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This signal is not sparse in the "time domain"
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But it is sparse in the "frequency domain"
(it is weighted sum of six damped sines)
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Problem: find sparse representation
(small number of basis signals)

existence

representation

approximation
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System theory offers alternative methods
based on low-rank approximation

rank of



y(1) y(2) y(3) · · ·
y(2) y(3) y(4) · · ·
y(3) y(4) y(5) · · ·
...

...
...

y(L) y(L + 1) y(L + 3) · · ·


≤ 12
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Plan

Sparse signals and linear-time invariant systems

System identification as sparse approximation

Solution methods and generalizations
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Sum-of-damped-exponentials signals are
solutions of linear constant coefficient ODE

y = α1 expz1
+ · · ·+ αnexpzn expz(t) := z t

m

p0y + p1σy + · · ·+ pnσny = 0 (σy)(t) := y(t + 1)

m

y = Cx , σx = Ax x(t) ∈ Rn — state
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The solution set of linear constant coefficient
ODE is linear time-invariant (LTI) system

n-th order autonomous LTI system

B := {y = Cx | σx = Ax , x(0) ∈ Rn}

dim(B) = n — complexity of B

Ln — LTI systems with order ≤ n
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y ∈B ∈Ln is constrained/structured/sparse

belongs to n-dimensional subspace

is linear combination of n signals

described by 2n parameters
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We assume that sparse representation
exists, but we do not know the basis

classical definition of sparse signal y
I y has a few nonzero values

(we don’t know which ones)

I basis: unit vectors

y ∈B ∈Ln with n� # of samples
I y is sum of a few damped sines

(their frequencies and dampings are unknown)

I basis: damped complex exponentials
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The assumption y ∈B ∈Ln makes
ill-posed problems well-posed

noise filtering
I given y = ȳ + ỹ , ỹ — noise
I find ȳ — true value

forecasting
I given "past" samples

(
y(−t + 1), . . . ,y(0)

)
I find "future" samples

(
y(1), . . . ,y(t)

)
missing data estimation

I given samples y(t), t ∈Tgiven
I find missing samples y(t), t ∈Tgiven
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Noise filtering: given y = ȳ + ỹ , find ȳ with
prior knowledge ȳ ∈ B̄ ∈Ln, ỹ ∼ N(0,ν I)
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Heuristic: smooth the data by low-pass filter
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Optimal/Kalman filtering requires a model
The best (but unrealistic) option is to use B̄
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Kalman filtering using identified model B̂,
(i.e., prior knowledge B̄ ∈Ln)
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Summary

the assumption y ∈B ∈Ln imposes sparsity

the basis is sum-of-damped-exponentials
with unknown dampings and frequencies

y ∈B ∈Ln "regularizes" ill-posed problems
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Plan

Sparse signals and linear-time invariant systems

System identification as sparse approximation

Solution methods and generalizations
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System identification is an inverse problem

simulation B 7→ y
I given model B ∈Ln and initial conditions
I find the response y ∈B

identification y 7→B

I given response y and model class Ln

I find model B ∈Ln that "fits well" y
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"fits well" is often defined in stochastic setting

assumption y = ȳ + ỹ where
I ȳ ∈ B̄ ∈Ln is the true signal
I ỹ ∼ N(0,ν I) is noise (zero mean white Gaussian)

maximum likelihood estimator

minimize over ŷ and B̂ ‖y − ŷ‖
subject to ŷ ∈ B̂ ∈Ln

"The noise model is just an alibi for determining
the cost function." L. Ljung
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Example: monthly airline passenger data
1949–1960 fit by 6th order LTI model
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How well a given model B fits the data y?

error(y ,B) := min
ŷ∈B

‖y − ŷ‖

I likelihood of y , given B

I projection of y on B

I validation error

identification problem:

minimize over B̂ ∈Ln error(y ,B)
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The link between system identification and
sparse approximation is low rank

y ∈B ∈Ln

m

rank




y(1) y(2) · · · y(T −n)

y(2) y(3) · · · y(T −n+ 1)
...

