・ロン ・四 と ・ ヨ と ・ ヨ と

э

1/44

Fast measurements of slow processes

Ivan Markovsky

University of Southampton

to-be-measured	measurement process	measured
variable <i>u</i>		variable y

- the measurement process is a dynamical system
- assumption 1: measured variable is a constant u(t) = ū (can be relaxed to "u's change is slower than y's change")
- y is a function of time and depends on both
 - measurement device dynamics and
 - environment dynamics
- assumption 2: measurement process is stable LTI system

Example 1: temperature measurement

environmental temperature \bar{u}

environment-thermometer heat transfer

thermometer's reading y

measurement process: Newton's law of cooling

$$\frac{\mathsf{d}}{\mathsf{d}t}\mathbf{y} = \mathbf{a}\big(\bar{\mathbf{u}} - \mathbf{y}\big)$$

- the heat transfer coefficient a > 0 depends on thermometer and environment
- first order stable LTI system
- dc-gain of measurement process is 1 (independent of a)

(日)

measurement process

$$(M+m)\frac{d^2}{dt^2}y+d\frac{d}{dt}y+ky=g\bar{u}$$

- the measurement process dynamics depends on M
- the dc-gain is -g/k (independent of *M*)

4/44

Naive measurement

- assumption 3: measurement process's dc-gain *G* is known and nonzero (full column rank in the multivariable case)
- ignore the dynamics; consider the process as static system

$$\widehat{u}(t) := G^{-1}y(t)$$

- by the stability assumption, $\widehat{u}(t)
 ightarrow ar{u}$ as $t
 ightarrow \infty$
- in reality, one waits for the transient to die out before reading the sensor measurement
- how much one needs to wait depends on the process

<ロ><一><一><一><一><一><一><一><一</td>6/44

- process the data y in real-time aiming to predict \bar{u}
- problem: find system *F*, such that $\hat{u} := Fy \approx \bar{u}$
- let *H* be process dynamics' transfer function; with $F = H^{-1}$

$$\widehat{u} = Fy = H^{-1}y = H^{-1}H\overline{u} = \overline{u}$$

- process the data y in real-time aiming to predict \bar{u}
- problem: find system *F*, such that $\hat{u} := Fy \approx \bar{u}$
- let *H* be process dynamics' transfer function; with $F = H^{-1}$

$$\widehat{u} = Fy = H^{-1}y = H^{-1}H\overline{u} = \overline{u}$$

• F has to be causal

- process the data y in real-time aiming to predict u
- problem: find system *F*, such that $\hat{u} := Fy \approx \bar{u}$
- let *H* be process dynamics' transfer function; with $F = H^{-1}$

$$\widehat{u} = Fy = H^{-1}y = H^{-1}H\overline{u} = \overline{u}$$

• F has to be causal, perform "well" in presence of noise

- process the data y in real-time aiming to predict u
- problem: find system *F*, such that $\hat{u} := Fy \approx \bar{u}$
- let *H* be process dynamics' transfer function; with $F = H^{-1}$

$$\widehat{u} = Fy = H^{-1}y = H^{-1}H\overline{u} = \overline{u}$$

- F has to be causal, perform "well" in presence of noise, we care about transient due to nonzero initial conditions
- dynamic measurement with known process dynamics:
 - 1. off-line: design causal compensator F
 - 2. on-line: filter the data with F

Dynamic measurement: state-of-the-art

- with unknown measurement process dynamics, the approach being used in the literature is to on-line:
 - identify the process dynamics
 - tune the filter F according to the process parameters
 - filter the data with F
- computational requirements become an issue for implementation on DSP or specialised circuits
- as a result the developed solutions are specialised for particular application

Goals/results of this research

- generic solution for high order multivariable processes

 application of linear algebra and system theory
- address the problem as an input estimation problem without a priori bias towards a particular type of solution
 data-driven estimation algorithm (no need of on-line identification and filter tuning)
- treat noisy measurements in a statistically optimal way
 Kalman filter in case of known process dynamics, structured total least-squares otherwise

