
Low-Rank Approximation:
Theory, Algorithms, and Applications

Ivan Markovsky

1 / 86



Outline

About me

Low-rank approximation in systems and control

Dynamic low-rank approximation

2 / 86



Outline

About me

Low-rank approximation in systems and control

Dynamic low-rank approximation

3 / 86



My background is mathematical engineering

2000–2005 PhD @ KUL

2007–2012 University of
Southampton

2012–2022 Free Univ. Brussel

2022– CIMNE, Barcelona

4 / 86



My core research interest is low-rank approx.

control theory

system identification

data-driven signal processing

5 / 86



Outline

About me

Low-rank approximation in systems and control

Dynamic low-rank approximation

6 / 86



Application area of low-rank approximation
LRA

numerical linear algebra

model
identification

systems and control

model
reduction

image deblurring
signal processing

approximate
common divisor

computer algebra

dimensionality reduction
machine learning

7 / 86



Application area of low-rank approximation
LRA

numerical linear algebra

model
identification

systems and control

model
reduction

image deblurring
signal processing

approximate
common divisor

computer algebra

dimensionality reduction
machine learning

7 / 86



Application area of low-rank approximation
LRA

numerical linear algebra

model
identification

systems and control

model
reduction

image deblurring
signal processing

approximate
common divisor

computer algebra

dimensionality reduction
machine learning

7 / 86



Application area of low-rank approximation
LRA

numerical linear algebra

model
identification

systems and control

model
reduction

image deblurring
signal processing

approximate
common divisor

computer algebra

dimensionality reduction
machine learning

7 / 86



Application area of low-rank approximation
LRA

numerical linear algebra

model
identification

systems and control

model
reduction

image deblurring
signal processing

approximate
common divisor

computer algebra

dimensionality reduction
machine learning

7 / 86



Different applications lead to additional
constraints, besides the rank constraint

non-negativity of data and approximation

Sylvester structure ↔ approximate GCD

Hankel structure ↔ LTI dynamical systems

8 / 86



More recently, my interest is
direct data-driven filtering and control

objective: bypass model identification

observed
data

model

prediction
control

1. model

identific
ation

2. model-based
design

data-driven
design problem

approach: structured low-rank matrix
approximation and completion

9 / 86



Academic example: time-series forecasting
 Hankel low-rank matrix completion

given: y(1), . . . ,y(t)︸ ︷︷ ︸
"past" data

find: y(t + 1), . . . ,y(2t)︸ ︷︷ ︸
"future" samples

given data

7→ rank ≤ r

matrix completion problem

7→

prediction

10 / 86



Why Hankel structured low-rank matrix?

y is sum of n damped-exponentials

m

rank


y(1) y(2) · · · y(T −n)

y(2) y(3) · · · y(T −n + 1)
...

...
...

y(n + 1) y(n + 2) · · · y(T )

≤ n

Hankel structured matrix Hn+1(y)

11 / 86



Sum-of-damped-exponentials signals are
solutions of linear constant coefficient ODE

y = α1 expz1
+ · · ·+ αn expzn

expz(t) := z t

m

p0y + p1σy + · · ·+ pnσny = 0 (σy)(t) := y(t + 1)

m

y = Cx , σx = Ax x(t) ∈ Rn — state

12 / 86



The solution set of linear constant coefficient
ODE is linear time-invariant (LTI) system

n-th order autonomous LTI system

B := {y = Cx | σx = Ax , x(0) ∈ Rn }

dimB = n — complexity of B

Ln — LTI systems with order ≤ n

13 / 86



Model identification is equivalent to
Hankel structured low-rank approximation

minimize over ŷ and B̂ ‖y − ŷ‖
subject to ŷ ∈ B̂ ∈Ln

m
minimize over ŷ ‖y − ŷ‖
subject to rankHn+1(ŷ)≤ n

14 / 86



Three main solution approaches

local optimization

convex relaxations

subspace methods

15 / 86



Outline

About me

Low-rank approximation in systems and control

Dynamic low-rank approximation

16 / 86



Dynamic low-rank approximation

problem formulation
I given A(t) ∈ Rm×n, for t ∈ R+,
I find minX ‖A(t)−X (t)‖, for all t ∈ R+

comment
I without extra knowledge the problem decouples
I extra knowledge: model defining the evolution of A

example
I d

d t A(t) = F
(
A(t)

)
, A(0) = Aini

I with given F : Rm×n→ Rm×n

17 / 86



Ideas for collaboration

discrete-time DLRA

more general model (open system)

d
d t S(t) = F

(
S(t)

)
+ G

(
U(t)

)
, S(0) = Sini

A(t) = C
(
S(t)

)
+ D

(
U(t)

)
I U — input or disturbance
I S — state (unobserved)

unknown model (F , G, C, D not given)

