Low-Rank Approximation: Theory, Algorithms, and Applications

Ivan Markovsky

Outline

About me

Low-rank approximation in systems and control

Dynamic low-rank approximation

Outline

About me

Low-rank approximation in systems and control

Dynamic low-rank approximation

My background is mathematical engineering

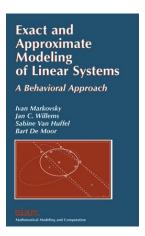
2000-2005 PhD @ KUL

2007–2012 University of

Southampton

2012–2022 Free Univ. Brussel

2022- CIMNE, Barcelona



My core research interest is low-rank approx.

control theory

system identification

data-driven signal processing

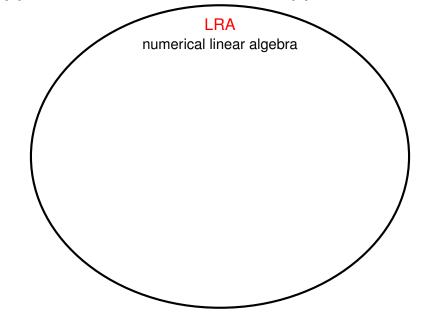


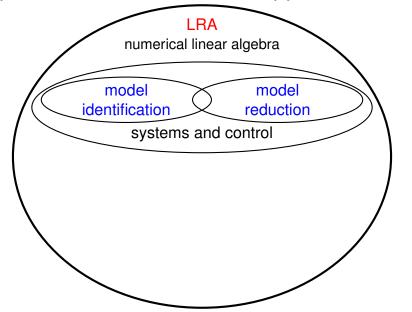
Outline

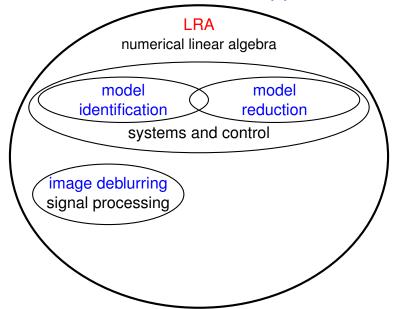
About me

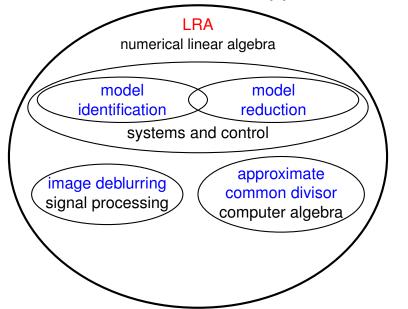
Low-rank approximation in systems and control

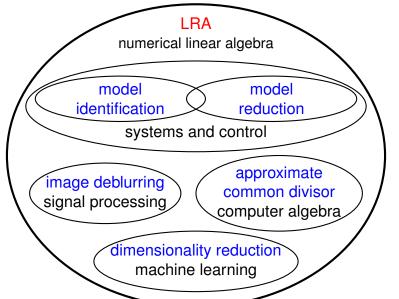
Dynamic low-rank approximation











Different applications lead to additional constraints, besides the rank constraint

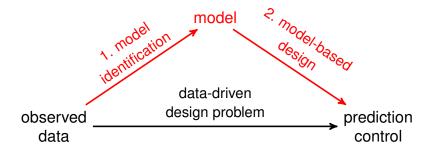
non-negativity of data and approximation

Sylvester structure ← approximate GCD

Hankel structure → LTI dynamical systems

More recently, my interest is direct data-driven filtering and control

objective: bypass model identification



approach: structured low-rank matrix approximation and completion

Academic example: time-series forecasting → Hankel low-rank matrix completion

given:
$$\underline{y(1), \dots, y(t)}$$
 find: $\underline{y(t+1), \dots, y(2t)}$ "future" samples

matrix completion problem

given data

prediction

Why Hankel structured low-rank matrix?

y is sum of n damped-exponentials

rank
$$\begin{bmatrix} y(1) & y(2) & \cdots & y(T-n) \\ y(2) & y(3) & \cdots & y(T-n+1) \\ \vdots & \vdots & & \vdots \\ y(n+1) & y(n+2) & \cdots & y(T) \end{bmatrix} \le n$$

Hankel structured matrix $\mathcal{H}_{n+1}(y)$

Sum-of-damped-exponentials signals are solutions of linear constant coefficient ODE

$$y = \alpha_1 \exp_{Z_1} + \dots + \alpha_n \exp_{Z_n}$$
 $\exp_{Z}(t) := z^t$
 \updownarrow
 $p_0 y + p_1 \sigma y + \dots + p_n \sigma^n y = 0 \quad (\sigma y)(t) := y(t+1)$
 \updownarrow
 $y = Cx, \ \sigma x = Ax$ $x(t) \in \mathbb{R}^n$ — state

The solution set of linear constant coefficient ODE is linear time-invariant (LTI) system

n-th order autonomous LTI system

$$\mathscr{B} := \{ y = Cx \mid \sigma x = Ax, \ x(0) \in \mathbb{R}^n \}$$

 $\dim \mathcal{B} = n$ — complexity of \mathcal{B}

 \mathcal{L}_n — LTI systems with order $\leq n$

Model identification is equivalent to Hankel structured low-rank approximation

minimize over
$$\widehat{y}$$
 and $\widehat{\mathscr{B}} \quad \|y - \widehat{y}\|$ subject to $\widehat{y} \in \widehat{\mathscr{B}} \in \mathscr{L}_n$
$$\updownarrow$$
 minimize over $\widehat{y} \quad \|y - \widehat{y}\|$ subject to $\operatorname{rank} \mathscr{H}_{n+1}(\widehat{y}) \leq n$

