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Summary

Behavioral systems theory decouples the behavior of a
system from its representation. A key result is that, under

a persistency of excitation condition, the image of a Hankel
matrix constructed from the data equals the set of finite-
length trajectories of a linear time-invariant system. This
result is the cornerstone of a recently emerged approach
to direct data-driven control. This self-contained tutorial re-
views its foundations and shows how they can be leveraged
for data-driven control. We present a generic data-driven in-
terpolation / approximation formulation encompassing many
well known problem instances, among others finite-horizon
data-driven control. We embed this problem formulation into
a predictive control setting, robustify it to inexact data by
means of regularizations, and apply the resulting methods in
the context of power electronics dominated power systems.

Physics aims to describe, classify, and predict natural phenom-
ena, while engineering aims to design new or modify existing
ones. A phenomenon is characterized by some observed vari-
ables. Three common problems control engineers solve are

» simulation: predict the variables in a new experiment,
» smoothing: remove measurement noise from observations

and infer hidden/latent variables, and
» control: modify the behavior of some variables by manip-

ulating other variables.
In order to solve them, prior knowledge about the phenomenon is
needed. This knowledge is usually given by a model, which is a
dynamical system that ideally has the same behavior as the real-
life phenomenon. The model may be obtained from physical laws
(first principles modeling), observed data (black-box modeling),

or a combination of physical laws and observed data (grey-box
modeling). Modeling using observed data, possibly incorporating
some prior knowledge from the physical laws (that is, black-box
and grey-box modeling) is called system identification.

System identification is generally applicable and mostly auto-
mated (user input may be needed for tuning hyper-parameters).
Modeling from first principles in contrast is domain specific and
laborious. Identification methods allow also for an accuracy–
complexity trade-off, so that simplified approximate models can
be obtained, while modeling from first principles delivers models
consistent with data and prior knowledge (unfalsified in the sense
of [1]). Thus, system identification is often used for modeling
complex phenomena, for which models from first principles are
difficult or even impossible to obtain. The approximation aspect
of system identification, however, poses an important question:
“What is the best approximate model for design?” that is “What
is the best model for achieving our ultimate goals: simulation,
smoothing, and control?”. The question gives rise to new areas of
research, such as identification for control [2]–[4], dual control
[5]–[8], and control-regularized identification [9], [10].

Most design methods are model-based—they assume a given
model. Recently, an alternative paradigm, called data-driven,
emerged. Instead of a model, in the data-driven design paradigm,
the prior knowledge about the phenomenon is observed raw data.
The aim then is to achieve a direct map from the data to the
desired solution without identification of a model, see Figure 1.

data

model

control
model identification model-based design

direct data-driven design

FIGURE 1 The direct data-driven design paradigm aims to achieve
a map from data to result (simulated, smoothed, or control signal)
without identification of a model of the data-generating process.

1066-033X/20©2020IEEE JUNE 2022 « IEEE CONTROL SYSTEMS 1



Since ultimately both paths in Figure 1 from data to control
are based on data, the somewhat ambiguous term “data-driven”
has been used for both. Following [11], we adopt the terminology
indirect for the path going through a model and direct for the
path avoiding the model identification step. Still the separation
between direct and indirect is not sharply defined because, as
shown later, under certain conditions, the raw data can also
be viewed as a model representation. The distinction between
direct and indirect methods can be related to the type of model
the method is using. Methods using parametric models, such
as rational transfer function and state-space representation, are
indirect, while methods using non-parametric models, such as
the data-driven representation presented in the paper, are direct
(see Sidebar “Model-free vs model-based methods”).

A shift from indirect to direct design is motivated by
» technological advances: more data, storage, and computa-

tional power are available;
» system’s complexity: complex physics, environments, or

sensing modalities for which first principle models are not
available or are not useful for design; and

» new methods: advances in statistical and computational
methods for “big data”.

From a theoretical point of view, however, the main reason for a
shift from indirect to direct design is that the two-step procedure
of the indirect design may be suboptimal. Data-driven design is
an optimization problem. Given are data, prior knowledge about
the data-generating system, and a design criterion. Optimality
is with respect to the ultimate goal—simulated, predicted, or
control signal. The indirect model-based approach splits the
overall problem into two sequential sub-problems: 1) model
identification and 2) model-based design; see Figure 2.

minimize cost function(ŵ)

subject to ŵ is trajectory of model B

where B is identified from given data wd

FIGURE 2 Indirect (model-based) data-driven design is a bi-level
problem. On the outer level, the cost function, which is a function
of a signal ŵ, is minimized subject to the constraint that ŵ is a
trajectory of a model B. On the inner level, the model B is identified
from given data wd. The inner problem is also a constrained
optimization problem. Its cost function quantifies the fit of wd by
B, and the constraint restricts B to a given class of models, e.g.,
bounded complexity linear time-invariant systems with a specified
upper bound on the complexity. The indirect data-driven design
approach is thus modular but generally also suboptimal since there
is no general separation principle between these two problems.

The model identification sub-problem minimizes a
(maximum-likelihood) data fitting cost function over the
model parameters, using the data and the prior knowledge
about the true data-generating system, but not the design cost
function. The model-based design sub-problem, on the other
hand, minimizes the design cost function, using the identified
model, but not the data and the prior knowledge about the true

data-generating system. This two-step procedure is in general
suboptimal because, except for special cases, see [4, Section 4],
there is no separation principle for system identification and
model-based design. Therefore, an end-to-end direct method
may outperform indirect methods.

Additional arguments in favor of the direct approach are
incompatibility of system identification and model-based design
methods and the need of model structure selection in system
identification. One well-known source of incompatibility of iden-
tification and design methods is due to the fact that they deliver
or use as an input different parameters and different descriptions
of the uncertainty. For example, the identification method may
deliver parameters of a Box–Jenkins model with probabilistic
and parametric uncertainty bounds, while the design method may
require parameters of a state-space model with deterministic and
unstructured uncertainty bounds. A conversion of the identified
model parameters and their uncertainty estimates can be done in
some cases, however, it typically involves conservative approx-
imations and is a nontrivial problem on its own. The structure
selection problem refers to restricting the class of candidate
models. The model class can be chosen using prior knowledge
from physics (that is, grey-box modeling) or using again the
data. A typical example of structure selection is choosing the
model order [12]. The order selection problem is well studied,
however, there is still no consensus on a “best” method. Structure
selection is a critical step in parametric identification that may
introduce a bias error limiting the control performance.