18 / 86



References

S
O

N
IA

 M
O

N
T

I

IVAN MARKOVSKY , LINBIN HUANG , and FLORIAN DÖRFLER 

FROM THEORY TO APPLICATIONS IN POWER SYSTEMS

Data-Driven Control Based 
on the Behavioral Approach

19 / 86



Outline

Behavioral approach

Trajectory interpolation and approximation

Generalization for nonlinear systems

Pedagogical Example: Free fall prediction

Case study 1: Dynamic measurement

Case study 2: Direct data-driven fault detection

Case study 3: Frequency response estimation

20 / 86



Outline

Behavioral approach

Trajectory interpolation and approximation

Generalization for nonlinear systems

Pedagogical Example: Free fall prediction

Case study 1: Dynamic measurement

Case study 2: Direct data-driven fault detection

Case study 3: Frequency response estimation

21 / 86



We view systems as sets of signals

w ∈ (Rq)N — q-variate discrete-time signal

B ⊂ (Rq)N — q-variate dynamical model
I linear — B is a linear subspace of (Rq)N

I time-invariant — invariant under shifts: (σw)(t) := w(t +1)

w ∈B means “w is a trajectory of B”

22 / 86



In practice, we deal with finite signals

restriction of w / B to finite horizon [1,T ]

w |T :=
(
w(1), . . . ,w(T )

)
, B|T := {w |T | w ∈B }

for wd =
(
wd(1), . . . ,wd(Td)

)
and 1≤ T ≤ Td

HT (wd) :=
[

(σ0wd)|T (σ1wd)|T · · · (σTd−T wd)|T
]

wd ∈B|Td — “exact data”

23 / 86



The set of linear time-invariant systems L
has structure characterized by integers

m — number of inputs

n — order (= minimal state dimension)

` — lag (= observability index)

L(m,`,n) — bounded complexity LTI systems

24 / 86



Nonparametric representation of
LTI system’s finite-horizon behavior

assumptions:
I wd ∈B|Td — exact offline data
I B ∈L(m,`,n) — bounded complexity LTI system
I informative data, for T ≥ `̀̀(B)

rankHT (wd) = mT + n (GPE)

then, the data-driven representation holds

imageHT (wd) = B|T (DDR)

25 / 86



Outline

Behavioral approach

Trajectory interpolation and approximation

Generalization for nonlinear systems

Pedagogical Example: Free fall prediction

Case study 1: Dynamic measurement

Case study 2: Direct data-driven fault detection

Case study 3: Frequency response estimation

26 / 86



Trajectory interpolation and approximation

I. Markovsky and F. Dörfler. Data-driven dynamic interpo-
lation and approximation. Automatica, 135:110008, 2022.

27 / 86

https://imarkovs.github.io/publications/ddint.pdf
https://imarkovs.github.io/publications/ddint.pdf


Generic data-driven problem:
trajectory interpolation/approximation

given:
“data trajectory” wd ∈B|Td

and elements w |Igiven

of a trajectory w ∈B|T

(w |Igiven selects the elements of w , specified by Igiven)

aim: minimize over ŵ ‖w |Igiven− ŵ |Igiven‖
subject to ŵ ∈B|T

ŵ = HT (wd)
(
HT (wd)|Igiven

)+w |Igiven (SOL)

28 / 86



Generic data-driven problem:
trajectory interpolation/approximation

given:
“data trajectory” wd ∈B|Td

and elements w |Igiven

of a trajectory w ∈B|T

(w |Igiven selects the elements of w , specified by Igiven)

aim: minimize over ŵ ‖w |Igiven− ŵ |Igiven‖
subject to ŵ ∈B|T

ŵ = HT (wd)
(
HT (wd)|Igiven

)+w |Igiven (SOL)

28 / 86



Generic data-driven problem:
trajectory interpolation/approximation

given:
“data trajectory” wd ∈B|Td

and elements w |Igiven

of a trajectory w ∈B|T

(w |Igiven selects the elements of w , specified by Igiven)

aim: minimize over ŵ ‖w |Igiven− ŵ |Igiven‖
subject to ŵ ∈B|T

ŵ = HT (wd)
(
HT (wd)|Igiven

)+w |Igiven (SOL)

28 / 86



Special cases

simulation
I given data: initial condition and input
I to-be-found: output (exact interpolation)

smoothing
I given data: noisy trajectory
I to-be-found: `2-optimal approximation

tracking control
I given data: to-be-tracked trajectory
I to-be-found: `2-optimal approximation

29 / 86



Special cases

simulation
I given data: initial condition and input
I to-be-found: output (exact interpolation)

smoothing
I given data: noisy trajectory
I to-be-found: `2-optimal approximation

tracking control
I given data: to-be-tracked trajectory
I to-be-found: `2-optimal approximation

29 / 86



Special cases

simulation
I given data: initial condition and input
I to-be-found: output (exact interpolation)

smoothing
I given data: noisy trajectory
I to-be-found: `2-optimal approximation

tracking control
I given data: to-be-tracked trajectory
I to-be-found: `2-optimal approximation

29 / 86



Generalizations
multiple data trajectories w1

d , . . . ,w
N
d

B̂|L = image
[
HL(w1

d ) · · · HL(wN
d )
]

︸ ︷︷ ︸
mosaic-Hankel matrix

wd not exact / noisy
maximum-likelihood estimation
 Hankel structured low-rank approximation/completion
nuclear norm and `1-norm relaxations
 nonparametric, convex optimization problems

nonlinear systems
results for special classes of nonlinear systems:
Volterra, Wiener-Hammerstein, bilinear, . . .