Three main solution approaches

local optimization

convex relaxations

subspace methods

Outline

About me

Low-rank approximation in systems and control

Dynamic low-rank approximation

Dynamic low-rank approximation

problem formulation

- ▶ given $A(t) \in \mathbb{R}^{m \times n}$, for $t \in \mathbb{R}_+$,
- ▶ find $\min_X \|A(t) X(t)\|$, for all $t \in \mathbb{R}_+$

comment

- without extra knowledge the problem decouples
- extra knowledge: model defining the evolution of A

example

- with given $F: \mathbb{R}^{m \times n} \to \mathbb{R}^{m \times n}$

Ideas for collaboration

discrete-time DLRA

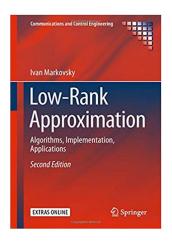
more general model (open system)

$$rac{ ext{d}}{ ext{d}\,t}S(t) = m{F}ig(S(t)ig) + m{G}ig(U(t)ig), \quad S(0) = m{S}_{\mathsf{ini}} \ m{A}(t) = m{C}ig(S(t)ig) + m{D}ig(U(t)ig)$$

- ► U input or disturbance
- S state (unobserved)

unknown model (F, G, C, D not given)

References



Data-Driven Control Based on the Behavioral Approach

FROM THEORY TO APPLICATIONS IN POWER SYSTEMS

IVAN MARKOVSKY . LINBIN HUANG . and FLORIAN DÖRFLER .

Outline

Behavioral approach

Trajectory interpolation and approximation

Generalization for nonlinear systems

Pedagogical Example: Free fall prediction

Case study 1: Dynamic measurement

Case study 2: Direct data-driven fault detection

Case study 3: Frequency response estimation

Outline

Behavioral approach

Trajectory interpolation and approximation

Generalization for nonlinear systems

Pedagogical Example: Free fall prediction

Case study 1: Dynamic measurement

Case study 2: Direct data-driven fault detection

Case study 3: Frequency response estimation

We view systems as sets of signals

$$w \in (\mathbb{R}^q)^{\mathbb{N}}$$
 — q -variate discrete-time signal

$$\mathscr{B} \subset (\mathbb{R}^q)^{\mathbb{N}}$$
 — q-variate dynamical model

- ▶ linear \mathscr{B} is a linear subspace of $(\mathbb{R}^q)^{\mathbb{N}}$
- ▶ time-invariant invariant under shifts: $(\sigma w)(t) := w(t+1)$

 $w \in \mathcal{B}$ means "w is a trajectory of \mathcal{B} "

In practice, we deal with finite signals

restriction of w / \mathcal{B} to finite horizon [1, T]

$$w|_T := (w(1), \dots, w(T)), \quad \mathscr{B}|_T := \{w|_T \mid w \in \mathscr{B}\}$$

for
$$w_d = (w_d(1), \dots, w_d(T_d))$$
 and $1 \le T \le T_d$

$$\mathscr{H}_{T}(w_{d}) := \begin{bmatrix} (\sigma^{0}w_{d})|_{T} & (\sigma^{1}w_{d})|_{T} & \cdots & (\sigma^{T_{d}-T}w_{d})|_{T} \end{bmatrix}$$

$$w_d \in \mathscr{B}|_{T_d}$$
 — "exact data"

The set of linear time-invariant systems $\mathscr L$ has structure characterized by integers

m — number of inputs

n — order (= minimal state dimension)

 ℓ — lag (= observability index)

 $\mathscr{L}_{(m,\ell,n)}$ — bounded complexity LTI systems

Nonparametric representation of LTI system's finite-horizon behavior

assumptions:

- $ightharpoonup w_d \in \mathscr{B}|_{T_d}$ exact offline data
- ▶ $\mathscr{B} \in \mathscr{L}_{(m,\ell,n)}$ bounded complexity LTI system
- ▶ informative data, for $T \ge \ell(\mathcal{B})$

$$\operatorname{rank} \mathscr{H}_T(w_d) = mT + n \tag{GPE}$$

then, the data-driven representation holds

image
$$\mathcal{H}_T(w_d) = \mathcal{B}|_T$$
 (DDR)

Outline

Behavioral approach

Trajectory interpolation and approximation

Generalization for nonlinear systems

Pedagogical Example: Free fall prediction

Case study 1: Dynamic measurement

Case study 2: Direct data-driven fault detection

Case study 3: Frequency response estimation

Trajectory interpolation and approximation

I. Markovsky and F. Dörfler. Data-driven dynamic interpolation and approximation. Automatica, 135:110008, 2022.

Generic data-driven problem: trajectory interpolation/approximation

given:

 $(w|_{I_{given}}$ selects the elements of w, specified by I_{given})

Generic data-driven problem: trajectory interpolation/approximation

given: "data trajectory" $w_d \in \mathcal{B}|_{T_d}$ and elements $w|_{I_{given}}$ of a trajectory $w \in \mathcal{B}|_{T_d}$

 $(w|_{I_{\text{given}}}$ selects the elements of w, specified by $I_{\text{given}})$

aim: minimize over $\widehat{w} \| w|_{I_{given}} - \widehat{w}|_{I_{given}} \|$ subject to $\widehat{w} \in \mathcal{B}|_T$

Generic data-driven problem: trajectory interpolation/approximation

given:

 $\begin{array}{ll} \text{``data trajectory''} & w_{\mathsf{d}} \in \mathscr{B}|_{\mathcal{T}_{\mathsf{d}}} \\ \text{and elements} & w|_{\mathit{J}_{\mathsf{given}}} \\ \text{of a trajectory} & w \in \mathscr{B}|_{\mathcal{T}} \\ \end{array}$

