Example

Notation

w — # of external variables, m — # of inputs, p — # of outputs

 $\mathbb{N} := \{1, 2, \dots\}$ — time axis

 $\mathscr{B}(A, B, C, D)$ — the system defined by $\sigma x = Ax + Bu$ y = Cx + Du

Restriction of the system behavior \mathscr{B} to the interval 1,2,..., t

 $\mathscr{B}_t := \{ w_p \in (\mathbb{R}^w)^t \mid \text{there is } w_f \text{ such that } (w_p, w_f) \in \mathscr{B} \}$

We assume that an input/output partition of the variables is given.

Open-loop data-driven simulation

losed-loop data-driven simulation

The simulation problem

Closed-loop data-driven simulation

Ivan Markovsky

University of Southampton

Classical simulation problem: Given

- system $\mathscr{B} := \mathscr{B}(A, B, C, D)$,
- input $u \in (\mathbb{R}^m)^t$, and
- initial conditions $x_{ini} \in \mathbb{R}^n$,

find the response y of \mathscr{B} to u and ini. cond. x_{ini} .

Data-driven simulation problem: Given

- trajectory $w_d = (u_d, y_d) \in (\mathbb{R}^w)^T$ of \mathscr{B} ,
- input $u \in (\mathbb{R}^m)^t$, and
- initial trajectory $w_{ini} \in (\mathbb{R}^w)^{T_{ini}}, w_{ini} \in \mathscr{B}_{T_{ini}}$,

find the response *y* of \mathscr{B} to *u*, such that $(w_{ini}, (u, y)) \in \mathscr{B}_{T_{ini}+t}$.

Open-loop data-driven simulation

Notes:

- \mathscr{B} is specified implicitly by w_d ,
- the initial condition x_{ini} is specified implicitly by w_{ini}.

Algorithm 1: data-driven simulation, using I/S/O repr.

- 1. identification $w_d \mapsto (A, B, C, D)$
- 2. observer $(w_{ini}, (A, B, C, D)) \mapsto x_{ini}$
- 3. classical simulation $(u, x_{ini}, (A, B, C, D)) \mapsto y$

Can we find y without deriving an explicit representation of \mathscr{B} ?

Notation for Hankel matrices

Given a signal $w = (w(1), \dots, w(T))$ and $t \le T$, define

 $\mathscr{H}_{t}(w) := \begin{bmatrix} w(1) & w(2) & w(3) & \cdots & w(T-t+1) \\ w(2) & w(3) & w(4) & \cdots & w(T-t+2) \\ w(3) & w(4) & w(5) & \cdots & w(T-t+3) \\ \vdots & \vdots & \vdots & & \vdots \\ w(t) & w(t+1) & w(t+2) & \cdots & w(T) \end{bmatrix}$

block-Hankel matrix with t block-rows, composed of w

Example

Basic idea

Assuming that w_d is a trajectory of \mathscr{B} (exact data),

lin. comb. of the columns of $\mathcal{H}_t(w_d)$ are trajectories of \mathcal{B} , *i.e.*,

for all g, $\mathscr{H}_t(w_d)g \in \mathscr{B}_t$

Under additional conditions—persistency of excitation of u_d and controllability of \mathscr{B} —every trajectory can be generated that way.

In what follows, we assume that these conditions are satisfied.

 \implies computing the response of \mathscr{B} to given input and initial conditions from data w_d , requires choosing a suitable g

Open-loop data-driven simulation

a-driven simulation Ex

Construction of responses from data

Problem: Find *y*, such that $(w_{ini}, (u, y)) \in \mathscr{B}$, where w_{ini}, u are given, and \mathscr{B} is implicitly defined by w_d .

There is g, such that

$$\mathscr{H}_{\mathcal{T}_{\mathsf{ini}}+t}(w_{\mathsf{d}})g = (w_{\mathsf{ini}}, (u, y)).$$

The eqns with RHS *y*, define *y*, for given *g*. The others restrict *g*.

