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This signal is not sparse in the "time domain”
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But it is sparse in the "frequency domain"

(it is weighted sum of six damped sines)
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Problem: find sparse representation
(small number of basis signals)

existence
representation

approximation
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System theory offers alternative methods
based on low-rank approximation
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Plan

Sparse signals and linear-time invariant systems

System identification as sparse approximation

Solution methods and generalizations
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Sum-of-damped-exponentials signals are
solutions of linear constant coefficient ODE

Y =016Xp,, +- -+ 0nexp, exp,(t) = z!
0

Poy +p1oy+---+paoty =0 (oy)(t):=y(t+1)
)

y = Cx, ox = Ax x(t) € R» — state



The solution set of linear constant coefficient
ODE is linear time-invariant (LTI) system

n-th order autonomous LTI system

B .={y=0Cx|ox=Ax, x(0)eR"}

dim(#) = n — complexity of #

%, — LTI systems with order < n



y € # € %, is constrained/structured/sparse

belongs to n-dimensional subspace
is linear combination of n signals

described by 2n parameters
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We assume that sparse representation
exists, but we do not know the basis

classical definition of sparse signal y

» y has a few nonzero values
(we don’t know which ones)

» basis: unit vectors

y € B € £, with n < # of samples

» yis sum of a few damped sines
(their frequencies and dampings are unknown)

» basis: damped complex exponentials
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The assumption y € 4 € £, makes
ill-posed problems well-posed

noise filtering
» given y=y+y,y—noise
» find y — true value

forecasting

~ given "past"’ samples (y(—t+1),...,y(0))
» find  "future" samples (y(1),....y(t))

missing data estimation
> given samples y(t), t € Tgiven
» find missing samples y(t), t € Jgiven
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Noise filtering: given y = y + y, find y with
prior knowledge y € Z € Z,, y ~ N(0,Vv)
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Heuristic: smooth the data by low-pass filter

13/40



Optimal/Kalman filtering requires a model
The best (but unrealistic) option is to use 4
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Kalman filtering using identified model 7
(i.e., prior knowledge % € %)
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Summary

the assumption y € & € £, imposes sparsity

the basis is sum-of-damped-exponentials
with unknown dampings and frequencies

y € B € £, "regularizes” ill-posed problems
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Plan

System identification as sparse approximation
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System identification is an inverse problem

simulation Z +— y

» given model #Z € %, and initial conditions
» find the response y € #

identification y — %

» given response y and model class %,
» find model %4 € %, that "fits well" y
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"fits well" is often defined in stochastic setting

assumption y = y +y where

» yeBe %, isthe true signal
» y~N(0,vl) is noise (zero mean white Gaussian)

maximum likelihood estimator
minimize overyand Z |y—J|
subjectto y € %€ %,

"The noise model is just an alibi for determining
the cost function." L. Ljung
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Example: monthly airline passenger data

1949-1960 fit by 6th order LTI model
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How well a given model £ fits the data y?

error(y, %) == min ||y —y|
ye#
» likelihood of y, given %

» projection of y on %
» validation error

identification problem:

minimize over % € %, error(y, A)
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The link between system identification and
sparse approximation is low rank

rank

yeBe Ly
1
Y1) y@ - y(T-n) ]
2 y@ T |
Y1) y0t2) - p(T)

Hankel structured matrix 7, 1(y)
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LTI system identification is equivalent to
Hankel structured low-rank approximation

minimize overyand Z |y—J|
subjectto ye B e %,

0

minimize overy |y Y]
subjectto rank (%, 1(¥)) <n
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Summary

system identification aims atamap y — %

the map is defined through optimization problem

equivalent problem: Hankel low-rank approx.
(impose sparsity on the singular values)
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Plan

Solution methods and generalizations
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Three solution approaches:

nuclear norm heuristic
subspace methods

local optimization
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The nuclear norm heuristic induces sparsity
on the singular values

rank: number of nonzero singular values
| - |l«: ¢4-norm of the singular values vector

minimization of the nuclear norm

» tends to increase sparsity = reduce rank

» leads to a convex optimization problem
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Nuclear norm minimization methods
involve a hyper-parameter

minimize overy |ly—Y||
subjectto |7, 1(¥)[l+ <7

)
minimize overy oy Y|+ 1(¥)l
y/ o — determines the rank of 2%, 1(y)
we want agpt = max{ o | rank (%, 1(¥)) <n}
Oopt Ccan be found by bijection
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Originally the subspace identification
methods were developed for exact data

%, — class of LTI systems of order < n

state space representation

#B.={y=Cx|ox=Ax, x(0)eR"}

exact identification problem y — (A, C)

» given ye % e ¥, — exactdata

» find (A, C) — model parameters
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Two steps solution method
1. rank revealing factorization

C
CA
Hy)=| . |[x(0) Ax(©0) Ax(0) - ATx(0)]
CA.L+1 %
——
o
2. shift equation
C CA
CA CA?
_ A= . <~ O(1:L-1,)A=0(2:.L,:)
CAL1 CAL

T =2n+1 samples suffice, Le[n+1,T—n]
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For noisy data, subspace methods involve
unstructured low-rank approximation

do steps 1 and 2 approximately:

1. singular value decomposition of .7 (y)
2. least squares solution of the shift equation

L is hyper-parameter that affects the solution P
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Local optimization using variable projections

"double" optimization

min (mm Iy— yn)
B L, \ycHh

"inner" minimization
error(y, %) = ||N _y |

"outer" minimization

~

min error(y, %)
B L,
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Representation of an LTI system
as kernel of polynomial operator

Poy +pioy+---+pac”y =0 (oy)(t) :=y(t+1)

p(o)y =0, where p(z) = po+p1Z+-++ pPa 2"

model parameter p = [po Py - pn}
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Parameter optimization problem

optimization over a manifold

) A

min error(y,#) < min error(y,p) . )
732 Ipll=1 IS

optimization over Euclidean spaces

p=|x 1|n

p£0 =
I permutation

» [fixed ~» total least-squares

» [1 can be changed during the optimization
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Three generalizations

systems with inputs
missing data estimation

nonlinear system identification
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Dealing with missing data

minimize overy |y —Ylv
subjectto rank (7,1(¥)) <n

weighted 2-norm approximation

~ ~ 2
Iy =TIl = \/Ee vEO (40 - 75(1))
with element-wise weights

vK(t) € (0,00) if y¥(t)is noisy  approximate y*(t)
K(t)=0 if yX(t) is missing interpolate y*(t)
vE(t) = o0 if yK(t)is exact  yK(t) = yk(t)

"4
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Example: piecewise cubic interpolation vs LTI
identification on the "airline passenger data"
;
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Conclusion

y is response of LTl system <=y sparse
LTI identification <= low-rank approx.

solution methods

» convex relaxation (nuclear norm)
» subspace (SVD + least squares)

» local optimization
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DFT analysis suffers from the "leakage"
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Gridding the frequency axis and using
/1-norm minimization has limited resulution

given signal y
select "dictionary" ¢(t) = [sin(an f .- sin(a)Nt)}

minimize overa |ally subjectto y=®a
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