30 / 86



Generalizations
multiple data trajectories w1

d , . . . ,w
N
d

B̂|L = image
[
HL(w1

d ) · · · HL(wN
d )
]

︸ ︷︷ ︸
mosaic-Hankel matrix

wd not exact / noisy
maximum-likelihood estimation
 Hankel structured low-rank approximation/completion
nuclear norm and `1-norm relaxations
 nonparametric, convex optimization problems

nonlinear systems
results for special classes of nonlinear systems:
Volterra, Wiener-Hammerstein, bilinear, . . .

30 / 86



Generalizations
multiple data trajectories w1

d , . . . ,w
N
d

B̂|L = image
[
HL(w1

d ) · · · HL(wN
d )
]

︸ ︷︷ ︸
mosaic-Hankel matrix

wd not exact / noisy
maximum-likelihood estimation
 Hankel structured low-rank approximation/completion
nuclear norm and `1-norm relaxations
 nonparametric, convex optimization problems

nonlinear systems
results for special classes of nonlinear systems:
Volterra, Wiener-Hammerstein, bilinear, . . .

30 / 86



Outline

Behavioral approach

Trajectory interpolation and approximation

Generalization for nonlinear systems

Pedagogical Example: Free fall prediction

Case study 1: Dynamic measurement

Case study 2: Direct data-driven fault detection

Case study 3: Frequency response estimation

31 / 86



Generalization for nonlinear systems

I. Markovsky. Data-driven simulation of generalized bilin-
ear systems via linear time-invariant embedding. IEEE
Trans. Automat. Contr., 68:1101–1106, 2023.

I. Markovsky and K. Usevich. Nonlinearly structured low-
rank approximation. In Low-Rank and Sparse Modeling for
Visual Analysis, pages 1–22. Springer, 2014.

32 / 86



Kernel representation
LTI systems

B = kerR(σ) :=
{

w | R(σ)w = 0
}

=
{

w | R0w + R1σw + · · ·+ R`σ
`w = 0

}
nonlinear time-invariant system

B =
{

w | R
(

w ,σw , . . . ,σ `w︸ ︷︷ ︸
x

)
= 0

}
linearly parameterized R

R(x) = ∑θiφi(x) = θ
>

φ(x),
φ — model structure
θ — parameter vector

33 / 86



Polynomial SISO NARX system

B(θ ) =
{

w =
[u

y
]
| y = f

(
u,σw , . . . ,σ `w

)}
split f into 1st order (linear) and other (nonlinear) terms

f (x) = θ
>
li x + θ

>
nl φnl(x)

φnl — vector of monomials

34 / 86



Special cases
Hammerstein

φnl(x) =
[
φu(u) φu(σu) · · · φu(σ `u)

]>
FIR Volterra

φnl(x) = φnl(xu), where xu := vec(u,σu, . . . ,σ `u).

bilinear

φnl(x) = xu⊗xy , where xy := vec(y ,σy , . . . ,σ `−1y)

generalized bilinear
φnl(x) = φu,nl(xu)⊗xy

35 / 86



LTI embedding of polynomial NARX system

Bext(θ ) :=
{

wext =
[ u

unl
y

] ∣∣∣ σ
`y = θ

>
li x + θ

>
nl unl

}
define: Πwwext := w and Πunlwext := unl

fact: B(θ )⊆ ΠwBext(θ ), moreover

B(θ ) = Πw
{

wext ∈Bext(θ ) | Πunlwext = φnl(x)
}

36 / 86



FIR Volterra data-driven simulation
given

data wd = (ud,yd) of lag-` FIR Volterra system B
φnl — system’s model structure

assume ID conditions for Bext hold

then, B|L = imageM, where

M(wini,u) := HL(σ
`yd)


H`(wd)

HL(σ `ud)

H`

(
φnl(xud)

)
HL
(
σ `φnl(xud)

)


†
wini

u
φnl(xuini)

φnl(xu)


︸ ︷︷ ︸

g

37 / 86



proof 
H`(wd)

HL(σ `ud)

H`

(
φnl(xud)

)
HL
(
σ `φnl(xud)

)
HL(σ `yd)

g =


wini

u
φnl(xuini)

φnl(xu)

y



}
B1}
B2}
B3

B1 constraint on g, such that wini∧
(
u,HL(σ

`yd)g
)
∈Bext

B2 constraint unl = φnl(x) ⇐⇒ Bext = B(θ)
B3 defines the to-be-computed output y

generalized bilinear models
also tractable because B2: unl = φnl(x) is still linear in y