The methods reviewed in this paper are based on the behav-
ioral approach to systems theory [13]. The behavioral approach is
naturally suited for the direct data-driven design because it views
the system as a set of trajectories, thus separating the notion
of a system from the one of a representation. In contemporary
machine learning language, the behavioral approach is thus non-
parametric and unsupervised since the data does not have to be
labeled into inputs and outputs.

An application of the data-driven methods to a simple but
realistic example of a free falling object in a gravitational field
is shown in Sidebar “Data-Driven Free Fall Prediction”. Free
fall prediction by model-based methods requires knowledge of
Newton’s second law of motion, the law of gravity, and the
law of friction for the modeling of the free fall phenomenon
from first principles. In addition, the model parameters—the
gravitational constant and the friction coefficient—have to be
known a priori or estimated from data. The prior knowledge of
the laws of physics and the physical parameters is not needed
for the data-driven prediction, which uses instead only observed
trajectories of free falls. Moreover, the direct data-driven method
is conceptually simple, intuitively clear, and computationally
efficient. Finally, the empirical results show that it is more robust
to noise than indirect methods using black-box modeling. These
insights carry over to more elaborate problems discussed later.

Sidebar “Classical vs Behavioral Approach” explains the
rationale for the definition of the system as a set, and Section
“Behavioral Systems Theory” introduces the notation used in
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Except for special cases there is no separation principle for system
identification and model-based design. Therefore, an end-to-end direct

method may outperform indirect methods.

DATA-DRIVEN FREE FALL PREDICTION

Consider a free falling object in a gravitational field. More
specifically, an object is thrown in the air from an initial

position y (0) = yini with an initial velocity ẏ (0) = vini. The forces
acting on the object are gravity, which is proportional to the
mass of the object, and friction with the air, which is proportional
to the velocity. The goal is to predict the trajectory y (t ) for t > 0.
Since y remains in the plane determined by the initial velocity
and the gravity, we can describe the motion in 2D instead of 3D.

Model-based methods require knowledge of the physical
parameters—mass, gravitational constant, friction coefficient,
and the laws of physics. Data-driven methods use instead data
collected from repeated experiments of throwing the object and
observing its trajectory. The question occurs: “How many exper-
iments should we carry out in order to collect enough data?” Let
N be the number of experiments and let Y = {y 1

d , . . . ,y N
d } be

the observed data. It turns out that N = 5 trajectories are suffi-
cient, provided that their initial conditions (y i

ini,v
i
ini), i = 1, . . . ,N

are linearly independent. The prediction ŷ of y is constructed
as a linear combination of the observed trajectories

ŷ :=
[
y 1

d · · · y N
d

]
︸ ︷︷ ︸

Yd


g1
...

gN

 , (S1)

where g is obtained form the system of linear equations[
y 1

ini · · · y N
ini

v 1
ini · · · v N

ini

]
g =

[
yini

vini

]
. (S2)

matching the initial conditions.
The system of equations (S2), however, is underdetermined

(4 equations, 5 unknowns). An additional equation is therefore
needed. The extra equation follows from the prior knowledge
that the acceleration ÿ is the same for all trajectories. This gives

[
1 · · · 1

]
g = 1. (S3)

Next, we show results of a simulation example with free
fall in a gravitational field. The initial conditions for the data Y

and the to-be-predicted trajectory y are randomly selected. The

continuous-time trajectories are uniformly sampled, resulting
in Td = 101 samples discrete-time signals. Zero-mean white
uncorrelated Gaussian noise is added to the data Y in order to
investigate empirically the robustness of the methods to noise.

The compared methods are 1) direct prediction, that is,
solve (S2) subject to (S3) and substitute the solution g in (S1) to
find the prediction ŷ , and 2) an indirect method using subspace
identification (n4sid of the System Identification Toolbox of
Matlab) to identify a model B̂ from the data Y , estimate
the initial conditions, and compute the prediction ŷ using the
model B̂ and the estimated initial conditions.

Figure S1 shows the relative averaged (over 100 Monte-
Carlo runs) estimation error e := 100%‖y − ŷ‖2/‖y‖2, as a
function of the noise level. The data Y consists of N = 20
experiments. Both the error and the noise level are given in
percentage of the corresponding true values. The result shows
that the direct method is more robust to the noise than the
indirect method. A possible explanation for this is that the data-
generating system when modeled as an LTI system is neutrally
stable (has a pole at 1) — a problematic case for standard
identification methods.

FIGURE S1 Direct and indirect data-driven simulation of free fall
in the presence of noise: The relative average estimation error
e of the direct method is uniformly better for all noise levels than
the one of the indirect method.
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The behavioral approach is naturally suited for the direct data-driven
design because it views the system as a set of trajectories, thus

separating the notion of a system from the one of a representation.

the paper. For an in depth study of the behavioral approach, we
recommend the textbook [14], the tutorial paper [15], its follow-
up [16], and the survey [17] of the behavioral approach from the
data-driven perspective.

Section “Data-Driven Trajectories Interpolation and Approxi-
mation” presents a generic problem that encompasses simulation,
smoothing, and tracking control, among others. The underlying
“true system” is implicitly specified by a “data trajectory”, and
the various problems are solved in this setting as equivalent inter-
polation/approximation problems. For exact (that is, noise-free)
data we present a direct data-driven solution. For inexact data we
resort to a maximum-likelihood estimator which amounts to a
non-convex optimization problem, and we approach it by either
a sequential (indirect) approach or by convex relaxations giving
rise to an `1-norm regularization.

This problem setup is further refined to the setting of fi-
nite horizon open-loop control in Section “Direct Data-Driven
Control”. The data-driven control problem is embedded in a
predictive control setting and robustified to inexact data by
means of regularizations and estimation constraint softening.
The beneficial role of regularization, applications of the method
to nonlinear systems, and practical implementation details are
discussed, such as hyper-parameter tuning, terminal ingredients
for closed-loop stability, or efficient real-time computation.

This direct data-driven control method was successfully used
across different applications. Section “Application to Control of
Power Electronics Dominated Power Systems” presents different
case studies centered around controlling power converters of
grid-connected wind-turbines. In industrial practice, both the
device, grid, and disturbance models are either proprietary or
entirely unknown, which motivates the adoption of a data-driven
approach. We exemplify different implementation aspects, such
as the choice of regularizer and hyper-parameter tuning, and
showcase advantages of the direct data-driven approach. The
code of the examples shown in the tutorial is available from:

https://imarkovs.github.io/tutorial

BEHAVIORAL SYSTEMS THEORY
The key insight leading to the behavioral approach—that a
dynamical system can be viewed as the set of the trajectories
generated by the system—is self-evident. How to use this insight
effectively, however, is not evident. This section introduces the
notation used in the rest of the paper and defines the basic notions
of linearity, time-invariance, and complexity. Then, we show

how the behavioral approach leads to practically useful methods
by deriving representations for the finite horizon behavior of
the system. For discrete-time systems, the representations of the
finite horizon behavior use only basic linear algebra.