 $(w|_{I_{given}}$ selects the elements of w, specified by I_{given})

aim: minimize over $\widehat{w} \| w|_{I_{\text{given}}} - \widehat{w}|_{I_{\text{given}}} \|$ subject to $\widehat{w} \in \mathcal{B}|_{T}$

$$\widehat{\mathbf{w}} = \mathscr{H}_T(\mathbf{w}_{\mathsf{d}}) (\mathscr{H}_T(\mathbf{w}_{\mathsf{d}})|_{I_{\mathsf{qiven}}})^+ \mathbf{w}|_{I_{\mathsf{qiven}}}$$
 (SOL)

Special cases

simulation

- given data: initial condition and input
- to-be-found: output (exact interpolation)

Special cases

simulation

- given data: initial condition and input
- to-be-found: output (exact interpolation)

smoothing

- given data: noisy trajectory
- ▶ to-be-found: ℓ_2 -optimal approximation

Special cases

simulation

- given data: initial condition and input
- to-be-found: output (exact interpolation)

smoothing

- given data: noisy trajectory
- ▶ to-be-found: ℓ_2 -optimal approximation

tracking control

- given data: to-be-tracked trajectory
- ▶ to-be-found: ℓ_2 -optimal approximation

Generalizations

multiple data trajectories w_d^1, \ldots, w_d^N

$$\widehat{\mathscr{B}}|_L = \text{image} \underbrace{\left[\mathscr{H}_L(w_d^1) \cdots \mathscr{H}_L(w_d^N)\right]}_{\text{mosaic-Hankel matrix}}$$

Generalizations

multiple data trajectories
$$w_d^1, \ldots, w_d^N$$

$$\widehat{\mathscr{B}}|_L = \text{image} \underbrace{\left[\mathscr{H}_L(w_d^1) \cdots \mathscr{H}_L(w_d^N)\right]}_{\text{mosaic-Hankel matrix}}$$

w_d not exact / noisy

maximum-likelihood estimation

- \leadsto Hankel structured low-rank approximation/completion nuclear norm and ℓ_1 -norm relaxations
- → nonparametric, convex optimization problems

Generalizations

multiple data trajectories
$$w_d^1, \dots, w_d^N$$

$$\widehat{\mathscr{B}}|_L = \text{image} \underbrace{\left[\mathscr{H}_L(w_d^1) \cdots \mathscr{H}_L(w_d^N)\right]}_{\text{mosaic-Hankel matrix}}$$

w_d not exact / noisy

maximum-likelihood estimation

- \leadsto Hankel structured low-rank approximation/completion nuclear norm and ℓ_1 -norm relaxations
- → nonparametric, convex optimization problems

nonlinear systems

results for special classes of nonlinear systems: Volterra, Wiener-Hammerstein, bilinear, ...

Outline

Behavioral approach

Trajectory interpolation and approximation

Generalization for nonlinear systems

Pedagogical Example: Free fall prediction

Case study 1: Dynamic measurement

Case study 2: Direct data-driven fault detection

Case study 3: Frequency response estimation

Generalization for nonlinear systems

I. Markovsky. Data-driven simulation of generalized bilinear systems via linear time-invariant embedding. IEEE Trans. Automat. Contr., 68:1101–1106, 2023.

I. Markovsky and K. Usevich. Nonlinearly structured low-rank approximation. In Low-Rank and Sparse Modeling for Visual Analysis, pages 1–22. Springer, 2014.

Kernel representation

LTI systems

$$\begin{split} \mathscr{B} &= \ker R(\sigma) := \left\{ w \mid R(\sigma)w = 0 \right\} \\ &= \left\{ w \mid R_0w + R_1\sigma w + \dots + R_\ell\sigma^\ell w = 0 \right\} \end{split}$$

nonlinear time-invariant system

$$\mathscr{B} = \left\{ w \mid R(\underbrace{w, \sigma w, \dots, \sigma^{\ell} w}_{x}) = 0 \right\}$$

linearly parameterized R

$$R(x) = \sum \theta_i \phi_i(x) = \theta^{\top} \phi(x), \quad \begin{array}{ccc} \phi & -- & \text{model structure} \\ \theta & -- & \text{parameter vector} \end{array}$$

Polynomial SISO NARX system

$$\mathscr{B}(\theta) = \left\{ w = \begin{bmatrix} u \\ y \end{bmatrix} \mid y = f(u, \sigma w, \dots, \sigma^{\ell} w) \right\}$$

split f into 1st order (linear) and other (nonlinear) terms

$$f(x) = \theta_{\mathsf{li}}^{\top} x + \theta_{\mathsf{nl}}^{\top} \phi_{\mathsf{nl}}(x)$$

 ϕ_{nl} — vector of monomials

Special cases

Hammerstein

$$\phi_{\mathsf{nl}}(x) = egin{bmatrix} \phi_{\mathsf{u}}(x) & \phi_{\mathsf{u}}(\sigma u) & \cdots & \phi_{\mathsf{u}}(\sigma^\ell u) \end{bmatrix}^ op$$

FIR Volterra

$$\phi_{\mathsf{nl}}(x) = \phi_{\mathsf{nl}}(x_u), \quad \mathsf{where} \ x_u := \mathsf{vec}(u, \sigma u, \dots, \sigma^\ell u).$$

bilinear

$$\phi_{\mathsf{nl}}(x) = x_{\mathsf{u}} \otimes x_{\mathsf{y}}, \quad \mathsf{where} \ x_{\mathsf{y}} := \mathsf{vec}(y, \sigma y, \dots, \sigma^{\ell-1}y)$$