38 / 86



Outline

Behavioral approach

Trajectory interpolation and approximation

Generalization for nonlinear systems

Pedagogical Example: Free fall prediction

Case study 1: Dynamic measurement

Case study 2: Direct data-driven fault detection

Case study 3: Frequency response estimation

39 / 86



The goal is to predict free fall trajectory

object with mass m, falling in gravitational field

I w — position
I v := ẇ — velocity
I w(0),v(0) — initial condition

task: given initial condition, find the trajectory w

I model-based approach:
1. physics 7→ parametric model
2. model parameter estimation
3. model + ini. conditions 7→ w

I data-driven approach: data w1
d , . . . ,w

N
d + ini. cond. 7→ w

40 / 86



The goal is to predict free fall trajectory

object with mass m, falling in gravitational field
I w — position

I v := ẇ — velocity
I w(0),v(0) — initial condition

task: given initial condition, find the trajectory w

I model-based approach:
1. physics 7→ parametric model
2. model parameter estimation
3. model + ini. conditions 7→ w

I data-driven approach: data w1
d , . . . ,w

N
d + ini. cond. 7→ w

40 / 86



The goal is to predict free fall trajectory

object with mass m, falling in gravitational field
I w — position
I v := ẇ — velocity

I w(0),v(0) — initial condition

task: given initial condition, find the trajectory w

I model-based approach:
1. physics 7→ parametric model
2. model parameter estimation
3. model + ini. conditions 7→ w

I data-driven approach: data w1
d , . . . ,w

N
d + ini. cond. 7→ w

40 / 86



The goal is to predict free fall trajectory

object with mass m, falling in gravitational field
I w — position
I v := ẇ — velocity
I w(0),v(0) — initial condition

task: given initial condition, find the trajectory w

I model-based approach:
1. physics 7→ parametric model
2. model parameter estimation
3. model + ini. conditions 7→ w

I data-driven approach: data w1
d , . . . ,w

N
d + ini. cond. 7→ w

40 / 86



The goal is to predict free fall trajectory

object with mass m, falling in gravitational field
I w — position
I v := ẇ — velocity
I w(0),v(0) — initial condition

task: given initial condition, find the trajectory w

I model-based approach:
1. physics 7→ parametric model
2. model parameter estimation
3. model + ini. conditions 7→ w

I data-driven approach: data w1
d , . . . ,w

N
d + ini. cond. 7→ w

40 / 86



The goal is to predict free fall trajectory

object with mass m, falling in gravitational field
I w — position
I v := ẇ — velocity
I w(0),v(0) — initial condition

task: given initial condition, find the trajectory w

I model-based approach:

1. physics 7→ parametric model
2. model parameter estimation
3. model + ini. conditions 7→ w

I data-driven approach: data w1
d , . . . ,w

N
d + ini. cond. 7→ w

40 / 86



The goal is to predict free fall trajectory

object with mass m, falling in gravitational field
I w — position
I v := ẇ — velocity
I w(0),v(0) — initial condition

task: given initial condition, find the trajectory w

I model-based approach:
1. physics 7→ parametric model

2. model parameter estimation
3. model + ini. conditions 7→ w

I data-driven approach: data w1
d , . . . ,w

N
d + ini. cond. 7→ w

40 / 86



The goal is to predict free fall trajectory

object with mass m, falling in gravitational field
I w — position
I v := ẇ — velocity
I w(0),v(0) — initial condition

task: given initial condition, find the trajectory w

I model-based approach:
1. physics 7→ parametric model
2. model parameter estimation

3. model + ini. conditions 7→ w

I data-driven approach: data w1
d , . . . ,w

N
d + ini. cond. 7→ w

40 / 86



The goal is to predict free fall trajectory

object with mass m, falling in gravitational field
I w — position
I v := ẇ — velocity
I w(0),v(0) — initial condition

task: given initial condition, find the trajectory w

I model-based approach:
1. physics 7→ parametric model
2. model parameter estimation
3. model + ini. conditions 7→ w

I data-driven approach: data w1
d , . . . ,w

N
d + ini. cond. 7→ w

40 / 86



The goal is to predict free fall trajectory

object with mass m, falling in gravitational field
I w — position
I v := ẇ — velocity
I w(0),v(0) — initial condition

task: given initial condition, find the trajectory w

I model-based approach:
1. physics 7→ parametric model
2. model parameter estimation
3. model + ini. conditions 7→ w

I data-driven approach: data w1
d , . . . ,w

N
d + ini. cond. 7→ w

40 / 86



Modeling from first principles yields
affine time-invariant dynamical system

second law of Newton + the law of gravity

mẅ = m
[ 0
−9.81

]
+ f , w(0) = wini and ẇ(0) = vini

I 9.81 — gravitational constant
I f =−γẇ — force due to friction in the air

1st order equation
ẋ = Ax , w = Cx , x(0) = xini

I state x := (w1, ẇ1,w2, ẇ2,−9.81)
I initial state xini := (wini,1,vini,1,wini,2,vini,2,−9.81)
I A,C — model parameters (depend on m and γ)