Linear Time-Invariant Systems
The concept of a system as a set of trajectories—the behavior—
is general. It applies to discrete-event as well as continuous,
continuous-time as well as discrete-time, distributed as well as
lumped, nonlinear as well as linear, and time-varying as well as
time-invariant systems. In this paper, the focus is on continuous,
discrete-time, lumped, linear, time-invariant systems. A discrete-
time real-valued signal w is a function from the set of natural
numbers N (the time-axis) to the set of q-variate real vectors Rq.
The set of all q-variate real signals is denoted by (Rq)N. Often
we restrict the time-axis N to an interval [1,T] of finite length T
and denote the signal w restricted to the interval [1,T] by

w|T :=
(
w(1), . . . ,w(T)

)
∈ (Rq)T . (4)

With some abuse of notation, we consider w|T as both a finite
sequence (4) as well as a vector

w|T :=

w(1)
...

w(T)

 ∈ RqT .

A dynamical system postulates which signals w from the
universe of signals (Rq)N are possible to be observed. The
signals that are possible to observe are called trajectories of the
system. The set of all trajectories, denoted by B, is called the
behavior of the system. We identify the system with its behavior,
so that we use the terms system and behavior interchangeably.

In signal processing and control, we need to specify that

"a signal w is a trajectory of a system B." (5)

Using the set-theoretic notation of the behavioral approach, this
is done by w ∈B. What the system B is, in particular how it is
represented by equations, and how (5) is verified in practice is
not detailed at this level of abstraction. The representation and
implementation questions are considered at the level of solution
methods, when different computational procedures for check-
ing (5) are given (see Sections “Parametric Representations” and
“Representation of Restricted Behavior B|T”)

A dynamical system B is linear if B is a subspace of the
space of signals (Rq)N, that is,

w,v ∈B and α ,β ∈R =⇒ αw+βv ∈B.
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CLASSICAL VS BEHAVIORAL APPROACH
Traditionally, in systems and control theory a dynamical system
is viewed as a signal processor. A signal processor accepts an
input signal and produces an output signal. The rational for the
separation of the signals into input and output is causality: the
input causes the output. The input/output relation is formalized
mathematically by a function mapping the input to the output,
which leads to the ubiquitous notion of a system as an input-
output map. The input-output map is visualized as a box with
an incoming arrow for the input and an outgoing arrow for the
output, see Figure S1.

systeminput output

FIGURE S1 The classical view of a dynamical system is a map
from an input signal to an output signal.

Many man-made systems, such as filters, software func-
tions, and controllers operate as signal processors. Some phys-
ical phenomena, such as a mass driven by an external force,
can be modeled as signal processors although they do not
operate as such, that is, they do not accept an input and
produce an output by computation. Moreover, the input-output
map is deficient for modeling many man-made systems as well
as physical phenomena because it ignores the initial conditions.

Consider a mass driven by an external force. The to-be-
modeled variables are the force applied on the mass and the
position of the mass. In order to model the mass as a signal
processor, first, the to-be-modeled variables are separated into
inputs and outputs. Since the force causes the mass to move, it
is natural to choose the force as an input and the position as an
output. Note, however, that by applying a force on the mass at
some initial moment of time, the position of the mass depends
not only on the force but also on the initial position and velocity,
that is, the initial conditions. Thus, modeling the mass driven
by an external force as an input-output map ignores the initial
conditions, or equivalently, assumes zero initial conditions.

Formalizing mathematically the effect of the initial conditions
led in the 1960s to the state-space approach (see Figure S2),
which led to major results, such as the Kalman filter, linear-
quadratic Gaussian (LQG) control, balanced model reduction,
and subspace identification. Its success is due to its generality
(it can deal with multivariable linear time-varying systems under
nonzero initial conditions) and suitability for numerical computa-
tions. Conceptually, the key factor for its success is the shift of
perspective from transfer functions to state space.

systeminput output

initial conditions

FIGURE S2 Revision of the input/output map view of the system
that takes into account the effect of the initial conditions: the
output is a function of the input and the initial conditions.

Most physical phenomena (for example a mass driven by an

external force), however, do not operate as signal processors.
Also, the variables do not come separated into inputs and
outputs. Choosing an input/output partitioning, that is, choosing
which variables are inputs and which are outputs, becomes then
a part of the modeling problem. In order to pose and solve
the input/output partitioning problem, a more general setting is
needed that does not start with given inputs and outputs.

An a priori fixed input/output partition also leads to issues
when interconnecting systems [15]. In the input/output setting,
interconnection is an input-to-output assignment—outputs of
one system are fed as inputs to another system. For physical
phenomena, however, interconnection is equating variables of
one system to variables of another system. Which variables are
equated is determined by physics: inputs may have to be con-
nected to inputs and outputs to outputs. Again physics clashes
with the constraints imposed by the input/output approach.

Confronted with these issues, J. C. Willems created the
behavioral approach [13]. In the behavioral approach, a dynam-
ical system is defined as a set of trajectories—the behavior—
without imposing a priori an input/output partitioning of the vari-
ables. The change of view from a signal processor to a set of tra-
jectories has far reaching consequences. It resolves the issues
of dealing with nonzero initial conditions, choosing input/output
partitioning, and interconnecting systems. Input/output partition-
ing of the variables is also not needed for defining and studying
properties of the system, such as linearity, controllability, and
observability. The observer and controller design problems can
be defined and solved without postulating inputs and outputs. If
necessary, however, all input/output partitions of the variables
can be inferred from the behavior, that is, the input/output
approach is included in the behavioral approach.

Traditionally the system is identified with a representation,
for example, convolution, transfer function, or state space. In the
behavioral setting the system is decoupled from its representa-
tions. The behavior is all that matters, while the representations
are incidental. Properties of the system and problems involving
the system are defined in terms of the behavior. Representa-
tions are used to specify the system, check its properties, and
for solving identification, filtering, and control problems that aim
at or involve the system. The separation of the system from its
representations is at the core of the behavioral approach.

