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Exact line fitting

the points wi = (xi ,yi), i = 1, . . . ,N lie on a line (∗)

m

there is (a,b,c) 6= 0, such that axi +byi +c = 0, for i = 1, . . . ,N

m

there is (a,b,c) 6= 0, such that
[
a b c

]



x1 · · · xN

y1 · · · yN

1 · · · 1


= 0

m

rank






x1 · · · xN

y1 · · · yN

1 · · · 1




≤ 2 (∗∗)
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• restatement of problem (∗) as an equivalent problem (∗∗)

• however, (∗∗) is a standard problem in linear algebra

• the solution generalizes to

1. multivariable data (points in R
q) fitted by an affine set

2. time-series fitting by linear time-invariant dynamical models

3. data fitting by nonlinear models
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Exact conic section fitting

the points wi = (xi ,yi), i = 1, . . . ,N lie on a conic section

m

there are A = A⊤, b, c, at least one of them nonzero, such that

w⊤
i Awi +b⊤wi +c = 0, for i = 1, . . . ,N

m

there is (a11,a12,a22,b1,b2,c) 6= 0, such that

[
a11 2a12 b1 a22 b2 c

]




x2
1 · · · x2

N
x1y1 · · · xNyN

x1 · · · xN

y2
1 · · · y2

N
y1 · · · yN

1 · · · 1



= 0
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the points wi = (xi ,yi), i = 1, . . . ,N lie on a conic section

m

rank







x2
1 · · · x2

N
x1y1 · · · xNyN

x1 · · · xN

y2
1 · · · y2

N
y1 · · · yN

1 · · · 1







≤ 5
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• N < 5  nonunique fit
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• N > 5  generically no conic section fits the data exactly
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Exact fitting by linear homogeneous recurrence
relations with constant coefficients

the sequence w = (w1, . . . ,wT ) is generated by
linear recurrence relations with lag ≤ ℓ

m

there is a = (a0,a1, . . . ,aℓ) 6= 0, such that

a0wi +a1wi+1 + · · ·+aℓwi+ℓ = 0, for i = 1, . . . ,T − ℓ

m

there is a = (a0,a1, . . . ,aℓ) 6= 0, such that

a⊤




w1 w2 · · · wT−ℓ

w2 w3 · · · wT−ℓ+1
...

...
...

wℓ+1 wℓ+2 · · · wT


= a⊤Hℓ(w) = 0
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the sequence w = (w1, . . . ,wT ) is a linear recursion with lag ≤ ℓ

m

rank







w1 w2 · · · wT−ℓ

w2 w3 · · · wT−ℓ+1
...

...
...

wℓ+1 wℓ+2 · · · wT





≤ ℓ

• T ≤ 2ℓ  there is exact fit (independent of w)

• T > 2ℓ  generically there is no exact fit
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Existence of greatest common divisor

p(z) := p0+p1z+ · · ·+pmzm and q(z) := q0+q1z+ · · ·+qnzn

have a GCD of degree ≥ ℓ

m

. . .

m

rank







p0 q0
...

. . .
...

. . .

pm p0 qn q0
. . .

...
. . .

...

pm qn







≤ m+n− ℓ
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Data, model class, and exact fitting test

line
fitting
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section
fitting
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exact fitting test ⇐⇒ rank condition
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Abstract setting for data modeling

• data space U

examples: R
q, (Rq)T , R[z]×R[z], { true, false}

• data D = {D1, . . . ,DN } ⊂ U

Di ∈ U — observation, relalization, or outcome

• model B ⊂ U

an exclusion rule, declares what outcomes are possible

• model class M ⊂ 2U
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Exact vs approximate models

• B is an exact model for D if D ⊂ B

otherwise B is an approximate model for D

• B = U is a (trivial) exact model for any D ⊂ U

 we want nontrivial model

 notion of model complexity

• any model is approximate model for any data set

 we need to quantify the approximation accuracy

 notion of model accuracy (w.r.t. the data)
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Summary

• data set D ⊂ U
data modeling problem
−−−−−−−−−−−−−−→ model B ∈ M

• set of all possible observations U

• model class M

• basic criteria in any data modeling problem are:

• “simple” model and

• “good” fit of the data by the model

contradicting objectives

• core issue in data modeling complexity–accuracy trade-off
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Notes

• in the classical setting, models are viewed as equations

and a model class is a parameterized equation

• in our setting, models are subsets of the data space U

and equations are used as representations of models

• allows us to define equivalence of model representations

• establish links among data modeling methods

• model complexity and misfit (lack of fit) b/w data and model
have appealing geometrical definitions
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Model complexity