Problem formulation

given output observations

$$\mathbf{y} = (\mathbf{y}(t_1), \dots, \mathbf{y}(t_T)), \qquad \mathbf{y}(t) \in \mathbb{R}^p$$

of stable LTI system with dc-gain $G \in \mathbb{R}^{p \times m}$ and step input find the input step value $\bar{u} \in \mathbb{R}^m$

noisy observations model:

 y_0 is exact trajectory

$$y = y_0 + \widetilde{y}$$
 where

 \tilde{y} is zero mean white Gaussian (*) measurement noise

Reduction to state estimation

 $(\bar{u}s, y)$ is an input/output trajectory of *n*th order LTI system

↕

y is a trajectory of autonomous (n+m)th order LTI system with *m* poles at 0 (continuous-time) or at 1 (discrete-time)

let
$$(\sigma x)(t) := x(t+1)$$
 and, in the discrete-time case, let
 $\mathscr{B} = \mathscr{B}_{ss}(A, B, C, D) := \{ w = (u, y) \mid \exists x, \sigma x = Ax + Bu \ y = Cx + Du \}$

be the I/O system; the corresponding autonomous system is

$$\mathscr{B}_{aut} = \mathscr{B}_{ss}(A_{aut}, C_{aut}) := \left\{ y \mid \exists x, \ \sigma x_{aut} = \begin{bmatrix} A & B \\ 0 & I_m \end{bmatrix} x_{aut}, \ y = \begin{bmatrix} C & D \end{bmatrix} x_{aut} \right\}$$

Unknown model

▲口 → ▲圖 → ▲ 国 → ▲ 国 → 二

Testing

900

15/44

2

Proof

$$\begin{split} (\bar{u}s, y) &\in \mathscr{B} = \mathscr{B}_{ss}(A, B, C, D) \\ \iff & \sigma x = Ax + B\bar{u}s, \ y = Cx + D\bar{u}s, \quad x(0) = x_{ini} \\ \iff & \sigma x = Ax + B\bar{u}s, \ \sigma\bar{u} = \bar{u}, \ y = Cx + D\bar{u}s, \quad x(0) = x_{ini} \\ \iff & \sigma x_{aut} = A_{aut}x_{aut}, \ y = C_{aut}x_{aut}, \quad x_{aut}(0) = (x_{ini}, \bar{u}) \\ \iff & y \in \mathscr{B}_{aut} = \mathscr{B}_{ss}(A_{aut}, B_{aut}) \end{split}$$

Algorithm for input est. with known model

• given
$$\mathscr{B} = \mathscr{B}_{ss}(A, B, C, D)$$
, define

$$\mathscr{B}_{aut} = \mathscr{B}_{ss} \left(\begin{bmatrix} \mathsf{A} & \mathsf{B} \\ \mathsf{0} & \mathsf{I}_m \end{bmatrix}, \begin{bmatrix} \mathsf{C} & \mathsf{D} \end{bmatrix} \right)$$

- (off-line) design a state estimator for *B*_{aut}
 - · deadbeat observer (for exact data) or
 - Kalman filter (for noisy data)
- (on-line) process *y* with the state estimator $\rightsquigarrow \hat{x}_{aut} = \begin{vmatrix} \hat{x} \\ \hat{\mu} \end{vmatrix}$
- prior knowledge (mean and variance) about x_{aut}(0) can be used in the Kalman filtering algorithm

Comments

- deadbeat observer recovers \bar{u} in at most n+m samples
- Kalman filter is statistically optimal estimator in the case (*)
- the computational cost per sample is $O((n+m)^2)$ (assuming the Kalman filter gain is precomputed)
- no new theory; just application of existing one in new setup

The input est. problem with unknown model

given output observations

$$\mathbf{y} = (\mathbf{y}(t_1), \dots, \mathbf{y}(t_T)), \qquad \mathbf{y}(t) \in \mathbb{R}^p$$

of stable LTI system with dc-gain $G \in \mathbb{R}^{p \times m}$ and step input find the input step value $\bar{u} \in \mathbb{R}^m$

resembles identification from step response data, except that

- 1. the input is unknown,
- 2. the dc-gain is constrained to be equal to G, and
- 3. the goal is to find \bar{u} rather than the system dynamics
- 1 and 2 are easily dealt with, 3 leads to a data-driven solution

Reduction to step response estimation

$(\bar{u}s, y)$ is trajectory of LTI system with dcgain *G* (1)

 $(\bar{u}'s, y)$ is trajectory of LTI system with dcgain G' = PGwhere *P* is $m \times m$ nonsingular matrix, such that $\bar{u} = P\bar{u}'$ (2)

implication for input estimation: while in (1) \bar{u} is unknown and *G* is given, in (2), we can choose $\bar{u}' \neq 0$ and treat *G*' as unknown

 \implies input estimation problem with $p \ge m$ and unknown model is equivalent to identification from step response data ($\overline{u}'s, y$) Algorithm based on identification from step response

Input: y and G

- 1. system identification: $(\mathbf{1}_m s, y) \mapsto \mathscr{B}'$, where $\mathbf{1}_m := \begin{bmatrix} 1 \\ \vdots \\ \end{bmatrix} \in \mathbb{R}^m$
- 2. solve for \bar{u} the system $G\bar{u} := \text{dcgain}(\mathscr{B}')\mathbf{1}_m$