"The operations allowed to bring model equations in
a more convenient form are exactly those that do not
change the behavior. Dynamic modeling and system
identification aim at coming up with a specification of
the behavior. Control comes down to restricting the
behavior." J. C. Willems [15]

The key features distinguishing the behavioral setting from
the classical one—defining the system as a set of trajectories
and separation of the system from its representations—are two
sides of the same coin. Incidentally these key features of the
behavioral approach also make it perfectly suited for the newly
emerged data-driven paradigm in systems and control.
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The definition makes no assumptions about initial conditions,
given input/output partitioning of the variables, and controllabil-
ity. In particular, the definition applies to autonomous systems.

The system B is time-invariant if it is invariant under the
action of the shift operator

(σw)(t) := w(t+ 1),

that is, σB = B. Contrary to linearity, there is no simple
geometrical interpretation of the time-invariance. However, time-
invariance manifests itself in representations. We denote the set
of linear time-invariant (LTI) systems with q variables by L q.

Parametric Representations
A subclass of the LTI class, called finite-dimensional LTI sys-
tems, admits a state-space representation. A state-space repre-
sentation is an example of a parametric representation, defined
by a finite set of parameters. In the classical setting, a parametric
representation is the system. In the behavioral setting, it is just
a way of representing the system.

For a permutation Π ∈ Rq×q and an integer m, 0 < m < q,
define a partitioning of the variables w(t) ∈Rq into u(t) ∈Rm

and y(t) ∈Rq−m via [
u
y

]
:= Π−1w. (6)

Let Πu be the projection of w on the u variable, that is,
Πuw := u. Acting on a set, Πu projects all elements in the set,
which results in a new set. The partitioning (6) is an input/output
partitioning of B if ΠuB = (Rm)N, that is, u is a free
variable (which means that B admits any signal u∈ (Rm)N), the
dimension of u is maximal, and the “past” of y does not depend
on the “future” of u (causality). The number of inputs m(B)

is invariant of the input/output representation and is therefore a
property of the system B.

An input/state/output representation of a finite-dimensional
LTI system B is a vector difference/algebraic equation for an
auxiliary variable x ∈ (Rn)N, called the state, and the output
y ∈ (Rp)N that is first order in x and zeroth order in y:[

σx
y

]
=

[
A B
C D

][
x
u

]
. (7)

The behavior associated with (7) is the solution set of (7) (that
is, the trajectories (u,x,y) compatible with (7)) projected on w

Bss(A,B,C,D,Π) := {w = Π
[u

y
]
∈ (Rq)N |

there is x ∈ (Rn)N, such that (7) holds}. (8)

With some abuse of notation, we refer to B =Bss(A,B,C,D,Π)

as an input/state/output representation of the system B.
The parameters of Bss(A,B,C,D,Π) are the permutation

matrix Π∈Rq×q, which defines the input/output partitioning (6),
and the block matrix

[A B
C D
]
∈ R(n+p)×(n+m), which defines

equation (7). For an autonomous system (8) becomes

Bss(A,C) := {y ∈ (Rp)N | there is x ∈ (Rn)N,

such that σx = Ax, y = Cx}.

The dimension n of the state x is the order of the representation.
The fact that it is finite is a direct consequence of the finite-
dimensionality of the system.

The input/state/output representation is called minimal if
its order is as small as possible over all input/state/output
representations of the system. The order n(B) of a minimal
input/state/output representations of the system B is independent
of the representation and is called the order of the system B.

There are parametric representations of finite-dimensional
LTI systems that do not impose an input/output partitioning
of the variables. One of them—the kernel representation—is
presented in the Sidebar “Kernel representation and input/output
partitions”. The kernel representation is a difference equation
representation of the system. The degree of the difference
equation in a kernel representation is called the lag ` of the
representation, because it equals the number of lags (or delays)
in the equation. The minimal lag `(B) over all kernel repre-
sentations of the system is invariant of the representation and
is called the lag of the system. The lag `(B) is equal to the
observability index of the state-space representation (8), i.e., the
smallest integer i, for which the extended observability matrix
with i block rows

Oi(A,C) :=


C

CA
...

CAi−1

 ∈Rpi×n (9)

achieves rank equal to n(B). In general, `(B) ≤ n(B). In the
single-output case, `(B) = n(B).

As in the classical setting, the order and the lag of the
system are measures of the model’s complexity. The number
of inputs, however, also determines the complexity. A finite-
dimensional system with more inputs is more complex than a
system with fewer inputs irrespective of their orders and lags.
Therefore, we define model’s complexity as the ordered triple
c(B) :=

(
m(B),`(B),n(B)

)
— number of inputs, lag, and

order — and denote with L
q
c the set of systems with complexity

bounded by c = (m,`,n), that is, at most m inputs, lag at most `,
and order at most n. The rationale for this definition will become
clear in the next section when we derive a formula for the
dimension of B restricted to a time interval.

Representation of Restricted Behavior B|T
Consider the restriction

B|T := {w|T | w ∈B }

of an LTI system B ∈L q to the interval [1,T]. By the linearity
of B, B|T is a subspace of (Rq)T . Its dimension depends on the
model’s complexity. First, we present an explicit representation
of the restricted behavior B|T of a finite-dimensional LTI system
in terms of the parameters A,B,C,D of a state-space representa-
tion. Then, we show alternative non-parametric representations
of B|T in terms of a trajectory wd of the system B that are
used in direct data-driven methods [17].
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KERNEL REPRESENTATION AND INPUT/OUTPUT
PARTITIONS

A finite-dimensional LTI system B ∈ L q admits a kernel
representation

B = ker R(σ) := {w ∈ (Rq )N | R(σ)w = 0}, (S10)

where the operator R(σ) is defined by a k×q polynomial matrix

R(z) = R0 +R1z + · · ·+R`z `

=


R1(z)

...

Rk (z)

=


R1

0 +R1
1 z + · · ·+R1

`1
z `1

...

Rk
0 +Rk

1 z + · · ·+Rk
`k

z `k

 .
(S11)

The representation (S10) is called minimal if the number of
equations k is as small as possible over all kernel represen-

tations of B. In a minimal kernel representation the number of
equations k is equal to the number of outputs p. Also the lag
` := deg R is minimal over all kernel representations of B.

Let B = ker R(σ) be a minimal kernel representation of B.
The partitioning (6) is an input/output partitioning of B if and
only if

[
Q −P

]
:= RΠ, with P ∈Rp×p [z ] non-singular, where

Rp×p [z ] is the set of p×p matrix polynomials [S1]. The resulting
input/output representation is

Bi/o(P ,Q ,Π) = {Π
[u

y
]
| Q(σ)u = P(σ)y }. (S12)

REFERENCES
[S1] J. C. Willems, “Paradigms and puzzles in the theory of dynamical
systems,” IEEE Trans. Automat. Contr., vol. 36, pp. 259–294, 1991.

