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Two well known examples

• System realisation

• Discrete deconvolution

System realisation
The sequence

h :=
(
h(0),h(1), . . .

)
, h(t) ∈ R

p×m

is realisable by a finite dim. LTI system, if and only if

H (h) :=




h(1) h(2) h(3) · · ·

h(2) h(3) . .
.

h(3) . .
.

...




has finite rank. Moreover,

rank
(
H (h)

)
= state dim. of a minimal realisation of h

= complexity of an exact LTI model for h.

Approximate realisation = Model reduction

However, rank deficiency is a nongeneric property (in Z+ → R
p×m).

Rank is computed numerically most reliably by the SVD.

From a system theoretic point of view

the SVD does model reduction (Kung’s algorithm).

The truncated SVD gives (2-norm) optimal unstructured approx.

Instead, we are aiming at a

structured rank-n approximation of H (h):

Find ĥ, such that ‖h− ĥ‖ is minimized and rank
(
H (ĥ)

)
= n.



Approximate realisation (model reduction)
m

Hankel structured low-rank approximation

The approximate realisation (model reduction) problem is

Given h :=
(
h(0),h(1), . . .

)
and n ∈ N, find

min
ĥ

‖h− ĥ‖ subject to rank
(
H (ĥ)

)
≤ n

a Hankel structured low-rank approximation (SLRA) problem.

Unfortunately, this problem is NP-complete.

Deconvolution
Consider the finite sequences

h :=
(
h(0),h(1), . . . ,h(n)

)
, where h ∈ R

p×m

u :=
(
u(−n), . . . ,u(0),u(1) . . . ,u(T )

)
and y :=

(
y(1), . . . ,y(T )

)
.

Define row(y) :=
[
y(1) · · · y(T )

]
and the Toeplitz matrix

Tn+1(u) :=




u(1) u(2) u(3) . . . u(T )
u(0) u(1) u(2) . . . u(T −1)

...
...

...
...

u(−n) u(1−n) u(2−n) · · · u(T −n)




With this notation,

y = h ⋆u
(convolution)

⇐⇒
row(y) = row(h)Tn+1(u)

(linear algebra)

Exact and approximate deconvolution

Exact deconv. problem: Given u and y , find h, such that y = h ⋆u.

Solution exists if and only if the system of equations

row(y) = row(h)Tn+1(u)

is solvable for h. However with T > (n+1)m, generically
solution does not exist  approximate deconvolution problem:

Given u, y , and n ∈ N, find

min
û, ŷ , ĥ

‖col(u,y)−col(û, ŷ)‖ subject to

row(ŷ) = row(ĥ)Tn+1(û)

Deconvolution = FIR system identification
We can interpret

y = h ⋆u

as the response of an FIR system with impulse response h to

• initial conditions
(
u(−n), . . . ,u(0)

)
, and

• input
(
u(1) . . . ,u(T )

)
.

Then the deconvolution problem has the meaning of an
FIR system identification problem:

Given initial condition, input, and output, find an FIR model.

• exact deconvolution =⇒ exact FIR fitting model

• approx. deconvolution =⇒ approx. FIR fitting model

The parameter n bounds the FIR model complexity.



Approximate deconvolution  SLRA

Assuming that Tn+1(û) is full rank (persistency of excitation),

row(ŷ) = row(ĥ)Tn+1(û) ⇐⇒ rank
([

Tn+1(û)
row(ŷ)

])
= (n+1)m

Then the approximate deconvolution problem can be written as

Given u, y , and n ∈ N, find

min
û, ŷ

‖col(u,y)−col(û, ŷ)‖ subject to

rank
([

Tn+1(û)
row(ŷ)

])
≤ (n+1)m

a SLRA problem with structure composed of two blocks:
Toeplitz block above an unstructured block.

Rank of the data matrix

complexity of an exact
model fitting the data

↔
rank of the
data matrix

• order of the realization = rank
(
H (h)

)

•
number of taps

of an FIR system
= rank

([
Tn+1(u)
row(y)

])
/m−1

Main issue: Low-rank approximation

With a bounding on the model complexity,

generically in the data space, exact property does not hold

=⇒ an approximation is needed.

Approximation paradigm:

modify the data as little as possible, so that the exact property
holds for the modified data.

This paradigm leads to structured low-rank approximation.

Structured low-rank approximation

Given

• a vector p ∈ R
np ,

• a mapping S : R
np → R

m×n (structure specification)

• a vector norm ‖ · ‖, and

• an integer r , 0 < r < min(m,n),

find

p̂∗ := argmin
p̂

‖p− p̂‖ subject to rank
(
S (p̂)

)
≤ r . (∗)

Interpretation:

D̂∗ := S (p̂∗) is optimal rank-r (or less) approx. of D := S (p),
within the class of matrices with the same structure as D.



Applications

• System theory

1. Approximate realization

2. Model reduction

3. Errors-in-variables system identification

4. Output error system identification

5. Frequency domain system identification

• Signal processing

6. Output only (autonomous) system identification

7. Finite impulse response (FIR) system identification

8. Harmonic retrieval

9. Image deblurring

• Computer algebra

10. Approximate greatest common divisor (GCD)

System theory applications
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Unstructured low-rank approximation

D̂∗ := argmin
D̂

‖D− D̂‖F subject to rank(D̂) ≤ r

Theorem (closed form solution)

Let D = UΣV⊤ be the SVD of D and define

U =:

r n− r[
U1 U2

]
m , Σ=:

r n− r[
Σ1 0
0 Σ2

]
r

n− r and V =:

r n− r[
V1 V2

]
m .