Output: ū

- use output error identification in case of noisy data (*)
- optimal (maximum likelihood) identification
 - \implies optimal estimation of \bar{u}
- recursive identification method
 - \implies recursive method for estimation of $ar{u}$

Reduction to autonomous system identification

 $(s\bar{u}, y)$ is a trajectory of *n*th order LTI system with dcgain G

$\$

y is a trajectory of (n+1)st order autonomous system with pole at 0 (continuous-time) or 1 (discrete-time)

implication for input estimation: instead of modeling $(s\bar{u}, y)$ as response of *n*th order LTI system, one can model *y* as a response of (n+1)th order autonomous system with pole at 1

Unknown model

22/44

Proof

an output *y* of an LTI system \mathscr{B} with input $u = \overline{u}s$ is of the form

$$y(t) = \left(\bar{y} + \sum_{i=1}^{n} \alpha_i \beta_i(t) z_i^t\right) s(t), \quad \text{for all } t,$$

where z_1, \ldots, z_n are \mathscr{B} 's poles, $\alpha_i \in \mathbb{R}^p$, and β_i are polynomials

it follows that y is a trajectory of an autonomous system

$$\mathscr{B}_{ss}\left(\begin{bmatrix} A & b\\ 0 & 1\end{bmatrix}, \begin{bmatrix} C & d\end{bmatrix}\right)$$

How to ensure a pole at 1?

$$egin{aligned} y \in \mathscr{B}_{\mathrm{ss}}\left(egin{bmatrix} A & b \ 0 & 1 \end{bmatrix}, egin{bmatrix} C & d \end{bmatrix}
ight) =: \mathscr{B}_{\mathrm{ss}}(A_{\mathrm{e}}, C_{\mathrm{e}}) \ & \& \& & \& \& & \& \& & \& & \& & \& \end{pmatrix} \ & \& \Delta y := (1 - \sigma^{-1}) y \in \Delta \mathscr{B} := \mathscr{B}_{\mathrm{ss}}(A, C) \ & \& & (\Delta y = y(t) - y(t-1)) \end{aligned}$$

Proof: let P be the characteristic polynomial of the matrix A

$$y \in \mathscr{B}_{\mathrm{ss}}(A_{\mathrm{e}}, C_{\mathrm{e}}) \quad \Longleftrightarrow \quad P(\sigma^{-1})(1 - \sigma^{-1})y = 0$$

on the other hand, we have

$$\Delta y := (1 - \sigma^{-1}) y \in \mathscr{B}_{ss}(A, C) \quad \iff \quad P(\sigma^{-1})(1 - \sigma^{-1}) y = 0$$

How to find \bar{u} , given $\mathscr{B}_{ss}(A_e, C_e)$?

once A and C are determined, \bar{u} is computed from

$$y = \bar{y} + y_{aut}, \quad \text{where} \quad \bar{y} = G\bar{u} \quad \text{and} \quad y_{aut} \in \mathscr{B}_{ss}(A, C)$$

or
$$\begin{bmatrix} G & C \\ G & CA \\ \vdots & \vdots \\ G & CA^{T-1} \end{bmatrix} \begin{bmatrix} \bar{u} \\ x_{ini} \end{bmatrix} = \begin{bmatrix} y(t_s) \\ \vdots \\ y(Tt_s) \end{bmatrix} \quad (**)$$

Algorithm based on autonomous system identification

Input: y and G

- 1. compute the finite differences $\Delta y := (1 \sigma^{-1})y$
- 2. autonomous system identification: $\Delta y \mapsto \Delta \mathscr{B}$
- 3. computed \bar{u} by solving (**)

Output: ū

- optimal (maximum likelihood) identification \implies optimal estimation of \bar{u}
- recursive identification method
 - \implies recursive method for estimation of $ar{u}$

Unknown model

Testing

Data-driven method

$$\Delta \mathscr{B} = \operatorname{span} \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{T-n-1} \end{bmatrix}$$
$$= \operatorname{span} \underbrace{\begin{bmatrix} \Delta y(2) & \Delta y(3) & \cdots & \Delta y(n+1) \\ \Delta y(3) & \Delta y(4) & \cdots & \Delta y(n+2) \\ \Delta y(4) & \Delta y(5) & \cdots & \Delta y(n+3) \\ \vdots & \vdots & & \vdots \\ \Delta y(T-n) & \Delta y(T-n+1) & \cdots & \Delta y(T) \end{bmatrix}}_{\mathscr{H}_{T-n}(\Delta y)}$$