41 / 86



Modeling from first principles yields
affine time-invariant dynamical system

second law of Newton + the law of gravity

mẅ = m
[ 0
−9.81

]
+ f , w(0) = wini and ẇ(0) = vini

I 9.81 — gravitational constant
I f =−γẇ — force due to friction in the air

1st order equation
ẋ = Ax , w = Cx , x(0) = xini

I state x := (w1, ẇ1,w2, ẇ2,−9.81)
I initial state xini := (wini,1,vini,1,wini,2,vini,2,−9.81)
I A,C — model parameters (depend on m and γ)

41 / 86



Data-driven free fall prediction method

data: N, discrete-time trajectories w1
d , . . . ,w

N
d

rank
[
w1

d · · · wN
d

]
= 5 "informativity" condition

algorithm for data-driven prediction:

1. solve

w1
d (1) · · · wN

d (1)
w1

d (2) · · · wN
d (2)

w1
d (3) · · · wN

d (3)

g =

w(1)
w(2)
w(3)


︸ ︷︷ ︸
ini. cond.

2. define w :=
[
w1

d · · · wN
d

]
g

42 / 86



Data-driven free fall prediction method

data: N, discrete-time trajectories w1
d , . . . ,w

N
d

rank
[
w1

d · · · wN
d

]
= 5 "informativity" condition

algorithm for data-driven prediction:

1. solve

w1
d (1) · · · wN

d (1)
w1

d (2) · · · wN
d (2)

w1
d (3) · · · wN

d (3)

g =

w(1)
w(2)
w(3)


︸ ︷︷ ︸
ini. cond.

2. define w :=
[
w1

d · · · wN
d

]
g

42 / 86



Data-driven free fall prediction method

data: N, discrete-time trajectories w1
d , . . . ,w

N
d

rank
[
w1

d · · · wN
d

]
= 5 "informativity" condition

algorithm for data-driven prediction:

1. solve

w1
d (1) · · · wN

d (1)
w1

d (2) · · · wN
d (2)

w1
d (3) · · · wN

d (3)

g =

w(1)
w(2)
w(3)


︸ ︷︷ ︸
ini. cond.

2. define w :=
[
w1

d · · · wN
d

]
g

42 / 86



Data-driven free fall prediction method

data: N, discrete-time trajectories w1
d , . . . ,w

N
d

rank
[
w1

d · · · wN
d

]
= 5 "informativity" condition

algorithm for data-driven prediction:

1. solve

w1
d (1) · · · wN

d (1)
w1

d (2) · · · wN
d (2)

w1
d (3) · · · wN

d (3)

g =

w(1)
w(2)
w(3)


︸ ︷︷ ︸
ini. cond.

2. define w :=
[
w1

d · · · wN
d

]
g

42 / 86



Summary: prediction of free fall trajectory

first principles modeling

I use Newton’s 2nd law, law of gravity, and friction
I and model parameters m, γ, gravitational constant
I lead to autonomous affine time-invariant system

data-driven approach
I bypasses the knowledge of the physical laws
I and prior knowledge or estimation of model parameters
I no hyper-parameters to tune

43 / 86



Summary: prediction of free fall trajectory

first principles modeling
I use Newton’s 2nd law, law of gravity, and friction

I and model parameters m, γ, gravitational constant
I lead to autonomous affine time-invariant system

data-driven approach
I bypasses the knowledge of the physical laws
I and prior knowledge or estimation of model parameters
I no hyper-parameters to tune

43 / 86



Summary: prediction of free fall trajectory

first principles modeling
I use Newton’s 2nd law, law of gravity, and friction
I and model parameters m, γ, gravitational constant

I lead to autonomous affine time-invariant system

data-driven approach
I bypasses the knowledge of the physical laws
I and prior knowledge or estimation of model parameters
I no hyper-parameters to tune

43 / 86



Summary: prediction of free fall trajectory

first principles modeling
I use Newton’s 2nd law, law of gravity, and friction
I and model parameters m, γ, gravitational constant
I lead to autonomous affine time-invariant system

data-driven approach
I bypasses the knowledge of the physical laws
I and prior knowledge or estimation of model parameters
I no hyper-parameters to tune

43 / 86



Summary: prediction of free fall trajectory

first principles modeling
I use Newton’s 2nd law, law of gravity, and friction
I and model parameters m, γ, gravitational constant
I lead to autonomous affine time-invariant system

data-driven approach

I bypasses the knowledge of the physical laws
I and prior knowledge or estimation of model parameters
I no hyper-parameters to tune

43 / 86



Summary: prediction of free fall trajectory

first principles modeling
I use Newton’s 2nd law, law of gravity, and friction
I and model parameters m, γ, gravitational constant
I lead to autonomous affine time-invariant system

data-driven approach
I bypasses the knowledge of the physical laws

I and prior knowledge or estimation of model parameters
I no hyper-parameters to tune

43 / 86



Summary: prediction of free fall trajectory

first principles modeling
I use Newton’s 2nd law, law of gravity, and friction
I and model parameters m, γ, gravitational constant
I lead to autonomous affine time-invariant system

data-driven approach
I bypasses the knowledge of the physical laws
I and prior knowledge or estimation of model parameters

