Sparsity in system identification and data-driven control

Ivan Markovsky

This signal is not sparse in the "time domain"

But it is sparse in the "frequency domain" (it is weighted sum of six damped sines)

Problem: find sparse representation (small number of basis signals)

existence

representation

approximation

System theory offers alternative methods based on low-rank approximation

rank of
$$\begin{bmatrix} y(1) & y(2) & y(3) & \cdots \\ y(2) & y(3) & y(4) & \cdots \\ y(3) & y(4) & y(5) & \cdots \\ \vdots & \vdots & \vdots \\ y(L) & y(L+1) & y(L+3) & \cdots \end{bmatrix} \le 12$$

Sparse signals and linear-time invariant systems

System identification as sparse approximation

Solution methods and generalizations

Sum-of-damped-exponentials signals are solutions of linear constant coefficient ODE

$$y = \alpha_1 \exp_{z_1} + \dots + \alpha_n \exp_{z_n} \qquad \exp_z(t) := z^t$$

$$0_0 y + \rho_1 \sigma y + \dots + \rho_n \sigma^n y = 0 \quad (\sigma y)(t) := y(t+1)$$

$$0_0 y = Cx, \ \sigma x = Ax \qquad x(t) \in \mathbb{R}^n - \text{state}$$

The solution set of linear constant coefficient ODE is linear time-invariant (LTI) system

n-th order autonomous LTI system

$$\mathscr{B} := \{ y = Cx \mid \sigma x = Ax, x(0) \in \mathbb{R}^n \}$$

$$\mathsf{dim}(\mathscr{B}) = n$$
 — complexity of \mathscr{B}

\mathscr{L}_n — LTI systems with order $\leq n$

 $y \in \mathscr{B} \in \mathscr{L}_n$ is constrained/structured/sparse

belongs to n-dimensional subspace

is linear combination of n signals

described by 2n parameters

We assume that sparse representation exists, but we do not know the basis

classical definition of sparse signal y

- y has a few nonzero values (we don't know which ones)
- basis: unit vectors

$y \in \mathscr{B} \in \mathscr{L}_n$ with $n \ll \#$ of samples

- y is sum of a few damped sines (their frequencies and dampings are unknown)
- basis: damped complex exponentials

The assumption $y \in \mathscr{B} \in \mathscr{L}_n$ makes ill-posed problems well-posed

noise filtering

- given $y = \overline{y} + \widetilde{y}, \ \widetilde{y}$ noise
- find \bar{y} true value

forecasting

- given "past" samples $(y(-t+1), \dots, y(0))$
- find "future" samples $(y(1), \dots, y(t))$

missing data estimation

- given samples $y(t), t \in \mathscr{T}_{given}$
- find missing samples y(t), $t \in \overline{\mathcal{T}_{given}}$

Noise filtering: given $y = \overline{y} + \widetilde{y}$, find \overline{y} with prior knowledge $\overline{y} \in \overline{\mathscr{B}} \in \mathscr{L}_n$, $\widetilde{y} \sim N(0, vI)$

Heuristic: smooth the data by low-pass filter

Optimal/Kalman filtering requires a model The best (but unrealistic) option is to use $\bar{\mathscr{B}}$

Kalman filtering using identified model $\widehat{\mathscr{B}}$, (*i.e.*, prior knowledge $\overline{\mathscr{B}} \in \mathscr{L}_n$)

Summary

the assumption $y \in \mathscr{B} \in \mathscr{L}_n$ imposes sparsity

the basis is sum-of-damped-exponentials with unknown dampings and frequencies

 $y \in \mathscr{B} \in \mathscr{L}_n$ "regularizes" ill-posed problems

Sparse signals and linear-time invariant systems

System identification as sparse approximation

Solution methods and generalizations

System identification is an inverse problem

simulation $\mathscr{B} \mapsto y$

- given model $\mathscr{B} \in \mathscr{L}_n$ and initial conditions
- find the response $y \in \mathscr{B}$

identification $y \mapsto \mathscr{B}$

- ▶ given response y and model class ℒn
- find model $\mathscr{B} \in \mathscr{L}_n$ that "fits well" y