Generic data-driven simulation algorithm:

- 1. compute any solution g of the equations with RHS w_{ini} , u
- 2. substitute g in the equations for y

Open-loop data-driven simulation

Closed-loop data-driven simulat

Example

Define

$$U := \mathscr{H}_{\mathcal{T}_{\text{ini}}+t}(u_{d}), \qquad Y := \mathscr{H}_{\mathcal{T}_{\text{ini}}+t}(y_{d})$$

and the partitionings

$$U =: \begin{bmatrix} U_p \\ U_f \end{bmatrix}, \qquad Y =: \begin{bmatrix} Y_p \\ Y_f \end{bmatrix}.$$

Algorithm 2: data-driven simulation

1. compute the least norm solution of

$$\begin{bmatrix} U_{\mathsf{p}} \\ Y_{\mathsf{p}} \\ U_{\mathsf{f}} \end{bmatrix} g = \begin{bmatrix} u_{\mathsf{ini}} \\ y_{\mathsf{ini}} \\ u \end{bmatrix}.$$

2. compute $y := Y_f g$.

Allows to compute an observability matrix \mathscr{O} of \mathscr{B} from data, by finding $n \ge \text{order}(\mathscr{B})$ linearly indep. free responses.

Let ℓ_{max} be an upper bound for the lag of \mathscr{B} and take $T_{ini} = \ell_{max}$.

Algorithm 3: compute an observability matrix Ø

1. compute the least norm solution of

$$\begin{bmatrix} U_{\mathsf{p}} \\ Y_{\mathsf{p}} \\ U_{\mathsf{f}} \end{bmatrix} G = \begin{bmatrix} U_{\mathsf{p}} \\ Y_{\mathsf{p}} \\ 0 \end{bmatrix}$$

2. compute $Y := Y_f G$

3. compute a rank revealing factorization $Y = \mathscr{O}X_{ini}$

Open-loop data-driven simulation	Closed-loop data-driven simulation	

Algorithm 4: compute a basis of $\mathcal{B}_{0,t}$

1. compute the least norm solution of

$$\begin{bmatrix} U_{\mathsf{p}} \\ Y_{\mathsf{p}} \\ U_{\mathsf{f}} \end{bmatrix} \mathbf{G} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathscr{H}_{t,t\mathsf{m}}(u_{\mathsf{d}}) \end{bmatrix}$$

2. compute $Y_0 := Y_f G$

Then image(Y_0) = image ($\mathscr{T}_t(h)$) = $\mathscr{B}_{0,t}$.

Let *h* be the impulse response of \mathcal{B} , and define

$$\mathcal{T}_{t}(h) := \begin{bmatrix} h(0) \\ h(1) & h(0) \\ h(2) & h(1) & h(0) \\ \vdots & \ddots & \ddots & \ddots \\ h(t-1) & \cdots & \cdots & h(1) & h(0) \end{bmatrix}$$

For any $w = \operatorname{col}(u, y) \in \mathscr{B}_t$,

$$y = \mathscr{O}x_{\mathrm{ini}} + \mathscr{T}_t(h)u$$

We can compute a basis for $\mathscr{B}_{0,t} := \operatorname{image} (\mathscr{T}_t(h))$ from data, by finding *t*m lin. indep. zero initial cond. responses.

Open-loop data-driven simulation

data-driven simulation

Example

Special case $w_{ini} = 0$, $u = I\delta$: impulse response

With the same construction we can find the first *t* Markov parameters of \mathcal{B} , which is a system identification method.

Algorithm 5: compute the impulse response

1. compute the least norm solution of

$$\begin{bmatrix} U_{\rm p} \\ Y_{\rm p} \\ U_{\rm f} \end{bmatrix} G = \begin{bmatrix} 0 \\ 0 \\ \operatorname{col}(I_{\rm m}, 0) \end{bmatrix}$$

2. compute $h := Y_f G$

Closed-loop system $\mathscr{B}_{\mathscr{C}}$

The interconnected system plant-controller

is

 $\mathscr{B}_{\mathscr{C}} = \mathscr{B}_{\mathrm{ext}} \cap \mathscr{C}$

where

Open-loop data-driven simulation

$$\mathscr{B}_{\mathrm{ext}} := \{ (\mathbf{r}, \mathbf{w}) \in (\mathbb{R}^{r+w})^{\mathbb{T}} \mid \mathbf{w} \in \mathscr{B} \}$$

Note: Open-loop is a special case when \mathscr{C} does not restrict y

Closed-loop data-driven simulation

Given

- traj. $w_d = (u_d, y_d) = (w_d(1), \dots, w_d(T))$ of an LTI system \mathscr{B} ;
- LTI controller \mathscr{C} , with inputs r, y and output u; and
- reference signal $r_r = (r_r(1), \dots, r_r(T_r));$

find the set of responses w_r of $\mathscr{B}_{\mathscr{C}}$ to the reference signal r_r .