An optimal low-rank approximation solution is

D̂∗ = U1Σ1V⊤
1 , (B̂∗ = ker(U⊤

2 ) = colspan(U1)).

It is unique if and only if σr 6= σr+1.

Structured low-rank approximation

No closed form solution is known for the general SLRA problem

p̂∗ := argmin
p̂

‖p− p̂‖ subject to rank
(
S (p̂)

)
≤ r .

NP-hard, consider solution methods based on local optimization

Representing the constraint in a kernel form, the problem is

min
R, RR⊤=Im−r

(
min

p̂
‖p− p̂‖ subject to RS (p̂) = 0

)

Note: Double minimization with bilinear equality constraint.

There is a matrix G(R), such that RS (p̂) = 0 ⇐⇒ G(R)p̂ = 0.



Variable projection vs. alternating projections

Two ways to approach the double minimization:

• Variable projections (VARPRO):
solve the inner minimization analytically

min
R, RR⊤=Im−r

vec⊤
(
RS (p̂)

)(
G(R)G⊤(R)

)−1
vec

(
RS (p̂)

)

 a nonlinear least squares problem for R only.

• Alternating projections (AP):
alternate between solving two least squares problems

VARPRO is globally convergent with a super linear conv. rate.

AP is globally convergent with a linear convergence rate.

Variations on low-rank approximation

• Cost functions

• weighted norms (vec⊤(D)W vec(D))

• information criteria (logdet(D))

• Constraints and structures

• nonnegative

• structured, sparse

• missing data and exact data

• Data structures

• nD data ↔ tensors

• nonlinear models ↔ kernel methods

• Optimization algorithms

• convex relaxations

Summary

• SLRA is a generic problem for data modeling.

has many applications in machine learning as well

• In general, SLRA is an NP-complete problem.

search for special cases that have “nice” solutions
e.g., circulant SLRA can be computed by DFT.

• The SLRA framework leads to conceptual unification.

Summary

• Efficient local solution methods

• Different rank representations (kernel, image, AX = B)
lead to equivalent parameter optimization problems.

Computationally, however, these problems are different.

For example, the kernel representation leads to
optimization on a Grassman manifold.

Currently, it is unexplored which parameterization is
computational most beneficial.



Summary

• Effective heuristics, based on convex relaxations

• Practical advantage: one algorithm (and a piece of
software) can solve a variety of problems

• Extensions of SLRA for tensors and nonlinear models

A framework with a potential for much to be done.

Thank you

Weighted low-rank approximation

In the EIV model, LRA is ML assuming cov(vec(D̃)) = I.

Motivation: incorporate prior knowledge W about cov(vec(D̃))

min
D̂

vec⊤(D− D̂)W−1 vec(D− D̂) subject to rank(D̂) ≤ r

Known in chemometrics as maximum likelihood PCA.

NP-hard problem, alternating projections is effective heuristic

Nonnegative low-rank approximation

Constrained LRA arise in Markov chains and image mining

min
D̂

‖D− D̂‖ subject to rank(D̂) ≤ r and D̂ij ≥ 0 for all i , j .

Using an image representation, an equivalent problem is

min
P∈Rm×r , L∈Rr×n

‖D−PL‖ subject to Pik ,Lkj ≥ 0 for all i ,k , j .

Alternating projections algorithm:

• Choose an initial approximation P(0) and set k := 0.

• Solve: L(k) = argminL ‖D−P(k)L‖ subject to L ≥ 0.

• Solve: P(k+1) = argminP ‖D−PL(k)‖ subject to P ≥ 0.

• Repeat until convergence.



Data fitting by a second order model

B(A,b,c) := {d ∈ R
d | d⊤Ad +b⊤d +c = 0}, with A = A⊤

Consider first exact data:

d ∈ B(A,b,c) ⇐⇒ d⊤Ad +b⊤d +c = 0

⇐⇒
〈

col(d ⊗s d ,d ,1)︸ ︷︷ ︸
dext

,col
(

vecs(A),b,c
)

︸ ︷︷ ︸
θ

〉
= 0

{d1, . . . ,dN } ∈ B(θ) ⇐⇒ θ ∈ leftker
[
dext,1 · · · dext,N

]
︸ ︷︷ ︸

Dext

, θ 6= 0

⇐⇒ rank(Dext) ≤ d−1

Therefore, for measured data LRA of Dext.

Notes:
• Special case B an ellipsoid (for A > 0 and 4c < b⊤A−1b).
• Related to kernel PCA

Example: ellipsoid fitting
benchmark example of (Gander et al. 94), called “special data”
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Rank minimization
Approximate modeling is a trade-off between:

• fitting accuracy and

• model complexity

Two possible scalarizations of the bi-objective optimization are:

LRA: minimize misfit under a constraint on complexity

RM: minimize complexity under a constraint (C ) on misfit

min
X

rank(X ) subject to X ∈ C

RM is also NP-hard, however, there are effective heuristics, e.g.,

with X = diag(x), rank(X ) = card(x),

ℓ1 heuristic: min
x

‖x‖1 subject to diag(x) ∈ C


