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About me

Low-rank approximation in systems and control

Dynamic low-rank approximation
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My core research interest is low-rank approx.

control theory hantatorsy
Low-Rank
Approximation

system identification

Algorithms, Implementation,
Applications

Second Edition

data-driven signal processing
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Outline

Low-rank approximation in systems and control
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Application area of low-rank approximation

LRA
numerical linear algebra
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Application area of low-rank approximation

LRA
numerical linear algebra

model . model
identification reduction

systems and control

. ) approximate
image deblurring PP L
. ) common divisor
signal processing
computer algebra
dimensionality reduction
machine learning
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Different applications lead to additional
constraints, besides the rank constraint

non-negativity of data and approximation
Sylvester structure <« approximate GCD

Hankel structure <« LTIl dynamical systems
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More recently, my interest is
direct data-driven filtering and control

objective: bypass model identification

é)
model g

data-driven

observed design problem _ prediction
data "~ control

approach: structured low-rank matrix
approximation and completion
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Academic example: time-series forecasting
~ Hankel low-rank matrix completion

given: y(1),...,y(?) find: y(t+1),...,y(2f)
N—— N v
"past" data "future" samples

given data matrix completion problem prediction
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Why Hankel structured low-rank matrix?

y is sum of n damped-exponentials

i
[ y(1) y2) - y(T—n) |
y(2) y@) - y(T—n+1)
rank : : _ <n
y(n+1) y(n+2) - y(T) |

Hankel structured matrix 7, 1(y)

11/86



Sum-of-damped-exponentials signals are
solutions of linear constant coefficient ODE

Y = Qqexpy, +--- + Qpexp, exp,(t) := 2!
)

poy +p1oy+---+ppc’’y =0 (oy)(t):=y(t+1)
)

y =Cx, ox = Ax x(t) € R" — state
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The solution set of linear constant coefficient
ODE is linear time-invariant (LTI) system

n-th order autonomous LTI system

#B.={y=Cx|ox=Ax, x(0)eR"}

dim % = n — complexity of #

%n — LTI systems with order < n
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Model identification is equivalent to
Hankel structured low-rank approximation

minimize overyand # ||y —J|
subjectto y € % €.%,
()
minimize overy |ly—Y|
subjectto rank.,.1(y) <n
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Three main solution approaches

local optimization
convex relaxations

subspace methods
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Outline

Dynamic low-rank approximation
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Dynamic low-rank approximation

problem formulation
> given A(t) e R™" for t € Ry,
> find miny ||A(t) — X(t)]|, for all t e Ry

comment

> without extra knowledge the problem decouples
> extra knowledge: model defining the evolution of A

example

> §A(t) = F(A(1), A(0) = A
» with given F : R™*" — RM*N
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Ideas for collaboration

discrete-time DLRA

more general model (open system)

&S(t) = F(S(t)) + G(U(1)), S(0)= S
A(t) = C(S(t)) +D(U(t))

» U — input or disturbance
» S — state (unobserved)

unknown model (F, G, C, D not given)
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Outline

Behavioral approach

Trajectory interpolation and approximation
Generalization for nonlinear systems
Pedagogical Example: Free fall prediction
Case study 1: Dynamic measurement

Case study 2: Direct data-driven fault detection

Case study 3: Frequency response estimation
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Outline

Behavioral approach
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We view systems as sets of signals

w € (R9N — g-variate discrete-time signal

% C (RN — g-variate dynamical model

> linear — Z is a linear subspace of (R%)N
> time-invariant — invariant under shifts: (ocw)(t) :== w(t+1)

w € % means “w is a trajectory of %"

22/86



In practice, we deal with finite signals

restriction of w / % to finite horizon [1, T]

wir:=(w(1),...,w(T)), DBlr={w|r|we B}
for wy = (Wd(1),...,Wd(Td)) and1 < T <1y

Hr(ws) = [(c"Wo)l7 (owa)lr -+ (074 Tway)lr]