generalized bilinear

$$\phi_{\mathsf{nl}}(x) = \phi_{u,\mathsf{nl}}(x_u) \otimes x_y$$

LTI embedding of polynomial NARX system

$$\mathscr{B}_{\text{ext}}(\theta) := \left\{ \left. \textbf{\textit{w}}_{\text{ext}} = \left[\begin{smallmatrix} \textbf{\textit{u}} \\ \textbf{\textit{u}}_{\text{nl}} \\ \textbf{\textit{y}} \end{smallmatrix} \right] \; \middle| \; \sigma^{\ell} \textbf{\textit{y}} = \theta_{\text{li}}^{\top} \textbf{\textit{x}} + \theta_{\text{nl}}^{\top} \textbf{\textit{u}}_{\text{nl}} \right. \right\}$$

define: $\Pi_w w_{\text{ext}} := w$ and $\Pi_{u_{\text{nl}}} w_{\text{ext}} := u_{\text{nl}}$

fact: $\mathscr{B}(\theta) \subseteq \Pi_{\mathsf{W}} \mathscr{B}_{\mathsf{ext}}(\theta)$, moreover

$$\mathscr{B}(\theta) = \Pi_{W} \{ w_{\mathsf{ext}} \in \mathscr{B}_{\mathsf{ext}}(\theta) \mid \Pi_{u_{\mathsf{nl}}} w_{\mathsf{ext}} = \phi_{\mathsf{nl}}(x) \}$$

FIR Volterra data-driven simulation given

data $w_d = (u_d, y_d)$ of lag- ℓ FIR Volterra system \mathscr{B} ϕ_{nl} — system's model structure

assume ID conditions for \mathcal{B}_{ext} hold

then, $\mathcal{B}|_{L} = \text{image } M$, where

$$M(w_{\text{ini}}, u) := \mathscr{H}_{L}(\sigma^{\ell} y_{\text{d}}) \underbrace{ \begin{bmatrix} \mathscr{H}_{\ell}(w_{\text{d}}) \\ \mathscr{H}_{L}(\sigma^{\ell} u_{\text{d}}) \\ \mathscr{H}_{\ell}(\phi_{\text{nI}}(x_{u_{\text{d}}})) \\ \mathscr{H}_{L}(\sigma^{\ell} \phi_{\text{nI}}(x_{u_{\text{d}}})) \end{bmatrix}^{\dagger} \begin{bmatrix} w_{\text{ini}} \\ u \\ \phi_{\text{nI}}(x_{u_{\text{ini}}}) \\ \phi_{\text{nI}}(x_{u_{\text{ini}}}) \end{bmatrix}}_{g}$$

proof

$$\begin{bmatrix} \mathcal{H}_{\ell}(w_{\mathsf{d}}) \\ \mathcal{H}_{L}(\sigma^{\ell}u_{\mathsf{d}}) \\ \mathcal{H}_{\ell}(\phi_{\mathsf{nl}}(x_{u_{\mathsf{d}}})) \\ \mathcal{H}_{L}(\sigma^{\ell}\phi_{\mathsf{nl}}(x_{u_{\mathsf{d}}})) \\ \mathcal{H}_{L}(\sigma^{\ell}y_{\mathsf{d}}) \end{bmatrix} g = \begin{bmatrix} w_{\mathsf{ini}} \\ u \\ \phi_{\mathsf{nl}}(x_{u_{\mathsf{ini}}}) \\ \phi_{\mathsf{nl}}(x_{u}) \\ y \end{bmatrix} \} \mathsf{B3}$$

- B1 constraint on g, such that $w_\mathsf{ini} \wedge (u, \mathscr{H}_\mathsf{L}(\sigma^\ell y_\mathsf{d})g) \in \mathscr{B}_\mathsf{ext}$
- B2 constraint $u_{nl} = \phi_{nl}(x) \iff \mathscr{B}_{ext} = \mathscr{B}(\theta)$
- B3 defines the to-be-computed output y

generalized bilinear models

also tractable because B2: $u_{nl} = \phi_{nl}(x)$ is still linear in y

Outline

Behavioral approach

Trajectory interpolation and approximation

Generalization for nonlinear systems

Pedagogical Example: Free fall prediction

Case study 1: Dynamic measurement

Case study 2: Direct data-driven fault detection

Case study 3: Frequency response estimation

object with mass m, falling in gravitational field

object with mass m, falling in gravitational field

▶ w — position

object with mass m, falling in gravitational field

- ▶ w position
- $\mathbf{v} := \dot{\mathbf{w}}$ velocity

object with mass m, falling in gravitational field

- ▶ w position
- $\mathbf{v} := \dot{\mathbf{w}}$ velocity
- \triangleright w(0), v(0) initial condition

object with mass m, falling in gravitational field

- ▶ w position
- $\mathbf{v} := \dot{\mathbf{w}}$ velocity
- \triangleright w(0), v(0) initial condition

task: given initial condition, find the trajectory w

object with mass m, falling in gravitational field

- w position
- $\mathbf{v} := \dot{\mathbf{w}}$ velocity
- \triangleright w(0), v(0) initial condition

task: given initial condition, find the trajectory w

model-based approach:

object with mass m, falling in gravitational field

- ▶ w position
- $\mathbf{v} := \dot{\mathbf{w}} \text{velocity}$
- \triangleright w(0), v(0) initial condition

task: given initial condition, find the trajectory w

1. physics → parametric model

model-based approach:

object with mass m, falling in gravitational field

- w position
- $\mathbf{v} := \dot{\mathbf{w}}$ velocity
- \triangleright w(0), v(0) initial condition

task: given initial condition, find the trajectory w

1. physics → parametric model

model-based approach: 2. model parameter estimation

object with mass m, falling in gravitational field

- ▶ w position
- $\mathbf{v} := \dot{\mathbf{w}} \text{velocity}$
- \triangleright w(0), v(0) initial condition

task: given initial condition, find the trajectory w

- 1. physics \mapsto parametric model
- model-based approach: 2. model parameter estimation
 - 3. model + ini. conditions $\mapsto w$

object with mass m, falling in gravitational field

- ▶ w position
- $\mathbf{v} := \dot{\mathbf{w}} \text{velocity}$
- \triangleright w(0), v(0) initial condition

task: given initial condition, find the trajectory w

1. physics → parametric model

model-based approach: 2. model parameter estimation

3. model + ini. conditions $\mapsto w$

▶ data-driven approach: data $w_d^1, ..., w_d^N$ + ini. cond. $\mapsto w$

Modeling from first principles yields affine time-invariant dynamical system

second law of Newton + the law of gravity

$$m\ddot{w}=m\left[egin{array}{c} 0 \\ -9.81 \end{array}
ight]+f, \quad w(0)=w_{\mathrm{ini}} \ \mathrm{and} \ \dot{w}(0)=v_{\mathrm{ini}}$$