Using State-Space Representation
Let Bss(A,B,C,D,Π) be a minimal input/state/output represen-
tation of a finite dimensional LTI system B. For any trajectory
w ∈B|T , there is an initial state x(1) = xini ∈Rn, such that

w(t) = Π
[

u(t)
y(t)

]
, x(t+ 1) = Ax(t)+Bu(t),

y(t) = Cx(t)+Du(t), for t = 1,2, . . . ,T.

This system of equations can be written more compactly as

w = ΠT

[
0mT×n ImT

OT(A,C) CT(H)

]
︸ ︷︷ ︸

MT (A,B,C,D,Π)∈RqT×(n+mT)

[
xini
u

]
,

where ΠT ∈RqT×qT is a permutation matrix (determined by Π),
OT(A,C) ∈RpT×n is the extended observability matrix (9), and

CT(H) :=


H(0) 0 · · · 0

H(1) H(0)
. . .

...
...

. . .
. . . 0

H(T−1) · · · H(1) H(0)

 ∈RpT×mT ,

is the convolution matrix with T block rows constructed from
the impulse response of the system

H(0) = D, H(t) = CAt−1B, for t = 1,2, . . . (13)

It follows that

B|T = image MT(A,B,C,D,Π). (14)

The state-space representation of the restricted behavior (14) is a
map from the initial condition xini and the input u to a trajectory
w ∈ B|T . Vice versa, to every w ∈ B|T , T ≥ `, correspond
unique xini and u. The representation (14) shows that, for T ≥ `

dim B|T = rankMT(A,B,C,D,Π) = mT +n. (15)

Here, we used the minimality of the representation and the fact
that, for T ≥ `, OT(A,C) is full column rank.

Formula (15) explains why c = (m,`,n) is a measure of
the model’s complexity. Intuitively, the system’s complexity is

related to its size—the more trajectories B allows, the more
complex it is. For LTI systems, the complexity is then determined
by the dimension of B. Formula (15) shows that the dimension
of B|T is an affine function of T with offset n and slope m. For
large T, meaning T ≥ `, the complexity is therefore dominated
by the number of inputs m. For systems with equal number of
inputs, the more complex system is the one with the larger order.

Using Exact Raw Data
In this section, we consider an exact finite trajectory wd ∈ (Rq)Td

of the system B as given data. (The subscript “d” stands for
“data”.) The problem presented is to find conditions under which
the data wd represents the system B exactly. Later on, we
consider the questions of how to design an experiment for
collecting data that satisfies the required conditions and methods
for dealing with inexact data.

Given a “long” trajectory wd ∈ (Rq)Td of a system B ∈L q,
multiple “short” L-samples-long, with L < Td, trajectories of B

can be created by exploiting the shift-invariance property. A
systematic way of doing this is by using the Hankel matrix

HL(wd) :=


wd(1) wd(2) · · · wd(Td−L+ 1)
wd(2) wd(3) · · · wd(Td−L+ 2)

...
...

...

wd(L) wd(L+ 1) · · · wd(Td)

 .

The columns of HL(wd), viewed as L-samples long signals, are
trajectories of B|L. Combining this fact with (15), it follows that
the rank of HL(wd) is bounded by dim B|L = mL+n.

Consider another T-samples long trajectory w ∈B|T of B

with T > ` and T ≤ Td. For any L ∈ [`+ 1,T], we have that

rank
[
HL(wd) HL(w)

]
≤mL+n. (16)

Inequality (16) expresses the system-theoretic fact that the sig-
nal w is a trajectory of the system B that generated wd, as
an algebraic condition—rank deficiency of a matrix constructed
from w and wd. Note that the data-generating system B is
implicit in the Hankel structure and the rank constraint of (16).
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Therefore, (16) can be used in data-driven signal processing and
control for checking the constraint w ∈B, where B ∈ L q is
the unknown data-generating system implicitly specified by wd,
without involving a representation of the system B.

For any wd ∈B|Td and L ∈ [1,Td], we have that

image HL(wd) ⊆B|L. (17)

We call wd generalized persistently exciting or order L if

rankHL(wd) = mL+n. (18)

For L > `, due to (15), the generalized persistency of excitation
condition (18) implies that (17) holds with equality, that is,

B|L = image HL(wd). (19)

Moreover, (18) is a necessary and sufficient condition for (19)
[17]. We refer to the representation (19) of the restricted behavior
B|L as a finite-horizon data-driven representation of the system
B because it is expressed directly in terms of the raw data wd.

Under the generalized persistency of excitation condi-
tion (18), the rank condition (16) holds with equality. Note
that in the special case L = T, the matrix in (16) becomes[
HT(wd) w

]
, which implies that

HT(wd)g = w, (20)

for some g ∈RTd−T+1. Since w is an arbitrary element of B|T ,
(20) is equivalent to (19). The vector g parametrizes B|T in a
similar way as the initial condition xini and the input u parameter-
ize B|T in (14). However, contrary to the parameterization (14),
the data-driven parameterization (19) is in general redundant—
given w ∈B|L, g is not unique.

Choosing the hyper-parameter L, `+ 1≤ L≤ T is exploited
in Section “Data-Driven Trajectories Interpolation and Approx-
imation” for development of different methods. The most basic
method for solving data-driven problems follows from (20), that
is, we choose L = T. Then, the constraint w ∈B|T is equivalent
to the existence of a solution g ∈ RTd−T+1 of the system of
linear equations (20).

The data-driven representation (19) and the generalized per-
sistency of excitation condition (18) can be used in case of data
consisting of multiple trajectories w1

d, . . . ,wN
d by replacing the

Hankel matrix HL(wd) with the mosaic-Hankel matrix [18]

HL(w1
d, . . . ,wN

d ) :=
[
HL(w1

d) · · · HL(wN
d )
]

.

Also, (16) has the following generalization for the case when
the data consists of multiple trajectories:

rankHL(w1
d, . . . ,wN

d , w) ≤mL+n.

The mosaic-Hankel matrix structure is visualized in Figure 6.
Other data structures used in data-driven control (presented later)
are the page matrix [19] and the trajectory matrix [20]. They are
special cases of the mosaic-Hankel matrix.