Open-loop data-driven simulation

Closed-loop data-driven simulation

Example

We aim to compute for given w_d , \mathscr{C} , and r_r , the signals w_r , s.t.

Closed-loop data-driven simulation

$$(r_{\mathrm{r}}, w_{\mathrm{r}}) \in \mathscr{B}_{\mathscr{C}} \iff \left\{ egin{array}{l} w_{\mathrm{r}} \in \mathscr{B} \ (r_{\mathrm{r}}, w_{\mathrm{r}}) \in \mathscr{C} \end{array} \iff \left\{ egin{array}{l} \exists \ g, \ \mathrm{s.t.} \ w_{\mathrm{r}} = M(\sigma)g \ R(\sigma)\operatorname{col}(r_{\mathrm{r}}, w_{\mathrm{r}}) = 0 \end{array}
ight.$$

where (assuming \mathcal{B} is controllable)

$$\mathscr{B} =: \operatorname{image}(M(\sigma)) \quad \text{and} \quad \mathscr{C} =: \{(r, w) \mid R(\sigma)\operatorname{col}(r, w) = 0\}.$$

image representation of *B*

kernel representation of &

Assuming that *u* is persistent,

$$w_{\mathrm{r}} = M(\sigma)g \iff w_{\mathrm{r}} = \mathscr{H}_{T_{\mathrm{r}}}(w_{\mathrm{d}})g$$

Polynomial operator \leftrightarrow banded Toeplitz operator Banded upper-triang. Toeplitz matrix, parameterized by $r \in \mathbb{R}^{1 \times r}[z]$

$$\mathcal{T}_{t}(r) := \begin{bmatrix} r_{0} & r_{1} & \cdots & r_{n} & 0 & \cdots & 0 \\ 0 & r_{0} & r_{1} & \cdots & r_{n} & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & r_{0} & r_{1} & \cdots & r_{n} \end{bmatrix}.$$

Association of polynomials of degree $\leq n$ and vectors in \mathbb{R}^{n+1}

$$a(z) = a_0 + a_1 z + \dots + a_n z^n \quad \leftrightarrow \quad \operatorname{col}(a_0, a_1, \dots, a_n)$$

We have

$$a(z)b(z) \hspace{0.1in} \leftrightarrow \hspace{0.1in} \mathscr{T}_{\mathsf{deg}(b)+1}(a)b = \mathscr{T}_{\mathsf{deg}(a)+1}(b)a$$

Example

$$\begin{cases} w_{\rm r} = M(\sigma)g \\ R(\sigma)\operatorname{col}(r_{\rm r}, w_{\rm r}) = 0 \end{cases} \iff \begin{cases} w_{\rm r} = \mathscr{H}_{T_{\rm r}}(w_{\rm d})g \\ \mathscr{T}_{T_{\rm r}}(R)\operatorname{col}(r_{\rm r}, w_{\rm r}) = 0 \end{cases}$$

Let $R =: \begin{bmatrix} R_r & R_w \end{bmatrix}$, where $R_r \in \mathbb{R}^{1 \times r}[z]$ and $R_w \in \mathbb{R}^{1 \times w}[z]$.

$$\mathscr{T}_{T_{r}}(R)\operatorname{col}(r_{r},w_{r})=0 \implies \mathscr{T}_{T_{r}}(R_{w})w_{r}=-\mathscr{T}_{T_{r}}(R_{r})r_{r}$$

$$\underbrace{\mathscr{T}_{T_{\mathrm{r}}}(R_{\mathrm{w}})\mathscr{H}_{T_{\mathrm{r}}}(w_{\mathrm{d}})}_{A}g = \underbrace{-\mathscr{T}_{T_{\mathrm{r}}}(R_{\mathrm{r}})r_{\mathrm{r}}}_{b}$$

Let g_0 be particular solution and *N* be basis for ker(*A*).

