Sparsity in system identification and data-driven control

Ivan Markovsky

This signal is not sparse in the "time domain"

But it is sparse in the "frequency domain" (it is weighted sum of six damped sines)

Problem: find sparse representation (small number of basis signals)

existence

representation

approximation

System theory offers alternative methods based on low-rank approximation

rank of
$$
\begin{bmatrix} y(1) & y(2) & y(3) & \cdots \\ y(2) & y(3) & y(4) & \cdots \\ y(3) & y(4) & y(5) & \cdots \\ \vdots & \vdots & \vdots & \vdots \\ y(L) & y(L+1) & y(L+3) & \cdots \end{bmatrix} \le 12
$$

[Sparse signals and linear-time invariant systems](#page-1-0)

[System identification as sparse approximation](#page-16-0)

[Solution methods and generalizations](#page-24-0)

Sum-of-damped-exponentials signals are solutions of linear constant coefficient ODE

$$
y = \alpha_1 \exp_{z_1} + \cdots + \alpha_n \exp_{z_n} \qquad \qquad \exp_z(t) := z^t
$$

$$
\qquad \qquad \downarrow
$$

$$
p_0y + p_1 \sigma y + \cdots + p_n \sigma^n y = 0 \quad (\sigma y)(t) := y(t+1)
$$

$$
y = Cx, \sigma x = Ax
$$
 $x(t) \in \mathbb{R}^n$ —state

The solution set of linear constant coefficient ODE is linear time-invariant (LTI) system

n-th order autonomous LTI system

$$
\mathscr{B}:=\{\,y=Cx\mid \sigma x=Ax,\; x(0)\in\mathbb{R}^n\,\}
$$

$$
\text{dim}(\mathscr{B}) = n \longrightarrow \text{complexity of } \mathscr{B}
$$

\mathscr{L}_{n} — LTI systems with order \leq n

 $y \in \mathscr{B} \in \mathscr{L}_{n}$ is constrained/structured/sparse

belongs to n-dimensional subspace

is linear combination of n signals

described by 2n parameters

We assume that sparse representation exists, but we do not know the basis

classical definition of sparse signal *y*

- ► *y* has a few nonzero values (we don't know which ones)
- \triangleright basis: unit vectors

$y \in \mathscr{B} \in \mathscr{L}_{n}$ with $n \ll \text{\# of samples}$

- \rightarrow *y* is sum of a few damped sines (their frequencies and dampings are unknown)
- \triangleright basis: damped complex exponentials

The assumption $y \in \mathscr{B} \in \mathscr{L}_n$ makes ill-posed problems well-posed

noise filtering

- **•** given $y = \bar{y} + \tilde{y}$, \tilde{y} noise
- ind \bar{v} true value

forecasting

- **►** given "past" samples $(y(-t+1),...,y(0))$
- If find "future" samples $(y(1),...,y(t))$

missing data estimation

- **► given** samples $y(t)$, $t \in \mathcal{T}_{\text{given}}$
- **► find** missing samples $y(t)$, $t \in \overline{\mathscr{T}_{\text{divan}}}$

Noise filtering: given $y = \bar{y} + \tilde{y}$, find \bar{y} with prior knowledge $\bar{y} \in \bar{\mathscr{B}} \in \mathscr{L}_n$, $\widetilde{y} \sim N(0, vI)$

Heuristic: smooth the data by low-pass filter

Optimal/Kalman filtering requires a model The best (but unrealistic) option is to use $\mathscr{\overline{B}}$

Kalman filtering using identified model $\widehat{\mathscr{B}}$, (*i.e.*, prior knowledge $\bar{\mathscr{B}} \in \mathscr{L}_n$)

Summary

the assumption $y \in \mathscr{B} \in \mathscr{L}_n$ imposes sparsity

the basis is sum-of-damped-exponentials with unknown dampings and frequencies

$y \in \mathscr{B} \in \mathscr{L}_n$ "regularizes" ill-posed problems

[Sparse signals and linear-time invariant systems](#page-1-0)

[System identification as sparse approximation](#page-16-0)

[Solution methods and generalizations](#page-24-0)

System identification is an inverse problem

simulation $\mathscr{B} \mapsto \mathsf{v}$

- \triangleright given model $\mathscr{B} \in \mathscr{L}_n$ and initial conditions
- **Find** the response $y \in \mathcal{B}$

identification $y \mapsto \mathscr{B}$

- **I** given response *y* and model class \mathscr{L}_n
- Find model $\mathscr{B} \in \mathscr{L}_n$ that "fits well" *y*