"fits well" is often defined in stochastic setting

assumption $y = \overline{y} + \widetilde{y}$ where

- $\bar{y} \in \bar{\mathscr{B}} \in \mathscr{L}_n$ is the true signal
- $\tilde{y} \sim N(0, vI)$ is noise (zero mean white Gaussian)

maximum likelihood estimator

minimize over
$$\widehat{y}$$
 and $\widehat{\mathscr{B}} ||y - \widehat{y}||$
subject to $\widehat{y} \in \widehat{\mathscr{B}} \in \mathscr{L}_n$

"The noise model is just an alibi for determining the cost function." L. Ljung

Example: monthly airline passenger data 1949–1960 fit by 6th order LTI model

How well a given model \mathscr{B} fits the data y?

$$\operatorname{error}(y,\mathscr{B}) := \min_{\widehat{y}\in\mathscr{B}} \|y - \widehat{y}\|$$

- likelihood of y, given B
- ▶ projection of *y* on ℬ
- validation error

identification problem:

minimize over
$$\widehat{\mathscr{B}} \in \mathscr{L}_n$$
 error (y, \mathscr{B})

The link between system identification and sparse approximation is low rank

Hankel structured matrix $\mathscr{H}_{n+1}(y)$

LTI system identification is equivalent to Hankel structured low-rank approximation

minimize over
$$\widehat{y}$$
 and $\widehat{\mathscr{B}} ||y - \widehat{y}||$
subject to $\widehat{y} \in \widehat{\mathscr{B}} \in \mathscr{L}_n$
 \updownarrow

minimize over $\hat{y} || y - \hat{y} ||$ subject to rank $(\mathscr{H}_{n+1}(\hat{y})) \leq n$

system identification aims at a map $y \mapsto \mathscr{B}$

the map is defined through optimization problem

equivalent problem: Hankel low-rank approx. (impose sparsity on the singular values)

Sparse signals and linear-time invariant systems

System identification as sparse approximation

Solution methods and generalizations

Three solution approaches:

nuclear norm heuristic

subspace methods

local optimization

The nuclear norm heuristic induces sparsity on the singular values

rank: number of nonzero singular values

 $\|\cdot\|_*$: ℓ_1 -norm of the singular values vector

minimization of the nuclear norm

- tends to increase sparsity \implies reduce rank
- leads to a convex optimization problem

Nuclear norm minimization methods involve a hyper-parameter

 $\begin{array}{ll} \text{minimize} & \text{over } \widehat{y} & \|y - \widehat{y}\| \\ & \text{subject to} & \|\mathscr{H}_{n+1}(\widehat{y})\|_* \leq \gamma \\ & & \\$

 $\gamma/lpha$ — determines the rank of $\mathscr{H}_{n+1}(\widehat{y})$

we want $\alpha_{opt} = \max\{\alpha \mid rank(\mathscr{H}_{n+1}(\widehat{y})) \leq n\}$

 $\alpha_{\rm opt}$ can be found by bijection

Originally the subspace identification methods were developed for exact data

 \mathscr{L}_n — class of LTI systems of order $\leq n$

state space representation

$$\mathscr{B} := \{ y = Cx \mid \sigma x = Ax, x(0) \in \mathbb{R}^n \}$$

exact identification problem $y \mapsto (A, C)$

- given $y \in \mathscr{B} \in \mathscr{L}_n$ exact data
- find (A, C) model parameters

Two steps solution method

1. rank revealing factorization

$$\mathscr{H}_{L}(\mathbf{y}) = \underbrace{\begin{bmatrix} C \\ CA \\ \vdots \\ CA^{L+1} \end{bmatrix}}_{\mathscr{O}} \underbrace{\begin{bmatrix} x(0) & Ax(0) & A^{2}x(0) & \cdots & A^{T-L}x(0) \end{bmatrix}}_{\mathscr{C}}$$