- 9.81 gravitational constant
- $f = -\gamma \dot{w}$ force due to friction in the air

Modeling from first principles yields affine time-invariant dynamical system

second law of Newton + the law of gravity

$$m\ddot{w}=m\left[egin{array}{c} 0 \\ -9.81 \end{array}
ight]+f, \quad w(0)=w_{\mathrm{ini}} \ \mathrm{and} \ \dot{w}(0)=v_{\mathrm{ini}}$$

- 9.81 gravitational constant
- $f = -\gamma \dot{w}$ force due to friction in the air

1st order equation

$$\dot{x} = Ax$$
, $w = Cx$, $x(0) = x_{ini}$

- \blacktriangleright state $x := (w_1, \dot{w}_1, w_2, \dot{w}_2, -9.81)$
- initial state $x_{\text{ini}} := (w_{\text{ini},1}, v_{\text{ini},1}, w_{\text{ini},2}, v_{\text{ini},2}, -9.81)$
- A, C model parameters (depend on m and γ)

data: N, discrete-time trajectories w_d^1, \ldots, w_d^N

data: N, discrete-time trajectories w_d^1, \dots, w_d^N

rank
$$\begin{bmatrix} w_d^1 & \cdots & w_d^N \end{bmatrix} = 5$$
 "informativity" condition

data:
$$N$$
, discrete-time trajectories w_d^1, \ldots, w_d^N

rank
$$\begin{bmatrix} w_d^1 & \cdots & w_d^N \end{bmatrix} = 5$$
 "informativity" condition

algorithm for data-driven prediction:

1. solve
$$\begin{bmatrix} w_{d}^{1}(1) & \cdots & w_{d}^{N}(1) \\ w_{d}^{1}(2) & \cdots & w_{d}^{N}(2) \\ w_{d}^{1}(3) & \cdots & w_{d}^{N}(3) \end{bmatrix} g = \underbrace{\begin{bmatrix} w(1) \\ w(2) \\ w(3) \end{bmatrix}}_{\text{ini. cond.}}$$

data: N, discrete-time trajectories w_d^1, \ldots, w_d^N

rank
$$\begin{bmatrix} w_d^1 & \cdots & w_d^N \end{bmatrix} = 5$$
 "informativity" condition

algorithm for data-driven prediction:

1. solve
$$\begin{bmatrix} w_d^1(1) & \cdots & w_d^N(1) \\ w_d^1(2) & \cdots & w_d^N(2) \\ w_d^1(3) & \cdots & w_d^N(3) \end{bmatrix} g = \underbrace{\begin{bmatrix} w(1) \\ w(2) \\ w(3) \end{bmatrix}}_{\text{ini. cond.}}$$

2. define
$$w := \begin{bmatrix} w_d^1 & \cdots & w_d^N \end{bmatrix} g$$

first principles modeling

first principles modeling

use Newton's 2nd law, law of gravity, and friction

first principles modeling

- use Newton's 2nd law, law of gravity, and friction
- \blacktriangleright and model parameters m, γ , gravitational constant

first principles modeling

- use Newton's 2nd law, law of gravity, and friction
- \triangleright and model parameters m, γ , gravitational constant
- lead to autonomous affine time-invariant system

first principles modeling

- use Newton's 2nd law, law of gravity, and friction
- \triangleright and model parameters m, γ , gravitational constant
- lead to autonomous affine time-invariant system

data-driven approach

first principles modeling

- use Newton's 2nd law, law of gravity, and friction
- \triangleright and model parameters m, γ , gravitational constant
- lead to autonomous affine time-invariant system

data-driven approach

bypasses the knowledge of the physical laws

first principles modeling

- use Newton's 2nd law, law of gravity, and friction
- \triangleright and model parameters m, γ , gravitational constant
- lead to autonomous affine time-invariant system

data-driven approach

- bypasses the knowledge of the physical laws
- and prior knowledge or estimation of model parameters

Summary: prediction of free fall trajectory

first principles modeling

- use Newton's 2nd law, law of gravity, and friction
- \triangleright and model parameters m, γ , gravitational constant
- lead to autonomous affine time-invariant system

data-driven approach

- bypasses the knowledge of the physical laws
- and prior knowledge or estimation of model parameters
- no hyper-parameters to tune

Outline

Behavioral approach

Trajectory interpolation and approximation

Generalization for nonlinear systems

Pedagogical Example: Free fall prediction

Case study 1: Dynamic measurement

Case study 2: Direct data-driven fault detection

Case study 3: Frequency response estimation

A textbook problem

D. G. Luenberger, Introduction to Dynamical Systems: Theory, Models and Applications. John Wiley, 1979.

"A thermometer reading 21°C, which has been inside a house for a long time, is taken outside. After one minute the thermometer reads 15°C; after two minutes it reads 11°C. What is the outside temperature?"

A textbook problem

D. G. Luenberger, Introduction to Dynamical Systems: Theory, Models and Applications. John Wiley, 1979.

"A thermometer reading 21°C, which has been inside a house for a long time, is taken outside. After one minute the thermometer reads 15°C; after two minutes it reads 11°C. What is the outside temperature?"