Wy € #|1, — “exact data”
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The set of linear time-invariant systems .Z
has structure characterized by integers

m — number of inputs
n — order (= minimal state dimension)
¢ — lag (= observability index)

<Z(m.e,ny — bounded complexity LTI systems
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Nonparametric representation of
LTI system’s finite-horizon behavior

assumptions:

> wy € #|1, — exact offline data
> P € L ms.n — bounded complexity LTI system
» informative data, for T > £(A)

rank 1 (wy) = mT +n (GPE)

then, the data-driven representation holds
image 777 (wy) = S|t (DDR)
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Outline

Trajectory interpolation and approximation
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Trajectory interpolation and approximation

I. Markovsky and F. Dérfler. Data-driven dynamic interpo-
lation and approximation. Automatica, 135:110008, 2022.
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https://imarkovs.github.io/publications/ddint.pdf
https://imarkovs.github.io/publications/ddint.pdf

Generic data-driven problem:
trajectory interpolation/approximation

“data trajectory” wy € 4|7,
given: and elements  w|,

given

of a trajectory we Bt

(wl,

'given

selects the elements of w, specified by /yven)
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Generic data-driven problem:
trajectory interpolation/approximation

“data trajectory” wy € 4|7,
given: and elements  w|,

given

of a trajectory we Bt

(W]

given

selects the elements of w, specified by /yven)

minimize over w ||w|,,

i - iven Wl/ iven ||
aim: ] . 9 9
subjectto we A|r

W = A7 (Wa) (A7 (W)l jen)  Wligen  (SOL)
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Special cases

simulation

» given data: initial condition and input
» to-be-found: output (exact interpolation)
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Special cases

simulation

» given data: initial condition and input
» to-be-found: output (exact interpolation)

smoothing

> given data: noisy trajectory
» to-be-found: />-optimal approximation

tracking control

> given data: to-be-tracked trajectory
> to-be-found: />-optimal approximation
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Generalizations

multiple data trajectories w,..., w}

Bl ~image | A (w)) - A(w)

- /

P
mosaic-Hankel matrix
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Generalizations

multiple data trajectories w,..., w}

-

Bl ~image | A (w)) - A(w)

~
mosaic-Hankel matrix

Wy not exact / noisy

maximume-likelihood estimation

~ Hankel structured low-rank approximation/completion
nuclear norm and ¢{-norm relaxations

~» nonparametric, convex optimization problems

nonlinear systems

results for special classes of nonlinear systems:
Volterra, Wiener-Hammerstein, bilinear, . ..
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Generalization for nonlinear systems
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Generalization for nonlinear systems

I. Markovsky. Data-driven simulation of generalized bilin-
ear systems via linear time-invariant embedding. IEEE
Trans. Automat. Contr., 68:1101-1106, 2023.

I. Markovsky and K. Usevich. Nonlinearly structured low-
rank approximation. In Low-Rank and Sparse Modeling for
Visual Analysis, pages 1-22. Springer, 2014.
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Kernel representation
LTIl systems

B =kerR(c):={w|R(c)w=0}
={w|Ryw+Rijow+---+Roc‘w=0}

nonlinear time-invariant system
%’:{W | Ff(\w,cw,...,ofvg) :0}

X

linearly parameterized R

x) =Y 6i9i(x) =07 ¢(x),

¢ — model structure
® — parameter vector
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Polynomial SISO NARX system

%(9):{W: (V] ]y:f(u,ow,...,olw)}

split f into 1st order (linear) and other (nonlinear) terms
F(x) = 6 X+ 6 9ni(X)

¢n — vector of monomials

34/86



Special cases

Hammerstein .
0uX) = [9u(t) 9u(ou) - 9u(c'v)|

FIR Volterra

Oni(X) = 0ni(xy), where x, :=vec(u,ou,...,c"

u).
bilinear

-1

oni(X) =Xy ®xy, wWhere x, :=vec(y,cy,...,c 'y)

generalized bilinear
Oni(X) = ‘Pu,nl(xu) & Xy
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LTI embedding of polynomial NARX system

