autonomous system identification

Input: y and G

1. compute the finite differences ∆y := (1−σ−1)y

2. autonomous system identification: ∆y 7→∆B

3. computed ū by solving (∗∗)

Output: ū

• optimal (maximum likelihood) identification
=⇒ optimal estimation of ū

• recursive identification method
=⇒ recursive method for estimation of ū
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Data-driven method

∆B = span




C
CA
...

CAT−n−1




= span




∆y(2) ∆y(3) · · · ∆y(n+1)
∆y(3) ∆y(4) · · · ∆y(n+2)
∆y(4) ∆y(5) · · · ∆y(n+3)

...
...

...
∆y(T −n) ∆y(T −n+1) · · · ∆y(T )




︸ ︷︷ ︸
HT−n(∆y)
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Data-driven algorithm
Input: y and G

1. compute the finite differences ∆y := (1−σ−1)y

2. computed ū by solving

[
1T−n ⊗G HT−n(∆y)

][ū
ℓ

]
=




y
(
(n+1)ts

)

...
y
(
Tts
)


 (∗∗∗)

Output: ū

• in the case of noisy data y , (∗∗∗) is solved approximately

• recursive least-squares method
=⇒ recursive method for estimation of ū

• O
(
(m+n)2p

)
computations per sample

same order of magnitude as methods using given model
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• with exact data, the estimate is exact, provided T ≥ 2n+m
and G is full column rank

• the methods based on system identification require
stronger (identifiability) considtion

• with noisy data, ML estimation requires approximate
solution of (∗∗∗) in a structured total least-squares sense

• the (recursive) least-squares approximate solution yields a
suboptimal estimate of ū
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Testing

dashed — true parameter value ū
solid — true output trajectory y0

dotted — naive estimate û = G+y
dashed — Kalman filter
bashed-dotted — data-driven

estimation error: e :=
1
N

N

∑
i=1

‖ū− û(i)‖1 (‖x‖1 :=
n

∑
i=1

|xi |)

where û(i)(t) is an estimate of ū using the data y(1), . . . ,y(t)
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Dynamic cooling a = 0.5, xini = 1, σ = 0
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average errors

exact data =⇒ exact estimate after 2n+m = 3 samples
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Dynamic cooling a = 0.5, xini = 1, σ = 0.02
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noisy data =⇒ e(t)→ 0 as t → ∞ (at different rates!)

note: Kalman filter is maximum likelihood estimator in this setup
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Temperature and pressure sensors
σtemp = 0.02, σpressure = 0.05
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t
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assuming constant volume and ideal gas

temperature = constant × pressure

so properly calibrated pressure sensor measures temperature
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Pressure sensor only σ = 0.05
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Note: in the noisy case, the methods give improvement in
accuracy as well as speed
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Dynamic weighing
m = 1, M = 1, k = 1, d = 1, xini = 0.1

[
1
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]
, σ = 0.02
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Dynamic weighing M = 10
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Dynamic weighing M = 100
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Time-varying parameter
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• dynamic cooling setup with a jump in the temperature ū

• exponentially weighted recursive least squares
with forgetting factor f = 0.5

37 / 44



Introduction Known model Unknown model Testing

Experiment with Lego NXT Mindstorms
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Results with real-life data

model for the KF is fitted
using all measurements

ts = 0.5 sec, ȳ = ū := y(40)
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f = 0.9
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Results with real-life data

Q: Why f = 0.9? A: Gives better results (trail and error).
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Conclusions

• methods for speeding up measurement devices

• improvement in both dynamical response and accuracy

• requirement: DSP attached to the sensor

• with a priori given model, optimal estimator is Kalman filter

• without model, standard identification methods are used

• main contribution: model-free algorithm, which is
computationally as expensive as an LTI compensator

• link between step response and autonomous identification
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Current/future work

• optimal data-driven algorithm (structured TLS problem)

• implementation and testing on DSP

• building laboratory prototypes (with Lego Mindstorms NXT)

• contact and get feedback from the metrology community

• contact and pursue uptake by industry
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Questions?
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