I no hyper-parameters to tune

43 / 86



Summary: prediction of free fall trajectory

first principles modeling
I use Newton’s 2nd law, law of gravity, and friction
I and model parameters m, γ, gravitational constant
I lead to autonomous affine time-invariant system

data-driven approach
I bypasses the knowledge of the physical laws
I and prior knowledge or estimation of model parameters
I no hyper-parameters to tune

43 / 86



Outline

Behavioral approach

Trajectory interpolation and approximation

Generalization for nonlinear systems

Pedagogical Example: Free fall prediction

Case study 1: Dynamic measurement

Case study 2: Direct data-driven fault detection

Case study 3: Frequency response estimation

44 / 86



A textbook problem
D. G. Luenberger, Introduction to Dynamical Systems:
Theory, Models and Applications. John Wiley, 1979.

“A thermometer reading 21◦C, which has been
inside a house for a long time, is taken outside.
After one minute the thermometer reads 15◦C;
after two minutes it reads 11◦C. What is the out-
side temperature?”

According to Newton’s law of cooling, an object of higher
temperature than its environment cools at a rate that is
proportional to the difference in temperature.

45 / 86



A textbook problem
D. G. Luenberger, Introduction to Dynamical Systems:
Theory, Models and Applications. John Wiley, 1979.

“A thermometer reading 21◦C, which has been
inside a house for a long time, is taken outside.
After one minute the thermometer reads 15◦C;
after two minutes it reads 11◦C. What is the out-
side temperature?”

According to Newton’s law of cooling, an object of higher
temperature than its environment cools at a rate that is
proportional to the difference in temperature.

45 / 86



Main idea: predict the steady-state value
from the first few samples of the transient

textbook problem:
I 1st order dynamics
I 3 noise-free samples
I batch solution

generalizations:
I n ≥ 1 order dynamics
I T ≥ 3 noisy (vector) samples
I recursive computation

implementation and practical validation

46 / 86



Main idea: predict the steady-state value
from the first few samples of the transient

textbook problem:
I 1st order dynamics
I 3 noise-free samples
I batch solution

generalizations:
I n ≥ 1 order dynamics
I T ≥ 3 noisy (vector) samples
I recursive computation

implementation and practical validation

46 / 86



Main idea: predict the steady-state value
from the first few samples of the transient

textbook problem:
I 1st order dynamics
I 3 noise-free samples
I batch solution

generalizations:
I n ≥ 1 order dynamics
I T ≥ 3 noisy (vector) samples
I recursive computation

implementation and practical validation

46 / 86



Thermometer: first order dynamical system

environmental
temperature ū

heat transfer−−−−−−−−−→ thermometer’s
reading y

measurement process: Newton’s law of cooling

y = a
(
ū−y

)
heat transfer coefficient a > 0

47 / 86



Thermometer: first order dynamical system

environmental
temperature ū

heat transfer−−−−−−−−−→ thermometer’s
reading y

measurement process: Newton’s law of cooling

y = a
(
ū−y

)
heat transfer coefficient a > 0

47 / 86



Scale: second order dynamical system

ū = M
m

kd

|
|

|
|

|

y(t)

| | | | | | | | | | | | | | | |

(M + m)
d
d t

y + dy + ky = gū

48 / 86



The measurement process dynamics
depends on the to-be-measured mass

0 100

time

1

5

10

m
e

a
s
u

re
d

 m
a

s
s

M = 1

M = 5

M = 10

49 / 86



Dynamic measurement: take into account
the dynamical properties of the sensor

to-be-measured
variable u

measurement process−−−−−−−−−−−−−−−→ measured
variable y

assumption 1: measured variable is constant u(t) = ū

assumption 2: the sensor is stable LTI system

assumption 3: sensor’s DC-gain = 1 (calibrated sensor)

50 / 86



The data is generated from LTI system
with output noise and constant input

yd︸︷︷︸
measured

data

= y︸︷︷︸
true

value

+ e︸︷︷︸
measurement

noise

y︸︷︷︸
true

value

= ū︸︷︷︸
steady-state

value

+ y0︸︷︷︸
transient
response

assumption 4: e is a zero mean, white, Gaussian noise

51 / 86



using a state space representation of the sensor

x(t + 1) = Ax(t), x(0) = x0

y0(t) = cx(t)

we obtain
yd(1)

yd(2)
...

yd(T )


︸ ︷︷ ︸

yd

=


1
1
...

1


︸︷︷︸

1T

ū +


c

cA
...

cAT−1


︸ ︷︷ ︸

OT

x0 +


e(1)

e(2)
...

e(T )


︸ ︷︷ ︸

e

52 / 86



Maximum-likelihood model-based estimator

solve approximately

[
1T OT

][ û
x̂0

]
≈ yd

standard least-squares problem

minimize over ŷ , û, x̂0 ‖yd− ŷ‖

subject to
[
1T OT

][ û
x̂0

]
= ŷ

recursive implementation  Kalman filter

53 / 86



Subspace model-free method

goal: avoid using the model parameters (A, C, OT )

in the noise-free case, due to the LTI assumption,

∆y(t) := y(t)−y(t−1) = y0(t)−y0(t−1)

satisfies the same dynamics as y0, i.e.,

x(t + 1) = Ax(t), x(0) = ∆x
∆y(t) = cx(t)

54 / 86



Hankel matrix—construction of multiple
“short” trajectories from one “long” trajectory

H (∆y) :=


∆y(1) ∆y(2) · · · ∆y(n)

∆y(2) ∆y(3) · · · ∆y(n + 1)

∆y(3) ∆y(4) · · · ∆y(n + 2)
...