According to Newton's law of cooling, an object of higher temperature than its environment cools at a rate that is proportional to the difference in temperature.

Main idea: predict the steady-state value from the first few samples of the transient

textbook problem:

- 1st order dynamics
- 3 noise-free samples
- batch solution

Main idea: predict the steady-state value from the first few samples of the transient

textbook problem:

- 1st order dynamics
- 3 noise-free samples
- batch solution

generalizations:

- $ightharpoonup n \ge 1$ order dynamics
- $T \ge 3$ noisy (vector) samples
- recursive computation

Main idea: predict the steady-state value from the first few samples of the transient

textbook problem:

- 1st order dynamics
- 3 noise-free samples
- batch solution

generalizations:

- $ightharpoonup n \ge 1$ order dynamics
- $ightharpoonup T \ge 3$ noisy (vector) samples
- recursive computation

implementation and practical validation

Thermometer: first order dynamical system

environmental heat transfer thermometer's temperature \bar{u} reading y

Thermometer: first order dynamical system

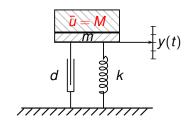
environmental heat transfer thermometer's temperature \bar{u} reading y

measurement process: Newton's law of cooling

$$y = a(\bar{u} - y)$$

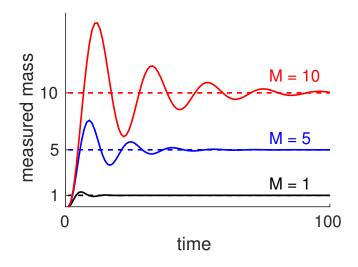
heat transfer coefficient a > 0

Scale: second order dynamical system



$$(M+m)\frac{\mathrm{d}}{\mathrm{d}\,t}y+dy+ky=g\bar{u}$$

The measurement process dynamics depends on the to-be-measured mass



Dynamic measurement: take into account the dynamical properties of the sensor

to-be-measured measurement process measured variable u wariable v assumption 1: measured variable is constant v assumption 2: the sensor is stable LTI system assumption 3: sensor's DC-gain = 1 (calibrated sensor)

The data is generated from LTI system with output noise and constant input

$$y_d$$
 = y + e

measured true measurement noise

 y = u + v 0

true steady-state value transient response

assumption 4: e is a zero mean, white, Gaussian noise

using a state space representation of the sensor

$$x(t+1) = Ax(t),$$
 $x(0) = x_0$
 $y_0(t) = cx(t)$

we obtain

$$\underbrace{\begin{bmatrix} y_{d}(1) \\ y_{d}(2) \\ \vdots \\ y_{d}(T) \end{bmatrix}}_{Y_{d}} = \underbrace{\begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}}_{T_{T}} \bar{u} + \underbrace{\begin{bmatrix} c \\ cA \\ \vdots \\ cA^{T-1} \end{bmatrix}}_{\mathcal{T}_{T}} x_{0} + \underbrace{\begin{bmatrix} e(1) \\ e(2) \\ \vdots \\ e(T) \end{bmatrix}}_{e}$$

Maximum-likelihood model-based estimator

solve approximately

$$\begin{bmatrix} \mathbf{1}_T & \mathscr{O}_T \end{bmatrix} \begin{bmatrix} \widehat{u} \\ \widehat{x}_0 \end{bmatrix} \approx y_{\mathsf{d}}$$

standard least-squares problem

minimize over
$$\widehat{y}$$
, \widehat{u} , $\widehat{x}_0 \quad \|y_d - \widehat{y}\|$ subject to $\begin{bmatrix} \mathbf{1}_T & \mathscr{O}_T \end{bmatrix} \begin{bmatrix} \widehat{u} \\ \widehat{x}_0 \end{bmatrix} = \widehat{y}$

recursive implementation \rightsquigarrow Kalman filter

Subspace model-free method

goal: avoid using the model parameters (A, C, \mathcal{O}_T)

in the noise-free case, due to the LTI assumption,

$$\Delta y(t) := y(t) - y(t-1) = y_0(t) - y_0(t-1)$$

satisfies the same dynamics as y_0 , *i.e.*,

$$x(t+1) = Ax(t),$$
 $x(0) = \Delta x$
 $\Delta y(t) = cx(t)$

Hankel matrix—construction of multiple "short" trajectories from one "long" trajectory

$$\mathcal{H}(\Delta y) := egin{bmatrix} \Delta y(1) & \Delta y(2) & \cdots & \Delta y(n) \ \Delta y(2) & \Delta y(3) & \cdots & \Delta y(n+1) \ \Delta y(3) & \Delta y(4) & \cdots & \Delta y(n+2) \ dots & dots & dots \ \Delta y(T-n) & \Delta y(T-n) & \cdots & \Delta y(T-1) \ \end{bmatrix}$$

fact: if rank $\mathcal{H}(\Delta y) = n$, then

image
$$\mathcal{O}_{T-n}$$
 = image $\mathcal{H}(\Delta y)$

model-based equation

$$\begin{bmatrix} \mathbf{1}_T & \mathscr{O}_T \end{bmatrix} \begin{bmatrix} \bar{u} \\ \widehat{x}_0 \end{bmatrix} = y$$

data-driven equation

$$\begin{bmatrix} \mathbf{1}_{T-n} & \mathscr{H}(\Delta y) \end{bmatrix} \begin{bmatrix} \bar{u} \\ \ell \end{bmatrix} = y|_{T-n} \tag{*}$$

subspace method

solve (*) by (recursive) least squares

Empirical validation

dashed — true parameter value \bar{u}

solid — true output trajectory y_0

dotted — naive estimate $\hat{u} = G^+ y$

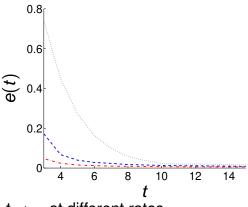
dashed — model-based Kalman filter

bashed-dotted — data-driven method

estimation error:
$$e := \frac{1}{N} \sum_{i=1}^{N} \|\bar{u} - \hat{u}^{(i)}\|$$