$$\mathscr{G} := \{ g_0 + Nz \mid z \in \mathbb{R}^{\operatorname{coldim}(N)} \}$$

and the set of responses w_r of $\mathscr{B}_{\mathscr{C}}$ to r_r is

$$\mathscr{W}_{\mathrm{r}} = \mathscr{H}_{\mathcal{T}_{\mathrm{r}}}(w_{\mathrm{d}})\mathscr{G} = \{\underbrace{\mathscr{H}_{\mathcal{T}_{\mathrm{r}}}(w_{\mathrm{d}})g_{0}}_{w_{\mathrm{r},0}} + \mathscr{H}_{\mathcal{T}_{\mathrm{r}}}(w_{\mathrm{d}})Nz \mid z \in \mathbb{R}^{\mathrm{coldim}(N)}\}$$

	Open-loop data-driven simulation	Closed-loop data-driven simulation	Example
Example			

- $\mathscr{B} = \{ (u, y) \in (\mathbb{R}^2)^{\mathbb{N}} \mid \sigma y y = u \}$
- $\mathscr{C}_{\alpha} = \{ (r, u, y) \mid u = -\alpha(r y) \}$, with $\alpha = 0.5$
- w_d response of $\mathscr{B}_{\mathscr{C}_{0,1}}$ to random r, y(0) = 0; T = 50
- $r_{\rm r}(t) = \begin{cases} 0, & \text{for } t = 1, \dots, 5 \\ 1, & \text{for } t = 6, \dots, 10. \end{cases}$

Kernel representation of \mathscr{C}_{α} is given by $R = \begin{bmatrix} \alpha & 1 & -\alpha \end{bmatrix}$.

 \mathscr{B} is controllable and u_d is persistently exciting of order 25 ($T_r + order(\mathscr{B}) = 11$)

Apply the data-driven closed-loop algorithm to get $w_{r,0}$ and N_w .

Algorithm for closed-loop data-driven simulation

Input:
$$w_{d} \in (\mathbb{R}^{w})^{T}$$
, $R \in \mathbb{R}^{1 \times (r+w)}[z]$, and $r_{r} \in (\mathbb{R}^{r})^{T_{r}}$

- 1: Compute the least-norm solution g_0 of the system of equations $\mathcal{T}_{T_r}(R_w)\mathcal{H}_{T_r}(w_d)g = -\mathcal{T}_{T_r}(R_r)r_r$
- 2: Let $w_{r,0} := \mathscr{H}_{T_r}(w_d)g_0$
- Compute a matrix *N* which columns form a basis for the column span of *𝔅*_{T_r}(*R_w*)*ℋ*_{T_r}(*w*_d)
- 4: Let N_w be a basis for the column span of $\mathscr{H}_{T_r}(w_d)N$

Output: $w_{r,0}$ and N_w

In order to do this, we will show that

- 1. $w_{r,0}$ is a response of $\mathscr{B}_{\mathscr{C}_{\alpha}}$ driven by r_r ,
- 2. N_w is a zero input response of $\mathscr{B}_{\mathscr{C}_{\alpha}}$, and

3. dim
$$(\widehat{\mathscr{W}_r}) = \dim(\mathscr{W}_r)$$
.

Indeed

$$\text{Items 1 and 2} \quad \Longrightarrow \quad \widehat{\mathscr{W}_r} \subseteq \mathscr{W}_r \\$$

and item 3 ensures that equality holds.

Open-loop data-driven simulation

Example

Note that

 $\dim(\mathscr{W}_r) = \operatorname{order}(\mathscr{B}) + \operatorname{order}(\mathscr{C}_{\alpha}) = 1$

and it turns out that

$$\dim(\widehat{\mathscr{W}_{\mathrm{r}}}) = \operatorname{coldim}(N_{\mathsf{w}}) = \operatorname{rank}\left(\mathscr{H}_{T_{\mathrm{r}}}(w_{\mathsf{d}})N\right) = 1$$

so item 3 holds.

Verifying items 1 and 3, we check that

$$(r_{\mathrm{r}}, w_{\mathrm{r},0}) \in \mathscr{B}_{\mathscr{C}_{\alpha}}$$
, $(0, N_{w}) \in \mathscr{B}_{\mathscr{C}_{\alpha}}$

These are state estimation problems. It turns out that

 $y(0) = 0.2937 \rightsquigarrow (r_r, w_{r,0})$ and $y(0) = -0.7746 \rightsquigarrow (0, N_w)$

so items 1 and 2 hold.

Closed-loop data-driven simulation

Thank you