"fits well" is often defined in stochastic setting

assumption $y = \overline{y} + \widetilde{y}$ where

- $\overline{y} \in \overline{\mathscr{B}} \in \mathscr{L}_{n}$ is the true signal
- **►** $\widetilde{y} \sim N(0, vI)$ is noise (zero mean white Gaussian)

maximum likelihood estimator

minimize over \hat{y} and $\hat{\mathscr{B}}$ $||y-\hat{y}||$ subject to $\hat{y} \in \hat{\mathscr{B}} \in \mathscr{L}_{n}$

"The noise model is just an alibi for determining the cost function." L. Ljung

Example: monthly airline passenger data 1949–1960 fit by 6th order LTI model

How well a given model $\mathscr B$ fits the data γ ?

$$
error(y, \mathscr{B}) := \min_{\widehat{y} \in \mathscr{B}} \|y - \widehat{y}\|
$$

- **I** likelihood of *y*, given \mathscr{B}
- **Projection of** *y* **on** \mathscr{B}
- \blacktriangleright validation error

identification problem:

$$
\text{minimize} \quad \text{over } \widehat{\mathscr{B}} \in \mathscr{L}_n \quad \text{error}(y, \mathscr{B})
$$

The link between system identification and sparse approximation is low rank

$$
y \in \mathscr{B} \in \mathscr{L}_n
$$
\n
$$
\updownarrow
$$
\n
$$
y(2) \quad y(3) \quad \cdots \quad y(T-n) \quad \updownarrow
$$
\n
$$
\downarrow
$$

Hankel structured matrix $\mathscr{H}_{n+1}(y)$

LTI system identification is equivalent to Hankel structured low-rank approximation

minimize over \widehat{y} and $\widehat{\mathscr{B}}$ $||y-\widehat{y}||$ subject to $\hat{y} \in \hat{\mathscr{B}} \in \mathscr{L}_n$ $\mathbb{\mathbb{I}}$

minimize over \hat{v} $\|v-\hat{v}\|$ **subject to** rank $(\mathscr{H}_{n+1}(\widehat{y})) \leq n$

system identification aims at a map $y \mapsto \mathscr{B}$

the map is defined through optimization problem

equivalent problem: Hankel low-rank approx. (impose sparsity on the singular values)

[Sparse signals and linear-time invariant systems](#page-1-0)

[System identification as sparse approximation](#page-16-0)

[Solution methods and generalizations](#page-24-0)

Three solution approaches:

nuclear norm heuristic

subspace methods

local optimization

The nuclear norm heuristic induces sparsity on the singular values

rank: number of nonzero singular values

 $\|\cdot\|_*: \ell_1$ -norm of the singular values vector

minimization of the nuclear norm

- \triangleright tends to increase sparsity \implies reduce rank
- \blacktriangleright leads to a convex optimization problem

Nuclear norm minimization methods involve a hyper-parameter

> minimize over \hat{v} $||y-\hat{y}||$ subject to $\|\mathcal{H}_{n+1}(\widehat{\mathbf{y}})\|_{*} < \gamma$ \mathcal{L} minimize over $\hat{v} \alpha ||v - \hat{v}|| + ||\mathcal{H}_{n+1}(\hat{v})||_*$

 γ/α — determines the rank of $\mathscr{H}_{n+1}(\hat{\mathbf{y}})$

we want $\alpha_{\mathsf{opt}} = \max\{\alpha \mid \mathsf{rank}\left(\mathscr{H}_{\mathsf{n+1}}(\widehat{\mathcal{Y}})\right) \leq \mathsf{n}\}\$

 $\alpha_{\rm opt}$ can be found by bijection

Originally the subspace identification methods were developed for exact data

 \mathscr{L}_n — class of LTI systems of order $\leq n$

state space representation

$$
\mathscr{B}:=\{\,y=Cx\mid \sigma x=Ax,\; x(0)\in\mathbb{R}^n\,\}
$$

exact identification problem $y \mapsto (A, C)$

- **•** given $y \in \mathcal{B} \in \mathcal{L}_n$ exact data
- \triangleright find (A, C) model parameters