An alternative result to (18) that guarantees the data-driven
representation (19) is presented in [21]. It is historically the
first result that gives sufficient conditions for a data-driven
representation and became known as the fundamental lemma in
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FIGURE 6 A mosaic-Hankel matrix is a block-matrix with Hankel
blocks. The color-codded 5×12 mosaic-Hankel matrix shown in the
figure has two 5×6 scalar Hankel blocks next to each other.

recognition of its importance for system identification and data-
driven control [17]. The fundamental lemma was motivated by
and has its origin in subspace system identification [22]. An early
identifiability condition used in subspace identification involves
a state sequence associated with the trajectory wd. The need for
general verifiable-from-data identifiability conditions led J. C.
Willems and co-workers to the fundamental lemma. Although the
result was envisaged as input design for identifiability, it opened
the path to direct data-driven simulation and control [23] as well
as to system-theoretic interpretation of subspace identification
methods [24]. An overview of the fundamental lemma and its
generalizations is given in Sidebar “The fundamental lemma”.

Transformations Among Representations
Methods for checking properties of the system and solving
problems involving the system are based on representations of
the system. Different representations lead to different methods
with possibly different numerical properties. Although by design
they compute the same solution, their computational complexity
and numerical accuracy may differ. It is important therefore to
have the flexibility of switching from one representation of the
system to another and then use different solution techniques.

Transformations among representations is an essential part
of systems theory. The abundance of representations creates
many possible paths. Each direct link from one representation
to another is a system-theoretic problem. Figure 7 shows the
connections among the raw data wd (which, as we’ve seen,
under certain conditions can be used as a representation of
the system), the impulse response, kernel, input/output, and
input/state/output representations. The raw data is the least
structured (and therefore most redundant) way of representing
the system. The impulse response representation is valid for any
LTI system, however, its description—the impulse response—is
in general infinite. The impulse response representation is thus
non-parametric. The kernel, input/output, and input/state/output
representations are finitely parametrizable but are limited to
finite-dimensional LTI systems. The input/state/output represen-
tation is more structured than the kernel representation because
it displays, in addition to the finite dimensionality structure, the
state and input/output structure of the system.

The transitions from exact raw data to the other repre-
sentations are exact/deterministic identification problems. The
transitions among the representations fall into the realm of
what is called system analysis. In general, going from a less
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THE FUNDAMENTAL LEMMA

The problem studied in [21] is to find for a given finite trajec-
tory wd ∈ (Rq )Td of an LTI system B and a given natural

number L, 1 ≤ L ≤ Td, conditions under which the "windows"
(trajectory snippets) of length L

wd(1)
...

wd(L)

 ,


wd(2)

...

wd(L+1)

 , . . . ,


wd(Td−L+1)

...

wd(Td)

 , (S21)

constructed from the trajectory wd span the space B|L of all
possible trajectories of length L, which the system can produce.
A compact way of writing that (S21) spans B|L is the data-
driven representation (19). The problem addressed in [21] is
then: "Under what conditions does (19) hold true?"

The solution given in [21] assumes a given input/output
partitioning w =

[u
y
]

of the variables and provides sufficient
conditions only: (19) holds true assuming that

A1: B is controllable (in the behavioral sense, see [S1,
Definition V.1]) and

A2: ud is persistently exciting of order L + n, that is,
HL+n(ud) is full row-rank.

Assumption A1 is not verifiable from the data, and assump-
tion A2 requires prior knowledge of the order n of the data-
generating system B. The need to assume input/output par-
titioning and controllability as well as the sufficiency but not
necessity of A1 and A2 make the result of [21] more restrictive
than (18). Obtaining conditions for (19) in terms of the input ud is
motivated from the input design perspective [S2]–[S5]. Assump-
tion A2 can be used for choosing the input so that the data wd

is guaranteed to ensure (19) for any initial condition.
As stated in [21], the extra persistency of excitation of

order n in assumption A2 that is needed beyond the obvious
persistency of excitation of order L is the crux of the result:

“The interesting, and somewhat surprising, part of
Theorem 1 [the fundamental lemma] is that persis-
tency of excitation of order L + n is needed in order
to be able to deduce that the observed sequences
(S21) of length L have the “correct” annihilators and
the “correct” span. In other words, we have to assume
a “deeper” persistency of excitation on ud than the
width of the windows of wd which are considered.”

The original publication [21] as well as subsequent ones using
and generalizing the result do not given an explanation for this
crucial fact. Also, it was not known how conservative assump-
tions A1 and A2 are. These questions are addressed in [S6],
where an alternative constructive proof of the fundamental
lemma is given. It shows that assumptions A1 and A2 are
nonconservative in the single-input case and characterizes the

nongeneric case in which persistency of excitation of order more
than the time horizon is needed, relating it to special initial
conditions.

The fundamental lemma was conceived as a theoretical
result in system identification; however, due to its applicability in
data-driven analysis and control a number of applications and
generalizations appeared. We mention the extensions for

» multiple trajectories [S7] and other matrix structures [25],
» uncontrollable systems [26], [S8], and
» other model classes: affine [27], linear parameter-

varying [S9], linear time-varying [S10], flat [S11], de-
lay [S12], finite impulse response Volterra [S13], Wiener-
Hammerstein [S14], and bilinear [S15].
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MODEL-FREE VS MODEL-BASED METHODS

The term "model-free" is sometimes used in the literature
as a synonym for what we call in this paper "direct data-

driven". The qualifier model-free, however, is ambiguous and
may be misleading, because it depends on the notion of a
model. If a model is understood in the sense of a parametric
representation, such as the state-space representations (8),
then direct data-driven methods based on the data-driven rep-
resentation (19) are indeed model-free. However, if a model
is understood in the sense of a set of trajectories, then direct
data-driven methods also use a model. Indeed, the data-driven
representation (19) uses image HL(wd) as a model of the data-
generating system over the horizon [1,L].

The key question in the model-free vs model-based dilemma
is rather how the methods impose constraints on the trajec-
tory ŵ (see Figure 2). The parametric representations (8)
and (S10) restrict ŵ by restricting the model’s complexity (typi-
cally fixing the number of inputs and upper bounding the order

or the lag). The data-driven representation (19), in contrast,
"lets the data speak" by not restricting a priori the model’s
complexity. The only constraints that (19) imposes on ŵ are
the ones already present in the data wd. As shown in Sections
"Models for Inexact Data wd" and "Direct Data-Driven Control",
this freedom becomes an issue when the data is not exact
because, generically, image HL(wd) = RqL , and therefore (19)
does not impose constraints. In this case, constraints should be
enforced in order to avoid the trivial model B̂|L = (Rq )L .