...
...

y(n+ 1) y(n+ 2) · · · y(T )


≤n

Hankel structured matrix Hn+1(y)
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LTI system identification is equivalent to
Hankel structured low-rank approximation

minimize over ŷ and B̂ ‖y − ŷ‖
subject to ŷ ∈ B̂ ∈Ln

m

minimize over ŷ ‖y − ŷ‖
subject to rank

(
Hn+1(ŷ)

)
≤ n
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Summary

system identification aims at a map y 7→B

the map is defined through optimization problem

equivalent problem: Hankel low-rank approx.
(impose sparsity on the singular values)
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Plan

Sparse signals and linear-time invariant systems

System identification as sparse approximation

Solution methods and generalizations
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Three solution approaches:

nuclear norm heuristic

subspace methods

local optimization
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The nuclear norm heuristic induces sparsity
on the singular values

rank: number of nonzero singular values

‖ · ‖∗: `1-norm of the singular values vector

minimization of the nuclear norm
I tends to increase sparsity =⇒ reduce rank

I leads to a convex optimization problem
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Nuclear norm minimization methods
involve a hyper-parameter

minimize over ŷ ‖y − ŷ‖
subject to ‖Hn+1(ŷ)‖∗ ≤ γ

m

minimize over ŷ α‖y − ŷ‖+‖Hn+1(ŷ)‖∗

γ/α — determines the rank of Hn+1(ŷ)

we want αopt = max{α | rank
(
Hn+1(ŷ)

)
≤ n}

αopt can be found by bijection
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Originally the subspace identification
methods were developed for exact data

Ln — class of LTI systems of order ≤ n

state space representation

B := {y = Cx | σx = Ax , x(0) ∈ Rn}

exact identification problem y 7→ (A,C)

I given y ∈B ∈Ln — exact data

I find (A,C) — model parameters
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Two steps solution method
1. rank revealing factorization

HL(y) =


C

CA
...

CAL+1


︸ ︷︷ ︸

O

[
x(0) Ax(0) A2x(0) · · · AT−Lx(0)

]
︸ ︷︷ ︸

C

2. shift equation
C

CA
...

CAL−1

A =


CA
CA2

...

CAL

 ⇐⇒ O(1:L−1, :)A = O(2:L, :)

T = 2n+ 1 samples suffice, L ∈ [n+ 1,T −n]
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For noisy data, subspace methods involve
unstructured low-rank approximation

do steps 1 and 2 approximately:
1. singular value decomposition of HL(y)

2. least squares solution of the shift equation

L is hyper-parameter that affects the solution B̂
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Local optimization using variable projections

"double" optimization

min
B̂∈Ln

(
min
ŷ∈B̂

‖y − ŷ‖
)

"inner" minimization

error(y ,B̂) = ‖Π
B̂

y‖

"outer" minimization

min
B̂∈Ln

error(y ,B̂)
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Representation of an LTI system
as kernel of polynomial operator

p0y + p1σy + · · ·+ pnσny = 0 (σy)(t) := y(t + 1)

p(σ)y = 0, where p(z) = p0 + p1z + · · ·+ pnzn

model parameter p =
[
p0 p1 · · · pn

]
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Parameter optimization problem
optimization over a manifold

min
B̂∈Ln

error(y ,B̂) ⇐⇒ min
‖p‖=1

error(y ,p)
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optimization over Euclidean spaces

p 6= 0 ⇐⇒
p =

[
x 1

]
Π

Π permutation

I Π fixed ; total least-squares

I Π can be changed during the optimization
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Three generalizations

systems with inputs

missing data estimation

nonlinear system identification

35 / 40



Dealing with missing data

minimize over ŷ ‖y − ŷ‖v
subject to rank

(
Hn+1(ŷ)

)
≤ n

weighted 2-norm approximation

‖y − ŷ‖v :=

√
∑k ,t vk (t)

(
yk (t)− ŷk (t)

)2
with element-wise weights

vk (t) ∈ (0,∞) if yk (t) is noisy approximate yk (t)

vk (t) = 0 if yk (t) is missing interpolate yk (t)

vk (t) = ∞ if yk (t) is exact ŷk (t) = yk (t)
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Example: piecewise cubic interpolation vs LTI
identification on the "airline passenger data"
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Conclusion

y is response of LTI system ⇐⇒ y sparse

LTI identification ⇐⇒ low-rank approx.

solution methods
I convex relaxation (nuclear norm)

I subspace (SVD + least squares)

I local optimization
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DFT analysis suffers from the "leakage"

0
0
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Gridding the frequency axis and using
`1-norm minimization has limited resulution

given signal y

select "dictionary" Φ(t) =
[
sin(ω1t) · · · sin(ωN t)

]

minimize over a ‖a‖1 subject to y = Φa
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