Two steps solution method

1. rank revealing factorization

$$
\mathscr{H}_L(y) = \underbrace{\begin{bmatrix} C \\ CA \\ \vdots \\ CA^{L+1} \end{bmatrix}}_{\mathscr{O}} \underbrace{\begin{bmatrix} x(0) & Ax(0) & A^2x(0) & \cdots & A^{T-L}x(0) \end{bmatrix}}_{\mathscr{C}}
$$

2. shift equation

$$
\begin{bmatrix} C \\ CA \\ \vdots \\ CA^{L-1} \end{bmatrix} A = \begin{bmatrix} CA \\ CA^2 \\ \vdots \\ CA^L \end{bmatrix} \iff \Theta(1:L-1,:)A = \Theta(2:L,:)
$$

 $T = 2n + 1$ samples suffice, $L \in [n + 1, T - n]$

For noisy data, subspace methods involve unstructured low-rank approximation

do steps 1 and 2 approximately:

- 1. singular value decomposition of $\mathcal{H}_1(\gamma)$
- 2. least squares solution of the shift equation

L is hyper-parameter that affects the solution $\widehat{\mathscr{B}}$

Local optimization using variable projections "double" optimization

$$
\min_{\widehat{\mathscr{B}}\in\mathscr{L}_n}\left(\min_{\widehat{\gamma}\in\widehat{\mathscr{B}}}\,\|y-\widehat{y}\|\right)
$$

"inner" minimization

$$
error(y,\widehat{\mathscr{B}}) = \|\Pi_{\widehat{\mathscr{B}}} y\|
$$

"outer" minimization

Representation of an LTI system as kernel of polynomial operator

$$
p_0y + p_1\sigma y + \cdots + p_n\sigma^n y = 0 \quad (\sigma y)(t) := y(t+1)
$$

$$
p(\sigma)y = 0, \text{ where } p(z) = p_0 + p_1z + \cdots + p_nz^n
$$

model parameter $p = \begin{bmatrix} p_0 & p_1 & \cdots & p \end{bmatrix}$

model parameter
$$
\rho = \begin{bmatrix} \rho_0 & \rho_1 & \cdots & \rho_n \end{bmatrix}
$$

Parameter optimization problem

optimization over a manifold

$$
\min_{\widehat{\mathscr{B}} \in \mathscr{L}_{n}} \text{error}(y, \widehat{\mathscr{B}}) \iff \min_{\|p\|=1} \text{error}(y, p)
$$

optimization over Euclidean spaces

$$
p \neq 0
$$
 \iff $p = \begin{bmatrix} x & 1 \end{bmatrix} \Pi$
 Π permutation

- \blacktriangleright Π fixed \rightsquigarrow total least-squares
- \triangleright \sqcap can be changed during the optimization

Three generalizations

systems with inputs

missing data estimation

nonlinear system identification

Dealing with missing data

minimize over \hat{v} $||y-\hat{y}||_v$ **subject to** rank $(\mathscr{H}_{n+1}(\widehat{\mathcal{Y}})) \leq n$

weighted 2-norm approximation

$$
\|y-\widehat{y}\|_{v}:=\sqrt{\sum_{k,t}v^{k}(t)\big(y^{k}(t)-\widehat{y}^{k}(t)\big)^{2}}
$$

with element-wise weights

$$
v^{k}(t) \in (0, \infty) \quad \text{if } y^{k}(t) \text{ is noisy} \qquad \text{approximate } y^{k}(t) \n v^{k}(t) = 0 \qquad \text{if } y^{k}(t) \text{ is missing} \quad \text{interpolate } y^{k}(t) \n v^{k}(t) = \infty \qquad \text{if } y^{k}(t) \text{ is exact} \qquad \widehat{y}^{k}(t) = y^{k}(t)
$$

Example: piecewise cubic interpolation vs LTI identification on the "airline passenger data"

Conclusion

- *y* is response of LTI system \iff *y* sparse
- LTI identification \iff low-rank approx.

solution methods

- \triangleright convex relaxation (nuclear norm)
- \triangleright subspace (SVD + least squares)
- \blacktriangleright local optimization

DFT analysis suffers from the "leakage"

 Ω Ω

Gridding the frequency axis and using ℓ_1 -norm minimization has limited resulution

given signal *y*

select "dictionary"
$$
\Phi(t) = \begin{bmatrix} \sin(\omega_1 t) & \cdots & \sin(\omega_N t) \end{bmatrix}
$$

minimize over $a \parallel a \parallel_1$ subject to $y = \Phi a$