...
...

∆y(T −n) ∆y(T −n) · · · ∆y(T −1)



fact: if rankH (∆y) = n, then

imageOT−n = imageH (∆y)

55 / 86



model-based equation

[
1T OT

][ ū
x̂0

]
= y

data-driven equation

[
1T−n H (∆y)

][ū
`

]
= y |T−n (∗)

subspace method

solve (∗) by (recursive) least squares

56 / 86



Empirical validation

dashed — true parameter value ū
solid — true output trajectory y0

dotted — naive estimate û = G+y
dashed — model-based Kalman filter
bashed-dotted — data-driven method

estimation error: e := 1
N ∑

N
i=1‖ū− û(i)‖

(for N = 100 Monte-Carlo repetitions)

57 / 86



Simulated data of dynamic cooling process

4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

t

e(
t)

e(t)→ 0 as t → ∞ at different rates

best is the Kalman filter (maximum likelihood estimator)

58 / 86



Simulation with time-varying parameter

10 20 30 40 50
0

0.5

1

1.5

2

2.5

t

y
(t
)

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

t
e(

t)

59 / 86



Proof of concept prototype

60 / 86



Results in real-life experiment

10 20 30 40
0

1

2

3

4

5

t , sec

e(
t)

61 / 86



Summary

dynamic measurement

steady-state value prediction

the subspace method is applicable for
I high order dynamics
I noisy vector observations
I online computation

future work / open problems
I numerical efficiency
I real-time uncertainty quantification
I generalization to nonlinear systems

62 / 86



Summary

dynamic measurement

steady-state value prediction

the subspace method is applicable for
I high order dynamics
I noisy vector observations
I online computation

future work / open problems
I numerical efficiency
I real-time uncertainty quantification
I generalization to nonlinear systems

62 / 86



Summary

dynamic measurement

steady-state value prediction

the subspace method is applicable for
I high order dynamics
I noisy vector observations
I online computation

future work / open problems
I numerical efficiency
I real-time uncertainty quantification
I generalization to nonlinear systems

62 / 86



Outline

Behavioral approach

Trajectory interpolation and approximation

Generalization for nonlinear systems

Pedagogical Example: Free fall prediction

Case study 1: Dynamic measurement

Case study 2: Direct data-driven fault detection

Case study 3: Frequency response estimation

63 / 86



The problem considered is to detect
abnormal operation based on observed data

prior information about data-generating system

model-based vs direct data-driven methods

observed data collected offline and online
I dedicated experiment — known excitation signal
I “normal” operation — unknown excitation signal

64 / 86



We consider three data collection scenarios

free response / transient data

forced response with known excitation

forced response with unknown excitation

65 / 86



Recall the nonparametric representation
of an LTI system’s finite-horizon behavior

assumptions:
I wd ∈B|Td — exact offline data
I B ∈L(m,`,n) — bounded complexity LTI system
I for T ≥ `̀̀(B), rankHT (wd) = mT +n — informative data

then, the data-driven representation holds

imageHT (wd) = B|T (DDR)

66 / 86



The fault detection criterion is the distance
from online data w to system’s behavior B

dist(w ,B) := minŵ∈B|T ‖w − ŵ‖

under the assumptions, using (DDR), we have

dist(w ,B) = ‖w −HT (wd)H +
T (wd)w‖

direct data-driven computation of the distance

67 / 86



The fault detection method
has offline and online steps

offline: using wd, find orthonormal basis B forB|T

online: compute and threshold

dist(w ,B) =
∥∥(I−BB>)w

∥∥
with noisy data wd, the offline step is
I SVD truncation of HT (wd)
I structured low-rank approximation of HT (wd)
I model identification, using wd

68 / 86



With unobserved excitation signal e,
prior knowledge about e is needed

zero-mean white Gaussian (disturbance)

deterministic signal input estimation problem

the model describes wext := [ e
w ]

I e — unobserved signal
I w — observed signal

69 / 86



Finding e is a linear least-norm problem

given a model Bext that describes wext := [ e
w ]

êln := arg min(ê,w)∈Bext|T ‖ê‖

exact recovery êln = e is not possible

70 / 86



Deterministic input estimation
is linear least-squares problem

Πe / Πw — projection of wext := [ e
w ] on e / w

given, B̂ext|T = imageBext (basis for B̂ext|T )