One approach of avoiding the trivial model is to impose an
upper bound on the model complexity. This leads to parametric
model representations and nonconvex optimization problems
for the parameters. Another approach is to use unstructured
low-rank approximation, which leads to subspace-type meth-
ods. A third approach is to impose soft constraints by regulariza-
tion terms in the cost function. The pros and cons of the different
approaches are further discussed in the article.

parametric

non-parametric

kernel (S10) input/output (S12) state-space (8)

impulse response (13)

exact raw data wd (19)
(deterministi

c) subspace identification(exact/deterministic) identification

realization

state constructionI/O partition

FIGURE 7 Representations of dynamical systems and some transformations among them: The structure of the system that is implied by
the representations grows from bottom to top (raw data, non-parametric, parametric) and from left to right (no separation of the variables,
input/output partition, state-space). Least structured is the raw data and most structured is the input/state/output representation. The
transformations from exact raw data to the other representations are exact/deterministic identification problems. The transition from the
impulse response to the state-space representation is the realization problem. The transformations among the parametric representations
involve converting the parameter vector of one representation into the parameter vector of another representation.

structured representation, for example, impulse response, to
a more structured one, for example, state-space makes the
problem harder. The problem of transition from the impulse
response to an input/state/otuput representation of the system
was solved in the 1960’s by R. Kalman and is known as the
realization problem [28]. The realization problem involves state
construction. The state is nonunique and may be nonminimal,
which makes the realization problem interesting and challenging.
The transition from kernel representation to an input/output
and input/state/output representations involves choosing an in-
put/output partitioning, see the Sidebar “Kernel representation
and input/output partitions”.

Summary: The behavioral approach detaches the system from
its representations. Properties of the system and problems involv-
ing the system are defined then in terms of the behavior. This
leads to new, more general, and more intuitive definitions and
problem formulations. Solution methods, however, necessarily

use representations of the system. Different representations lead
to different methods. The separation of the problem formulation
from its solution methods reveals the links among the methods
and helps the discovery of new methods. In particular, (19) led
to new data-driven signal processing and control methods.

We’ve presented three characterizations of the constraint that
a finite signal w ∈ (Rq)T is a trajectory of an LTI system B.
First, using a state-space representation B(A,B,C,D,Π) of B

w ∈B|T ⇐⇒ there is xini ∈Rn, such that

w = MT(A,B,C,D,Π)

[
xini
u

]
.

(22)

Second, using a trajectory wd ∈B|Td that satisfies the general-
ized persistency of excitation condition (18) for an L∈ [`+1,T],

w ∈B|T ⇐⇒ rank
[
HL(wd) HL(w)

]
= rankHL(wd).

(23)

10 IEEE CONTROL SYSTEMS » JUNE 2022



Third, using a trajectory wd ∈B|Td that satisfies the generalized
persistency of excitation condition (18) for L = T,

w ∈B|T ⇐⇒ there is g ∈RTd−T+1, such that

w = HT(wd)g.
(24)

Methods using the state-space representation (22) require
system identification, which is typically a nonconvex optimiza-
tion problem. The direct data-driven methods presented in the
following sections use the rank constraint (23) and the system of
equations (24). The approach using the rank constraint (23) leads
to structured low-rank matrix approximation and completion
problems [29], which are nonconvex optimization problems. The
approach using the system of equations (24) leads to regularized
optimization problems, which are convex [11]. This suggests
choosing (24). For L < T, however, the rank constraint (23)
loosens the generalized persistency of excitation condition. In
the extreme L = `+1, (23) reduces to parametric (kernel repre-
sentation) identification of the data-generating system. Thus, the
hyper-parameter L in (24) controls a transition from a model-
based representation to the data-driven representation (24).

DATA-DRIVEN TRAJECTORIES INTERPOLATION
AND APPROXIMATION
This section presents a generic problem that includes simulation,
smoothing, and control as special cases. First, we motivate
and formally define the generic problem. Then, we present a
direct data-driven solution method based on the data-driven
representation (19). The key assumption is that the data tra-
jectory wd is exact and satisfies the generalized persistency of
excitation condition (18). Finally, we present methods for inexact
data wd, where the inexactness is due to measurement errors,
disturbances, or the true data-generating system not being LTI.

Problem Formulation
Interpolation and approximation of functions are basic problems
in science and engineering. The solution is sought within a given
class of functions. The reader may be familiar with the polyno-
mial, piece-wise linear, and spline interpolation/approximation.
The class of functions that we consider here is trajectories of
finite-dimensional LTI systems. For example, in case of a scalar
signal, the problem considered is interpolation via a sum-of-
polynomial-times-exponential functions.

The interpolation problem aims to recover missing samples of
a partially specified trajectory. Prediction is a special interpola-
tion problem where “past” samples of a trajectory are given and
“future” samples are missing/to-be-found. In the interpolation
problem the given data is exact. If this is not the case, for
example due to noise, approximation of the data is needed.
When the data-generating system is a priori given, the problem is
model-based, and when the system is not given (but is implicitly
specified by another trajectory), the problem is data-driven.

In order to define the problem, we introduce notation for
indicating arbitrary missing elements in a signal w ∈ (Rq)T . For

a vector I of K indices, w|I :=
[
wI1 · · · wIK

]>
is the subvector

of w ∈ (Rq)T with indices I1, . . . , IK . Similarly, HT(wd)|I is
the submatrix of HT(wd) with row indices I1, . . . , IK . In what
follows, Igiven denotes the indices of the given elements, and
Imissing denotes the indices of the missing elements.

The interpolation/approximation problem considered

minimize over ŵ ‖w|Igiven − ŵ|Igiven‖2
W

subject to ŵ ∈B|T
(25)

is an optimization problem with decision variable the inter-
polant/approximant ŵ ∈ (Rq)T of the given data w|Igiven and cost
function the weighted least-squares approximation error

‖w|Igiven − ŵ|Igiven‖2
W := (w|Igiven − ŵ|Igiven )

>W(w|Igiven − ŵ|Igiven ),

defined by a positive definite weight matrix W. When W is
diagonal the problem is element-wise weighted. Larger values
of weights in an element-wise weighted problem enforce better
approximation of the corresponding data elements. In the limit of
weights going to infinity, exact interpolation conditions w|Iexact =

ŵ|Iexact are approximately enforced for the set of elements w|Iexact

corresponding to the large/infinite weights. Dealing with exact
interpolation conditions by replacing infinite weights by large
finite values, however, is not advised. Apart from involving an
ad hoc approximation, it leads to numerical issues due to ill-
conditioning of the resulting computational problem. The correct
way of dealing with exact interpolation conditions is to solve (25)
with the equality constraint w|Iexact = ŵ|Iexact [30, Section 2].