Fox(0) = { We = [dn] | o'y = O] x+ 6t |
define:  TMyWext:=w and [y Wext 1= Up|
fact:  A(0) C Ny PBext(6), moreover

4%(9) — nw{Wext i~ %ext(e) | rIUn| Wext — ¢n|(x)}
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FIR Volterra data-driven simulation

given
data wy = (ug, yq) of lag-¢ FIR Volterra system £
¢ — system’s model structure

assume |ID conditions for Zey hold

then, |, = image M, where

Hiwg) 1 W
(0" ug) u

M(Wini, u) := c%ﬂL(GZYd) \‘ «%(‘Pnl(xud)) J {¢n|(XUini)J
%(Ggq)nl(xud)) Oni(Xu)

N

-~

9
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proof

H(wg)
A (0'ug)

%(‘Pnl(xud))
%_(G%m(xud))

H(0'yq)

}B1
ez

}B3

B1 constraint on g, such that win A (U, 71 (0°Yq)g) € Bext

B2 constraint un = ¢ni(X) <= Pext = #4(0)

B3 defines the to-be-computed output y

generalized bilinear models

also tractable because B2: u, = ¢ (x) is still linear in y
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Outline

Pedagogical Example: Free fall prediction
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The goal is to predict free fall trajectory

object with mass m, falling in gravitational field
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The goal is to predict free fall trajectory

object with mass m, falling in gravitational field

» w — position
> v:=w — velocity
» w(0),v(0) — initial condition

task: given initial condition, find the trajectory w

1. physics — parametric model
» model-based approach: 2. model parameter estimation
3. model + ini. conditions — w

> data-driven approach: data w},...,w} +ini. cond. — w
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Modeling from first principles yields
affine time-invariant dynamical system

second law of Newton + the law of gravity
mw=m[ Qg ]+f, w(0)=wp and w(0) = Vi,

> 9.81 — gravitational constant
» f= —yw — force due to friction in the air

41/86



Modeling from first principles yields
affine time-invariant dynamical system

second law of Newton + the law of gravity
mw=m[ Qg ]+f, w(0)=wp and w(0) = Vi,
> 9.81 — gravitational constant

» f=—yw — force due to friction in the air

1st order equation
x=Ax, w=Cx, x(0)=Xpn;

> state x .= (W1 , W1 , Wo, Wg, —981)
> initial state Xini := (Wini 1, Vini.1, Wini.2, Vini 2, —9.81)
» A, C — model parameters (depend on m and y)
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Data-driven free fall prediction method

data: N, discrete-time trajectories W(] ey Wé\l
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Data-driven free fall prediction method

data: N, discrete-time trajectories w,..., w}’

rank [w(] wé\’] =5 “informativity" condition

algorithm for data-driven prediction:

wi(l) - wg'(1) w(1)
1. solve [wl(2) - wl(2)|g=|w(2)
wi(3) - wf(3) w(3)

——r
ini. cond.
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Data-driven free fall prediction method

data: N, discrete-time trajectories w,..., w}’

rank [w(] wé\’] =5 “informativity" condition

algorithm for data-driven prediction:

[w(}m dem] {W(U]
1. solve [wl(2) - wl(2)|g=|w(2)
) o wd'(3) w(3)

——r
ini. cond.