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 の Q (*) 26/44

Data-driven algorithm

Input: y and G

- 1. compute the finite differences $\Delta y := (1 \sigma^{-1})y$
- 2. computed \bar{u} by solving

$$\begin{bmatrix} \mathbf{1}_{T-n} \otimes \mathbf{G} \quad \mathscr{H}_{T-n}(\Delta \mathbf{y}) \end{bmatrix} \begin{bmatrix} \overline{\mathbf{u}} \\ \ell \end{bmatrix} = \begin{bmatrix} \mathbf{y}((n+1)t_s) \\ \vdots \\ \mathbf{y}(Tt_s) \end{bmatrix} \quad (***)$$

Output: ū

- in the case of noisy data y, (* * *) is solved approximately
- recursive least-squares method \implies recursive method for estimation of \bar{u}
- O((m+n)²p) computations per sample
 same order of magnitude as methods using given model

27/44

- with exact data, the estimate is exact, provided *T* ≥ 2*n*+*m* and *G* is full column rank
- the methods based on system identification require stronger (identifiability) considtion
- with noisy data, ML estimation requires approximate solution of (* * *) in a structured total least-squares sense
- the (recursive) least-squares approximate solution yields a suboptimal estimate of \bar{u}

dashed—true parameter value \bar{u} solid—true output trajectory y_0 dotted—naive estimate $\hat{u} = G^+ y$ dashed—Kalman filterbashed-dotted—data-driven

estimation error:
$$e := \frac{1}{N} \sum_{i=1}^{N} \|\bar{u} - \widehat{u}^{(i)}\|_1$$
 $(\|x\|_1 := \sum_{i=1}^{n} |x_i|)$

where $\hat{u}^{(i)}(t)$ is an estimate of \bar{u} using the data $y(1), \ldots, y(t)$

Dynamic cooling a = 0.5, $x_{ini} = 1$, $\sigma = 0$

exact data \implies exact estimate after 2n + m = 3 samples

Dynamic cooling a = 0.5, $x_{ini} = 1$, $\sigma = 0.02$

noisy data $\implies e(t) \rightarrow 0$ as $t \rightarrow \infty$ (at different rates!)

note: Kalman filter is maximum likelihood estimator in this setup

32/44

Temperature and pressure sensors $\sigma_{temp} = 0.02, \ \sigma_{pressure} = 0.05$

assuming constant volume and ideal gas

temperature = constant \times pressure

so properly calibrated pressure sensor measures temperature

Pressure sensor only $\sigma = 0.05$

Note: in the noisy case, the methods give improvement in accuracy as well as speed

Dynamic weighing $m = 1, M = 1, k = 1, d = 1, x_{ini} = 0.1 \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \sigma = 0.02$

<ロ><部</p>
<日><部</p>
<日><</p>
<日><</p>
<</p>
<</p>
<</p>
<</p>
<</p>
<</p>
<</p>

Dynamic weighing M = 10

Dynamic weighing M = 100

<ロ> < 部 > < き > < き > き の Q () 36/44

Time-varying parameter

- dynamic cooling setup with a jump in the temperature u
- exponentially weighted recursive least squares with forgetting factor f = 0.5

Experiment with Lego NXT Mindstorms

Known model

Unknown mode

Testing

Results with real-life data

model for the KF is fitted using all measurements

$$t_{\rm s} = 0.5$$
 sec, $ar{y} = ar{u} := y(40)$

<ロ><部</p>
<ロ><部</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
>10
<10</p>
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>10
>1

Results with real-life data

Q: Why f = 0.9? A: Gives better results (trail and error).

Conclusions

- methods for speeding up measurement devices
- improvement in both dynamical response and accuracy
- requirement: DSP attached to the sensor
- with a priori given model, optimal estimator is Kalman filter
- without model, standard identification methods are used
- main contribution: model-free algorithm, which is computationally as expensive as an LTI compensator
- link between step response and autonomous identification

Current/future work

- optimal data-driven algorithm (structured TLS problem)
- implementation and testing on DSP
- building laboratory prototypes (with Lego Mindstorms NXT)
- contact and get feedback from the metrology community
- contact and pursue uptake by industry

MEDICAL EQUIPMENT

Move your mouse over image

Product 3/16 prev) (listing) (next)

Adtemp V 418 Super Fast Digital Thermometer \$10.00

ADTEMP V[™] Super Fast Flex thermometer features:

■8 second measurment using proprietary predictive technology.

- Auto off function conserves battery life
- ■Range 90°F-109.9°F ±.2°F or 32°C 43.9°C ±.1°C depending upon scale selection
- ■Replaceable 1.55v (LR41) type battery provides up to 1,500 measurements
- Integral carry case
- Includes 5 probe sheaths
- Contemporary Euro design

≤ Previous > Next /> Highlight all □ Match case

¥ Find:

antern Si

Unknown model

Testing

Questions?

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 のへで 44/44