ê := ΠeBext(ΠwBext)
+w

71 / 86



Fault detection method with unobserved input
generalized distance measure:

dist(w ,Bext) := min
(ê,ŵ)∈B|T

‖w − ŵ‖

offline: using (ed,wd), find basis Bext for Bext|T
and let Bw := ΠwBext

online: compute and threshold

dist(w ,Bext) =
∥∥(I−BwB>w )w

∥∥
72 / 86



Validation on vibrating beam with crack
subject to unobserved disturbance force

data crack loss of type of
wk

d length stiffness damage
0 0.0m 0% none
1 0.7m 100% severe
2 0.7m 36% medium
3 0.2m 100% medium
4 0.2m 36% mild

73 / 86



observed displacements left / right of the crack

hyper-parameters: T = 100, ` = 2, n = 6

offline computation: Bk using wk
d

online computation: d0,k := dist(w0,Bk )

noise with standard deviation s added to w0

74 / 86



Distances from nominal data to
models as function of noise level

75 / 86



Comments

the beam behaves like 6th order LTI system

most severe crack is not hardest to detect

effect of the sensor location

76 / 86



Outlook

assumptions:
I bounded complexity LTI system
I hyper-parameters: horizon T and lag `
I different ways to deal with noise in offline data wd

advantages:
I representation invariant distance measure
I can deal with unobserved disturbance signal
I cheap to compute online and simple to implement

other applications

77 / 86



Outline

Behavioral approach

Trajectory interpolation and approximation

Generalization for nonlinear systems

Pedagogical Example: Free fall prediction

Case study 1: Dynamic measurement

Case study 2: Direct data-driven fault detection

Case study 3: Frequency response estimation

78 / 86



Problem formulation

given: “data” trajectory (ud,yd) ∈B|Td and z ∈ C

find: H(z), where H is the transfer function of B

I. Markovsky and H. Ossareh. Finite-data nonparametric
frequency response evaluation without leakage. Automat-
ica, 159:111351, 2024.

79 / 86

https://imarkovs.github.io/publications/frest.pdf
https://imarkovs.github.io/publications/frest.pdf
https://imarkovs.github.io/publications/frest.pdf


Data-driven solution
we are interested in trajectory

w =
[

u
y

]
=
[

expz
Ĥ expz

]
∈B, where expz(t) := z t

using the data-driven representation, we have[
HL(ud)

HL(yd)

]
g =

[
z

Ĥz

]
, where z :=

[
z1

...
zL

]

which leads to the system[
0 HL(ud)

−z HL(yd)

][
Ĥ
g

]
=

[
z
0

]
(SYS)

80 / 86



Solution method: solve (SYS) for Ĥ

with L≥ `+ 1, Ĥ = H(z)

without prior knowledge of `

L = Lmax := b(Td + 1)/3c

trivial generalization to
I multivariable systems
I multiple data trajectories {w1

d , . . . ,w
N
d }

I evaluation of H(z) at multiple points in {z1, . . . ,zK } ∈ CK

81 / 86



Comparison with classical nonparametric
frequency response estimation methods

ignored initial/terminal conditions  leakage

DFT grid  limited frequency resolution

improvements by windowing and interpolation
I the leakage is not eliminated
I the methods involve hyper-parameters

82 / 86



Generalization of (SYS) to noisy data

preprocessing: rank-mL + n approx. of HL(wd)

I hyper-parameters L≥ `+1 and n
I if the approximation preserves the Hankel structure,

the method is maximum-likelihood in the EIV setting

regularization with ‖g‖1
I hyper-parameter: the 1-norm regularization parameter

regularization with the nuclear norm of HL(ŵd)

I hyper-parameters: L and the regularization parameter

83 / 86



Matlab implementation

function Hh = dd_frest(ud, yd, z, n)
L = n + 1; t = (1:L)';
m = size(ud, 2); p = size(yd, 2);

%% preprocessing by low-rank approximation
H = [moshank(ud, L); moshank(yd, L)];
[U, ~, ~] = svd(H); P = U(:, 1:m * L + n);

%% form and solve the system of equations
for k = 1:length(z)

A = [[zeros(m*L, p); -kron(z(k).^t, eye(p))] P];
hg = A \ [kron(z(k).^t, eye(m)); zeros(p*L, m)];
Hh(:, :, k) = hg(1:p, :);

end

I effectively 5 lines of code
I MIMO case, multiple evaluation points
I L = n+1 in order to have a single hyper-parameter

84 / 86



Example: EIV setup with 4th order system

dd_frest is compared with
I ident — parametric maximum-likelihood estimator
I spa — nonparameteric estimator with Welch filter

85 / 86



Monte-Carlo simulation over different
noise levels and number of samples

ea := 100% · |(|Hz |− |Ĥz |)| / |Hz |

86 / 86


	About me
	Low-rank approximation in systems and control
	Dynamic low-rank approximation
	Appendix
	Behavioral approach
	Trajectory interpolation and approximation
	Generalization for nonlinear systems
	Pedagogical Example: Free fall prediction
	Case study 1: Dynamic measurement
	Case study 2: Direct data-driven fault detection
	Case study 3: Frequency response estimation