2. shift equation

$$\begin{bmatrix} C \\ CA \\ \vdots \\ CA^{L-1} \end{bmatrix} A = \begin{bmatrix} CA \\ CA^{2} \\ \vdots \\ CA^{L} \end{bmatrix} \iff \mathscr{O}(1:L-1,:)A = \mathscr{O}(2:L,:)$$

T = 2n + 1 samples suffice, $L \in [n + 1, T - n]$

For noisy data, subspace methods involve unstructured low-rank approximation

do steps 1 and 2 approximately:

- 1. singular value decomposition of $\mathscr{H}_L(y)$
- 2. least squares solution of the shift equation

L is hyper-parameter that affects the solution $\widehat{\mathscr{B}}$

Local optimization using variable projections "double" optimization

$$\min_{\widehat{\mathscr{B}}\in\mathscr{L}_{n}}\left(\min_{\widehat{y}\in\widehat{\mathscr{B}}}\|y-\widehat{y}\|\right)$$

"inner" minimization

$$\operatorname{error}(\boldsymbol{y},\widehat{\mathscr{B}}) = \|\Pi_{\widehat{\mathscr{B}}}\boldsymbol{y}\|$$

"outer" minimization

Representation of an LTI system as kernel of polynomial operator

$$p_0y + p_1\sigma y + \dots + p_n\sigma^n y = 0 \quad (\sigma y)(t) := y(t+1)$$

$$p(\sigma)y = 0, \text{ where } p(z) = p_0 + p_1z + \dots + p_nz^n$$
model parameter $p = \begin{bmatrix} p_0 & p_1 & \dots & p_n \end{bmatrix}$

model parameter
$$p = \begin{bmatrix} p_0 & p_1 & \cdots & p_n \end{bmatrix}$$

Parameter optimization problem

optimization over a manifold

$$\min_{\widehat{\mathscr{B}} \in \mathscr{L}_n} \operatorname{error}(y, \widehat{\mathscr{B}}) \iff \min_{\|p\|=1} \operatorname{error}(y, p)$$

optimization over Euclidean spaces

$$p \neq 0 \quad \iff \quad \begin{array}{c} p = \begin{bmatrix} x & 1 \end{bmatrix} \Pi \\ \Pi \text{ permutation} \end{array}$$

- Π fixed \rightsquigarrow total least-squares
- Π can be changed during the optimization

Three generalizations

systems with inputs

missing data estimation

nonlinear system identification

Dealing with missing data

 $\begin{array}{ll} \text{minimize} & \text{over } \widehat{y} & \| y - \widehat{y} \|_{v} \\ \text{subject to} & \text{rank} \left(\mathscr{H}_{n+1}(\widehat{y}) \right) \leq n \end{array}$

weighted 2-norm approximation

$$\|\boldsymbol{y}-\widehat{\boldsymbol{y}}\|_{\boldsymbol{v}} := \sqrt{\sum_{k,t} \boldsymbol{v}^{k}(t) (\boldsymbol{y}^{k}(t) - \widehat{\boldsymbol{y}}^{k}(t))^{2}}$$

with element-wise weights

$$egin{aligned} & v^k(t) \in (0,\infty) & ext{if } y^k(t) ext{ is noisy } & ext{approximate } y^k(t) \ v^k(t) = 0 & ext{if } y^k(t) ext{ is missing } & ext{interpolate } y^k(t) \ v^k(t) = \infty & ext{if } y^k(t) ext{ is exact } & ext{} \widehat{y}^k(t) = y^k(t) \end{aligned}$$

Example: piecewise cubic interpolation vs LTI identification on the "airline passenger data"

Conclusion

- y is response of LTI system \iff y sparse
- LTI identification \iff low-rank approx.

solution methods

- convex relaxation (nuclear norm)
- subspace (SVD + least squares)
- local optimization

DFT analysis suffers from the "leakage"

0 L

Gridding the frequency axis and using ℓ_1 -norm minimization has limited resulution

given signal y

select "dictionary"
$$\Phi(t) = \left[\sin(\omega_1 t) \cdots \sin(\omega_N t)\right]$$

minimize over $a ||a||_1$ subject to $y = \Phi a$