2. define w:= [Wc] Wﬂg
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Summary: prediction of free fall trajectory

first principles modeling
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Summary: prediction of free fall trajectory

first principles modeling

» use Newton’s 2nd law, law of gravity, and friction
» and model parameters m, y, gravitational constant
> lead to autonomous affine time-invariant system

data-driven approach

> bypasses the knowledge of the physical laws
» and prior knowledge or estimation of model parameters
» no hyper-parameters to tune
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Case study 1: Dynamic measurement
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A textbook problem

D. G. Luenberger, Introduction to Dynamical Systems:
Theory, Models and Applications. John Wiley, 1979.

“A thermometer reading 21°C, which has been
inside a house for a long time, is taken outside.
After one minute the thermometer reads 15°C;
after two minutes it reads 11°C. What is the out-
side temperature?”
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A textbook problem

D. G. Luenberger, Introduction to Dynamical Systems:
Theory, Models and Applications. John Wiley, 1979.

“A thermometer reading 21°C, which has been
inside a house for a long time, is taken outside.
After one minute the thermometer reads 15°C;
after two minutes it reads 11°C. What is the out-
side temperature?”

According to Newton’s law of cooling, an object of higher
temperature than its environment cools at a rate that is
proportional to the difference in temperature.
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Main idea: predict the steady-state value
from the first few samples of the transient

textbook problem:

> 1st order dynamics
» 3 noise-free samples
> batch solution
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Main idea: predict the steady-state value
from the first few samples of the transient

textbook problem:

> 1st order dynamics
» 3 noise-free samples
> batch solution

generalizations:

> n>1 order dynamics
» T > 3 noisy (vector) samples
> recursive computation

implementation and practical validation
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Thermometer: first order dynamical system

environmental heat transfer thermometer’s
_ —_— :
temperature u reading y
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Thermometer: first order dynamical system

environmental heat transfer thermometer’s
_ —_— :
temperature u reading y

measurement process: Newton’s law of cooling
y=a(i-y)

heat transfer coefficient a> 0
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Scale: second order dynamical system

=M
1]

iy(t)

d k

Va4

d _
(M+m)ay+ dy+ky =gu
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The measurement process dynamics
depends on the to-be-measured mass

measured mass

time
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Dynamic measurement: take into account
the dynamical properties of the sensor

to-be-measured measurement process measured
variable u variable y

assumption 1: measured variable is constant u(t) = u
assumption 2: the sensor is stable LTI system

assumption 3: sensor’'s DC-gain =1 (calibrated sensor)
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The data is generated from LTI system
with output noise and constant input