• the “smaller” a model is the more powerful/useful it is

• the “bigger” a model is the more complex it is

• we prefer simple models over complex ones

• exact modeling problem:

find the least complex model that fits the data exactly
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Linear model complexity

• a linear model B is a subspace of U (U is a vector space)

• the complexity of B is defined as its dimension

• in the linear case

D ⊂ B =⇒ span(D)⊂ B

and the rank of the data matrix is ≤ dim(B)

• span(D) — the smallest linear model, consistent with D
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Model accuracy

• let U be a normed vector space with norm ‖ · ‖

• the distance between the data D and a model B

dist(D ,B) := min
D̂⊂B

‖D − D̂‖ (1)

measures the lack of fit (misfit) between D and B

• (1) is the projection of the data on the model
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Example: U = R
2, B linear, Euclidean norm
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Example: U = R
2, B quadratic, Euclidean norm
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Complexity–accuracy trade-off

• a linear model B is a subspace of U

• a complexity measure of B is its dimension — dim(B)

• misfit — distance from D to B

M(D ,B) := dist(D ,B) := min
D̂⊂B

‖D − D̂‖U

• data modeling problem: given D ⊂ U and ‖ · ‖U

minimize over all linear models B

[
dim(B)

M(D ,B)

]
(DM)

• a bi-objective optimization problem

23 / 42



Examples A setting for data modeling Solution methods

The data matrix S (p)

• the data set D can be parameterized by a real
vector p ∈ R

np via a map S : Rnp → R
m×n

• S depends on the application

(S is affine in case of linear models)

• in static linear modeling problems, S (p) is unstructured

• in dynamic LTI modeling problems, S (p) is block-Hankel

• fact
dim(B)≥ rank

(
S (p)

)
(∗)
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The approximation criterion

• ‖D − D̂‖U = ‖p− p̂‖= ‖p̃‖

• weighted 1-, 2-, and ∞-(semi)norms:

‖p̃‖w ,1 := ‖w ⊙ p̃‖1 := ∑np

i=1 |wi p̃i |

‖p̃‖w ,2 := ‖w ⊙ p̃‖2 :=

√
∑np

i=1(wi p̃)2

‖p̃‖w ,∞ := ‖w ⊙ p̃‖∞ := max
i=1,...,np

|wi p̃i |

• w — nonnegative vector, specifying the weights

• ⊙ — element-wise product

• in the stochastic setting of errors-in-variables modeling, ‖ ·‖
corresponds to the distribution of the measurement noise
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Low-rank approximation and rank minimization

• (DM) becomes a matrix approximation problem:

minimize over p̂
[
rank

(
S (p̂)

)

‖p− p̂‖

]
(DM’)

• two possible scalarizations:

1. misfit minimization with a bound r on the model complexity

minimize over p̂ ‖p− p̂‖ subject to rank
(
S (p̂)

)
≤ r (LRA)

2. model complexity minimization with a bound e on the misfit

minimize over p̂ rank
(
S (p̂)

)
subject to ‖p− p̂‖ ≤ e (RM)
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• (LRA) — low-rank approximation problem

• (RM) — rank minimization problem

• method for solving (RM) can solve (LRA) (using bisection)
and vice verse

• varying r ,e ∈ [0,∞) the solutions of (LRA) and (RM) sweep
the trade-off curve (Pareto optimal solutions of (DM))

• r is discrete and “small”
e is continuous and generally unknown

• in applications, an upper bound for r is often specified
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Example: approximate line fitting in R
2

minimize over B ∈ { lines} dist(D ,B)

m

minimize over x̂i , ŷi , i = 1, . . . ,N
N

∑
i=1

∥∥∥∥
[
xi

yi

]
−

[
x̂i

ŷi

]∥∥∥∥
2

2

subject to rank






x̂1 · · · x̂N

ŷ1 · · · ŷN

1 · · · 1




≤ 2

can be solved globally using the singular value decomposition
of the data matrix
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Example: approximate conic section fitting in R
2

minimize over B ∈ {conic sections} dist(D ,B)

m

minimize over x̂i , ŷi , i = 1, . . . ,N
N

∑
i=1

∥∥∥∥
[
xi

yi

]
−

[
x̂i

ŷi

]∥∥∥∥
2

2

subject to rank







x̂2
1 · · · x̂2

N
x̂1ŷ1 · · · x̂N ŷN

x̂1 · · · x̂N

ŷ2
1 · · · ŷ2

N
ŷ1 · · · ŷN

1 · · · 1







≤ 5
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Algorithms

• with a few exceptions (LRA) and (RM) are non-convex
optimization problems

• all general methods are heuristics

• main classes of methods for solving (LRA) and (RM) are:

• global optimization

• local optimizations

• convex relaxations

• subspace methods and

• methods based on nuclear norm heuristics
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Unstructured low-rank approximation

D̂∗ := argmin
D̂

‖D− D̂‖F subject to rank(D̂)≤ r

Theorem (closed form solution)

Let D = UΣV⊤ be the SVD of D and define

U =:

r n− r[
U1 U2

]
m , Σ=:

r n− r[
Σ1 0
0 Σ2

]
r

n− r and V =:

r n− r[
V1 V2

]
m

An optimal low-rank approximation solution is

D̂∗ = U1Σ1V⊤
1 , (B̂∗ = ker(U⊤

2 ) = colspan(U1)).

It is unique if and only if σr 6= σr+1.
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Structured low-rank approximation

No closed form solution is known for the general SLRA problem

p̂∗ := argmin
p̂

‖p− p̂‖ subject to rank
(
S (p̂)

)
≤ r .

NP-hard, consider solution methods based on local optimization

Representing the constraint in a kernel form, the problem is

min
R, RR⊤=Im−r

(
min

p̂
‖p− p̂‖ subject to RS (p̂) = 0

)

Note: Double minimization with bilinear equality constraint.

There is a matrix G(R), such that RS (p̂) = 0 ⇐⇒ G(R)p̂ = 0.
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Variable projection vs. alternating projections

Two ways to approach the double minimization:

• Variable projections (VARPRO):
solve the inner minimization analytically

min
R, RR⊤=Im−r

vec⊤
(
RS (p̂)

)(
G(R)G⊤(R)

)−1
vec

(
RS (p̂)

)

 a nonlinear least squares problem for R only.

• Alternating projections (AP):
alternate between solving two least squares problems

VARPRO is globally convergent with a super linear conv. rate.

AP is globally convergent with a linear convergence rate.
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Nuclear norm heuristics

• leads to a semidefinite optimization problem

• existing algorithms with provable convergence properties
and readily available high quality software packages

• additional advantage is flexibility: affine inequality
constraints in the data modeling problem still leads to
semidefinite optimization problems

• disadvantage: the number of optimization variables
depends quadratically on the number of data points

• in my experience, the nuclear norm heuristics is less
effective than alternative heuristics
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Nuclear norm heuristics for SLRA
• nuclear norm: ‖M‖∗ = sum of the singular values of M

• regularized nuclear norm minimization

minimize over p̂ ‖S (p̂)‖∗+ γ‖p− p̂‖

subject to Gp̂ ≤ h

• using the fact

‖M‖∗< µ ⇐⇒
1
2

(
trace(U)+ trace(V )

)
< µ and

[
U M⊤

M V

]
� 0

we obtain an equivalent SDP problem

minimize over p̂, U, V , ν
1
2

(
trace(U)+ trace(V )

)
+ γν

subject to
[

U S (p̂)⊤

S (p̂) V

]
� 0, ‖p− p̂‖< ν , Gp̂ ≤ h
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Nuclear norm heuristics for SLRA

• convex relaxation of (LRA)

minimize over p̂ ‖p− p̂‖ subject to ‖S (p̂)‖∗ ≤ µ
(RLRA)

• motivation: approx. with appropriately chosen bound on
the nuclear norm tends to give solutions S (p̂) of low rank

• (RLRA) can also be written in the equivalent form

minimize over p̂ ‖S (p̂)‖∗+ γ‖p− p̂‖ (RLRA’)

γ — regularization parameter related to µ in (RLRA)

• this is a regularized nuclear norm minimization problem
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Unstructured problem’s trade-off curve
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Hankel structured problem’s trade-off curves
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Conclusions

• common pattern in data modeling

data is exact for a model of bounded complexity

m

matrix constructed from the data is rank deficient

• exact modeling ≈ rank computation

• approximate modeling is a biobjective opt. problem

accuracy vs complexity trade-off

• computationally approx. modeling leads to SLRA and RM
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• regularized nuclear norm min. is a general and flexible tool

• can be used as a relaxation for low-rank approximation
problems with the following desirable features:

• arbitrary affine structure

• any weighted 2-norm or even a weighted semi-norm

• affine inequality constraints

• regularization

• issues:

• effectiveness in comparison with other heuristics

• currently applicable to small sample sizes problems only
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Questions?
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