(for N = 100 Monte-Carlo repetitions)

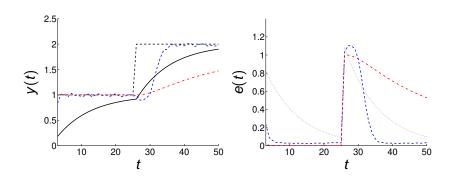
Simulated data of dynamic cooling process



 $e(t) \rightarrow 0$ as $t \rightarrow \infty$ at different rates

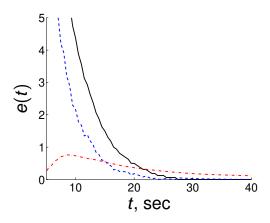
best is the Kalman filter (maximum likelihood estimator)

Simulation with time-varying parameter



Proof of concept prototype

Results in real-life experiment



Summary

dynamic measurement

steady-state value prediction

Summary

dynamic measurement

steady-state value prediction

the subspace method is applicable for

- high order dynamics
- noisy vector observations
- online computation

Summary

dynamic measurement

steady-state value prediction

the subspace method is applicable for

- high order dynamics
- noisy vector observations
- online computation

future work / open problems

- numerical efficiency
- real-time uncertainty quantification
- generalization to nonlinear systems

Outline

Behavioral approach

Trajectory interpolation and approximation

Generalization for nonlinear systems

Pedagogical Example: Free fall prediction

Case study 1: Dynamic measurement

Case study 2: Direct data-driven fault detection

Case study 3: Frequency response estimation

The problem considered is to detect abnormal operation based on observed data

prior information about data-generating system

model-based vs direct data-driven methods

observed data collected offline and online

- dedicated experiment known excitation signal
- "normal" operation unknown excitation signal

We consider three data collection scenarios

free response / transient data

forced response with known excitation

forced response with unknown excitation

Recall the nonparametric representation of an LTI system's finite-horizon behavior

assumptions:

- $ightharpoonup w_d \in \mathscr{B}|_{T_d}$ exact offline data
- ▶ $\mathscr{B} \in \mathscr{L}_{(m,\ell,n)}$ bounded complexity LTI system
- for $T \ge \ell(\mathscr{B})$, rank $\mathscr{H}_T(w_d) = mT + n$ informative data

then, the data-driven representation holds

image
$$\mathcal{H}_T(w_d) = \mathcal{B}|_T$$
 (DDR)

The fault detection criterion is the distance from online data w to system's behavior \mathcal{B}

$$\mathsf{dist}(w,\mathscr{B}) := \mathsf{min}_{\widehat{w} \in \mathscr{B}|_T} \| w - \widehat{w} \|$$
 under the assumptions, using (DDR), we have
$$\mathsf{dist}(w,\mathscr{B}) = \| w - \mathscr{H}_T(w_\mathsf{d}) \mathscr{H}_T^+(w_\mathsf{d}) w \|$$

direct data-driven computation of the distance

The fault detection method has offline and online steps

offline: using w_d , find orthonormal basis B for $\mathcal{B}|_T$

online: compute and threshold

$$\mathsf{dist}(w,\mathscr{B}) = \left\| (I - BB^\top)w \right\|$$

with noisy data w_d , the offline step is

- ► SVD truncation of $\mathcal{H}_T(w_d)$
- ▶ structured low-rank approximation of $\mathcal{H}_T(w_d)$
- model identification, using w_d

With unobserved excitation signal *e*, prior knowledge about *e* is needed

zero-mean white Gaussian (disturbance)

deterministic signal \leadsto input estimation problem

the model describes $w_{\text{ext}} := \begin{bmatrix} e \\ w \end{bmatrix}$

- e unobserved signal
- w observed signal

Finding e is a linear least-norm problem

given a model \mathscr{B}_{ext} that describes $w_{\text{ext}} := \left[\begin{smallmatrix} e \\ w \end{smallmatrix} \right]$

$$\widehat{\boldsymbol{e}}_{\ln} := \arg\min_{(\widehat{\boldsymbol{e}}, \boldsymbol{w}) \in \mathscr{B}_{\text{ext}}|_{\mathcal{T}}} \ \|\widehat{\boldsymbol{e}}\|$$

exact recovery $\hat{e}_{ln} = e$ is not possible

Deterministic input estimation is linear least-squares problem

$$\Pi_e / \Pi_w$$
 — projection of $w_{\text{ext}} := [{\stackrel{e}{w}}]$ on e / w given, $\widehat{\mathscr{B}}_{\text{ext}} |_T = \text{image } B_{\text{ext}}$ (basis for $\widehat{\mathscr{B}}_{\text{ext}} |_T$) $\widehat{e} := \Pi_e B_{\text{ext}} (\Pi_w B_{\text{ext}})^+ w$

Fault detection method with unobserved input generalized distance measure:

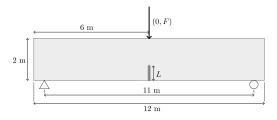
$$\mathsf{dist}(w,\mathscr{B}_\mathsf{ext}) := \min_{(\widehat{e},\widehat{w}) \in \mathscr{B}|_{\mathcal{T}}} \|w - \widehat{w}\|$$

offline: using (e_d, w_d) , find basis B_{ext} for $\mathscr{B}_{\text{ext}}|_T$ and let $B_w := \Pi_w B_{\text{ext}}$

online: compute and threshold

$$\operatorname{dist}(w,\mathscr{B}_{\operatorname{ext}}) = \left\| (I - B_w B_w^\top) w \right\|$$