Ya. =y + €
~~

v \,—/
measured true measurement
data value noise
y = u + Yo
~~~ ~ <~
true steady-state transient
value value response

assumption 4: e is a zero mean, white, Gaussian noise
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using a state space representation of the sensor

x(t+1)=Ax(t), x(0) = Xo
Yo(t) = cx(t)

we obtain
Ya(1) 1 c e(1)
yd(2) 1 N CA 6(2)
. - . U+ . X0 T .
ya(T) 1 cAT-1 e(T)

N—— N N—— ——
Yd 17 % e
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Maximume-likelihood model-based estimator

]%}’d

minimize overy, U, Xo |lyq— Yl

|-s

recursive implementation ~» Kalman filter

solve approximately

X))

o

standard least-squares problem

u

subject to [17 ﬁr] <

o
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Subspace model-free method

goal: avoid using the model parameters (A, C, 0'1)

in the noise-free case, due to the LTI assumption,

Ay(t) = y(t)—y(t=1) = yo(t) = yo(t—1)
satisfies the same dynamics as yy, i.e.,

x(t+1)=Ax(1), x(0) = Ax
Ay(t) = cx(t)
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Hankel matrix—construction of multiple
“short” trajectories from one “long” trajectory

[ Ay(1) Ay(2) - Ay(n) ]
Ay(2) Ay(3) - Ay(n+1)
A (0y) = | Ay(@3) Ay(4) -+ Ay(n+2)

AY(T—n) AY(T-n) - Ay(T-1)
fact: if rank.7Z(Ay) = n, then

image ¢r_, =image 7 (Ay)
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model-based equation

[1T ﬁr] ;;] =Yy
data-driven equation
u
[1 T-n %”(Ay)] 4 =Ylr-n (%)

subspace method

solve (x) by (recursive) least squares
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Empirical validation

dashed — true parameter value u
solid — true output trajectory y
dotted — naive estimate U= Gty
dashed — model-based Kalman filter
bashed-dotted — data-driven method

estimation error: e:= L YN |o— U]

(for N = 100 Monte-Carlo repetitions)
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Simulated data of dynamic cooling process

06 -
—~
0.4}
o

0.2t

0.8f

0~.

e LT s s A e

e(t) — 0 as t — « at different rates

best is the Kalman filter (maximum likelihood estimator)
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Simulation with time-varying parameter
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Proof of concept prototype
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Results in real-life experiment

10 20 30 40
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Summary

dynamic measurement

steady-state value prediction
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Summary

dynamic measurement

steady-state value prediction

the subspace method is applicable for

» high order dynamics
> noisy vector observations
» online computation
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Summary

dynamic measurement

steady-state value prediction

the subspace method is applicable for

» high order dynamics
> noisy vector observations
» online computation

future work / open problems

» numerical efficiency
» real-time uncertainty quantification
» generalization to nonlinear systems
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Outline

Case study 2: Direct data-driven fault detection
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The problem considered is to detect
abnormal operation based on observed data

prior information about data-generating system
model-based vs direct data-driven methods

observed data collected offline and online

» dedicated experiment — known excitation signal
> “normal” operation — unknown excitation signal
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We consider three data collection scenarios

free response / transient data
forced response with known excitation

forced response with unknown excitation
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Recall the nonparametric representation
of an LTI system’s finite-horizon behavior

assumptions:

> wy € #|1, — exact offline data

> % € 2L men — bounded complexity LTI system

» for T > £(A), rank 77 (wq) = mT + n— informative data
then, the data-driven representation holds

image 777 (wy) = A1 (DDR)
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The fault detection criterion is the distance
from online data w to system’s behavior %

dist(w,Z) := mingc g, W — l

under the assumptions, using (DDR), we have

dist(w, ) = || — A (we) A5 (we)w]

direct data-driven computation of the distance
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The fault detection method
has offline and online steps

offline: using wy, find orthonormal basis B for#|r

online: compute and threshold

dist(w, %) = ||(I- BB )w|

with noisy data wy, the offline step is

» SVD truncation of .77 (wy)
> structured low-rank approximation of .77 (wy)
» model identification, using wy
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With unobserved excitation signal e,
prior knowledge about e is needed

zero-mean white Gaussian (disturbance)
deterministic signal ~~ input estimation problem

the model describes Wyt == [ & ]

» e — unobserved signal
» w — observed signal
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Finding e is a linear least-norm problem

given a model Hey; that describes Weyt :=[§]

Bin = argming ez, €l

exact recovery g, = e is not possible