Validation on vibrating beam with crack subject to unobserved disturbance force



data	crack	loss of	type of
w_{d}^k	length	stiffness	damage
0	0.0m	0%	none
1	0.7m	100%	severe
2	0.7m	36%	medium
3	0.2m	100%	medium
4	0.2m	36%	mild

observed displacements left / right of the crack

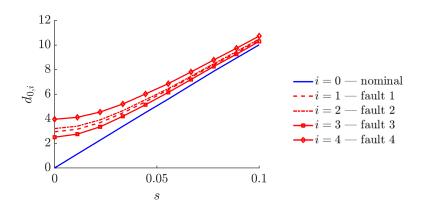
hyper-parameters: T = 100, $\ell = 2$, n = 6

offline computation: \mathscr{B}^k using w_d^k

online computation: $d_{0,k} := dist(w^0, \mathscr{B}^k)$

noise with standard deviation s added to w^0

Distances from nominal data to models as function of noise level



Comments

the beam behaves like 6th order LTI system most severe crack is not hardest to detect effect of the sensor location

Outlook

assumptions:

- bounded complexity LTI system
- lacktriangle hyper-parameters: horizon ${\cal T}$ and lag ℓ
- different ways to deal with noise in offline data w_d

advantages:

- representation invariant distance measure
- can deal with unobserved disturbance signal
- cheap to compute online and simple to implement

other applications

Outline

Behavioral approach

Trajectory interpolation and approximation

Generalization for nonlinear systems

Pedagogical Example: Free fall prediction

Case study 1: Dynamic measurement

Case study 2: Direct data-driven fault detection

Case study 3: Frequency response estimation

Problem formulation

given: "data" trajectory $(u_d, y_d) \in \mathcal{B}|_{T_d}$ and $z \in \mathbb{C}$

find: H(z), where H is the transfer function of \mathcal{B}

I. Markovsky and H. Ossareh. Finite-data nonparametric frequency response evaluation without leakage. Automatica, 159:111351, 2024.

Data-driven solution

we are interested in trajectory

$$w = \begin{bmatrix} u \\ y \end{bmatrix} = \begin{bmatrix} \exp_z \\ \widehat{H} \exp_z \end{bmatrix} \in \mathscr{B}, \text{ where } \exp_z(t) := z^t$$

using the data-driven representation, we have

$$\begin{bmatrix} \mathscr{H}_L(u_\mathsf{d}) \\ \mathscr{H}_L(y_\mathsf{d}) \end{bmatrix} g = \begin{bmatrix} \mathbf{z} \\ \widehat{H} \mathbf{z} \end{bmatrix}, \quad \text{where } \mathbf{z} := \begin{bmatrix} z^1 \\ \vdots \\ z^L \end{bmatrix}$$

which leads to the system

$$\begin{bmatrix} 0 & \mathcal{H}_{L}(u_{d}) \\ -\mathbf{z} & \mathcal{H}_{L}(y_{d}) \end{bmatrix} \begin{bmatrix} \widehat{H} \\ g \end{bmatrix} = \begin{bmatrix} \mathbf{z} \\ 0 \end{bmatrix}$$
 (SYS)

Solution method: solve (SYS) for \hat{H}

with
$$L \ge \ell + 1$$
, $\widehat{H} = H(z)$

without prior knowledge of ℓ

$$L = L_{\mathsf{max}} := \lfloor (T_{\mathsf{d}} + 1)/3 \rfloor$$

trivial generalization to

- multivariable systems
- ► multiple data trajectories $\{w_d^1, ..., w_d^N\}$
- evaluation of H(z) at multiple points in $\{z_1, \ldots, z_K\} \in \mathbb{C}^K$

Comparison with classical nonparametric frequency response estimation methods

ignored initial/terminal conditions \leadsto leakage

DFT grid → limited frequency resolution

improvements by windowing and interpolation

- the leakage is not eliminated
- the methods involve hyper-parameters

Generalization of (SYS) to noisy data

preprocessing: rank-mL + n approx. of $\mathcal{H}_L(w_d)$

- ▶ hyper-parameters $L \ge \ell + 1$ and n
- if the approximation preserves the Hankel structure, the method is maximum-likelihood in the EIV setting

regularization with $||g||_1$

hyper-parameter: the 1-norm regularization parameter

regularization with the nuclear norm of $\mathscr{H}_L(\widehat{w_d})$

hyper-parameters: L and the regularization parameter

Matlab implementation

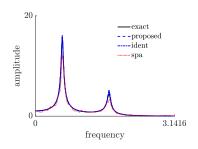
```
function Hh = dd_frest(ud, yd, z, n)
L = n + 1; t = (1:L)';
m = size(ud, 2); p = size(yd, 2);
%% preprocessing by low-rank approximation
H = [moshank(ud, L); moshank(yd, L)];
[U, \sim, \sim] = svd(H); P = U(:, 1:m * L + n);
%% form and solve the system of equations
for k = 1:length(z)
 A = [[zeros(m*L, p); -kron(z(k).^t, eye(p))] P];
  hg = A \setminus [kron(z(k).^t, eye(m)); zeros(p*L, m)];
 Hh(:, :, k) = hq(1:p, :);
end
```

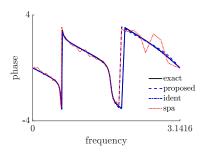
- effectively 5 lines of code
- MIMO case, multiple evaluation points
- ▶ L = n + 1 in order to have a single hyper-parameter

Example: EIV setup with 4th order system

dd_frest is compared with

- ident parametric maximum-likelihood estimator
- ▶ spa nonparameteric estimator with Welch filter





Monte-Carlo simulation over different noise levels and number of samples