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Deterministic input estimation
is linear least-squares problem

Me / My — projection of weyt ;=[] on e/ w
given, @exth = image Bext (basis for éexth)

e:= I_|eBext(|_|wBext)+W
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Fault detection method with unobserved input
generalized distance measure:

dist(w, Bext) := min  ||w—w||
(e,W)G%h'

offline: using (ey, Wy), find basis Bext for Bext| T

online: compute and threshold

dist(w, Bext) = H(I_ BWBMT/)WH

72/86



Validation on vibrating beam with crack
subject to unobserved disturbance force

6 m

(0, )

|12

k - 4

data | crack | lossof | type of

wk | length | stiffness | damage
0 0.0m 0% | none

1 0.7m 100% | severe

2 0.7m 36% | medium

3 0.2m 100% | medium
4 0.2m 36% | mild
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observed displacements left / right of the crack
hyper-parameters: T =100,/=2,n=6

offline computation: %% using w¥

online computation: dp x := dist(w?, %)

noise with standard deviation s added to w®°
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Distances from nominal data to
models as function of noise level

12
10+
8t Z
- -z ——i = 0 — nominal
S 6 A5 --=i=1—fault 1
A _,-:""" ----- i=2 — fault 2
=_=_=_=.=-:‘= 2 —e—i =3 — fault 3
ot ——i =4 — fault 4
0 N 1
0 0.05 0.1
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Comments

the beam behaves like 6th order LTI system
most severe crack is not hardest to detect

effect of the sensor location
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Outlook

assumptions:

» bounded complexity LTI system
» hyper-parameters: horizon T and lag ¢
> different ways to deal with noise in offline data wy

advantages:

> representation invariant distance measure
» can deal with unobserved disturbance signal
» cheap to compute online and simple to implement

other applications
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Outline

Case study 3: Frequency response estimation
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Problem formulation

given: “data” trajectory (ugy, yq) € %#|1,and zc C

find: H(z), where H is the transfer function of 4

I. Markovsky and H. Ossareh. Finite-data nonparametric

frequency response evaluation without leakage. Automat-
ica, 159:111351, 2024.
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https://imarkovs.github.io/publications/frest.pdf
https://imarkovs.github.io/publications/frest.pdf
https://imarkovs.github.io/publications/frest.pdf

Data-driven solution
we are interested in trajectory

u exp,
W= |:}’:| - [I:Iexpz] €%, Wwhere esz(t) —

using the data-driven representation, we have

Hi(ug)| _ |7
[%i(yd)] =gl where z .= LL]
which leads to the system
0 H(uw)| |H| _ |2
= SYS
[—z Hi(ya)| |9 0] (SYS)
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Solution method: solve (SYS) for H

with L > ¢+1, H= H(2)

without prior knowledge of ¢
L=Lna:=[(Tg+1)/3]

trivial generalization to

> multivariable systems
> multiple data trajectories { w],...,w}'}
> evaluation of H(z) at multiple points in { z;,...,zx } € CK
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Comparison with classical nonparametric
frequency response estimation methods

ignored initial/terminal conditions ~- leakage
DFT grid ~-» limited frequency resolution

improvements by windowing and interpolation

» the leakage is not eliminated
> the methods involve hyper-parameters
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Generalization of (SYS) to noisy data

preprocessing: rank-mL + n approx. of 77 (wy)

» hyper-parameters L>/¢+1 and n
» if the approximation preserves the Hankel structure,
the method is maximum-likelihood in the EIV setting

regularization with || g||4

> hyper-parameter: the 1-norm regularization parameter

regularization with the nuclear norm of 7 (wy)

» hyper-parameters: L and the regularization parameter
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Matlab implementation

function Hh = dd_frest (ud, vyd, z, n)

L=n+1; t = (1:L)";

m = size(ud, 2); p = size(yd, 2);

%% preprocessing by low-rank approximation
H [moshank (ud, L); moshank(yd, L)];

[

g, ~, ~] = svd(H); P =U(:, 1:m » L + n);

%% form and solve the system of equations

for k = 1:length(z)
A = [[zeros(mxL, p); —-kron(z(k)."t, eye(p))] PI;
hg = A \ [kron(z(k)."t, eye(m)); zeros(pxL, m)];
Hh(:, :, k) = hg(l:p, :);

end

> effectively 5 lines of code
» MIMO case, multiple evaluation points
» L =n+1inorder to have a single hyper-parameter
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Example: EIV setup with 4th order system

dd_frest is compared with

» ident — parametric maximum-likelihood estimator
> spa — nonparameteric estimator with Welch filter

4
20
—exact
- - -proposed
o | N - ident
= ~
=N =Y —exact
% - - -proposed
----- ident
---------- spa
-4
3.1416 0 3.1416
frequency frequency
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Monte-Carlo simulation over different
noise levels and number of samples

14 14
- - -proposed & - - -proposed
""" ident $ --—-—ident
Spa
xe P 2 spa
$ I O
- -
& 2
) 3
s (s
0 10 100 1000
noise level, % number of samples Ty

ez:=100% - ’(|Hz’_|i'\lzm / ‘nz‘
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