If an exact interpolant ŵ exists, then w|Igiven = ŵ|Igiven , and the
approximation error ‖w|Igiven− ŵ|Igiven‖W is zero. An exact inter-
polant may not be unique. Also, equality constraints may cause
infeasibility, that is, a lack of solution. The possibility to recover
missing data, approximate inexact data, and interpolate exact
data makes problem (25) general. Sidebar “Simulation, smooth-
ing, and control as trajectory interpolation/approximation” shows
how classical problems fit into the problem formulation (25).

The constraint ŵ ∈ B|T in (25) imposes that ŵ is a valid
trajectory. In the model-based version of the problem, the
system B is a priori given, while in the data-driven version of
the problem B is implicitly specified by another given trajectory
wd ∈B|Td . We consider two scenarios for the data trajectory wd:

1) wd is exact, that is, wd ∈B|Td , where B ∈L
q
c , and

2) wd is inexact, that is, wd is not a trajectory of a bounded
complexity LTI system.

With exact data wd satisfying the generalized persistency of
condition (18), the model-based and the data-driven versions of
the interpolant/approximant problem (25) are equivalent. More-
over, the problem is convex, so that data-driven and model-based
methods yield the same solution, despite different numerical
properties of the methods.

The equivalence between model-based and data-driven meth-
ods does not hold when wd is inexact. An approximation of the
true data-generating system B by a model B̂ ∈L

q
c is needed. It

turns out that this modification makes the problem nonconvex.
All currently known methods can be viewed as heuristics for
solving the underlying nonconvex optimization problem.
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SIMULATION, SMOOTHING, AND CONTROL AS
TRAJECTORY INTERPOLATION/APPROXIMATION
The idea that simulation, smoothing, and control can be posed
and solved as missing data estimation problems was put
forward in [S1]. Here we show how these problems fit in
the interpolation / approximation problem (25) for particular
choices of the trajectory w . Apart from the input/output par-
titioning w =

[u
y
]
, we split the time axis into “past” wini—the

first Tini samples—and “future” wf—the remaining Tf samples.
The past/future partition allows us to take into account initial
condition in a representation free manner, see Figure S1. Thus,
in the problems we specify the four elements of w—uini, yini, uf,
and yf—with their type:

» missing, in which case it is interpolated by ŵ ,
» inexact, in which case it is approximated by ŵ , or
» exact, in which case it is matched exactly in ŵ .

A summary of the examples is given in Table S1.

TABLE S1 Simulation, smoothing, and tracking control
are interpolation/approximation problems (25) for particular
choices of the trajectory w =

[uini
yini

]
∧
[uf

yf

]
, with uini, yini, uf,

and yf missing, inexact, or exact.
uini yini uf yf

simulation (S27) exact exact exact missing
smoothing (S28) missing missing inexact inexact
control (S29) exact exact missing inexact

Simulation
In order to define simulation in the behavioral setting, we need to
specify initial condition in a representation-free manner, that is,
on the level of trajectories without a state-space representation.
This is done by a pre-fix trajectory wini to the trajectory wf,
for which the initial condition has to be specified. The idea is
visualized in Figure S1 and formalized in Lemma 1.

t

wf

Tini T = Tini +Tf

wini

w = wini ∧wf

wf

≥ `

FIGURE S1 The initial condition for a trajectory wf ∈ B|Tf
is

specified by a pre-fix trajectory wini ∈B|Tini of length Tini ≥ `.

Lemma 1 (Initial condition specification [23])
Let B ∈ L q admit an input/output partition w =

[u
y
]
. Then, for

any given wini ∈BTini with Tini ≥ `, where ` is the lag of B, and

uf ∈ (Rm)Tf , there is a unique yf ∈ (Rp)Tf , such that

wini ∧ (uf,yf) ∈B|Tini+Tf , (S26)

where wini ∧wf is the concatenation of wini and wf.

The simulation problem is defined as follows: Given a sys-
tem B, an input/output partitioning w =

[u
y
]
, a “future” input

uf ∈ (Rm)Tf , and a pre-fix trajectory wini ∈ (Rq )Tini ,

find yf ∈ (Rp)Tf , such that (S26) holds. (S27)

(S27) is an interpolation problem (25) for a partially specified
trajectory w =wini∧(uf,yf), with wini and uf exact and yf missing.

Smoothing
The errors-in-variables Kalman smoothing problem [S2] is de-
fined as follows: Given an LTI system B and a “noisy” trajectory
wf = w f + w̃f, where w ini ∧w f ∈ B|Tini+Tf

for some w ini and a
zero mean, white, Gaussian noise w̃f with covariance matrix that
is a multiple of the identity, find w ini. The maximum-likelihood
estimation problem for the initial condition w ini is then:

minimize over ŵini and ŵf ‖wf− ŵf‖22
subject to ŵini ∧ ŵf ∈B|Tini+Tf

.
(S28)

This problem is an interpolation/approximation problem (25),
where the initial condition wini is missing and the given future
trajectory wf is approximated; see Table S1.

Modifications of the smoothing problem where a disturbance
signal is included are possible and fit into the setting of (25).

Control
In the errors-in-variables Kalman smoothing problem (S28),
the data wf is a "noisy" trajectory of the system B and the
goal is to estimate the initial condition wini. If wf is a given
reference signal (which is not necessarily a trajectory of B),
(S28) becomes a least-squares tracking problem. In the control
setup, the aim is to obtain the signal ûf, which is the open-loop
optimal control. Typically the reference input uf is zero, so that
the minimum energy control is aimed at. The initial condition wini

is unspecified, which means unknown initial condition.
A modification of the problem where the initial condition is

specified and the input is unconstrained is

minimize over ûf and ŷf ‖yf− ŷf‖22
subject to wini ∧ (ûf, ŷf) ∈B|Tini+Tf

.
(S29)

(S29) is an interpolation/approximation problem (25) with wini

exact, ûf missing, and yf to be approximated; see Table S1.
The least-squares tracking problem is further refined, gener-

alized, and discussed in Section "Direct Data-Driven Control".

REFERENCES
[S1] I. Markovsky, “A missing data approach to data-driven filtering and
control,” IEEE Trans. Automat. Contr., vol. 62, pp. 1972–1978, April 2017.
[S2] I. Markovsky and B. De Moor, “Linear dynamic filtering with noisy
input and output,” Automatica, vol. 41, no. 1, pp. 167–171, 2005.
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Solution in Case of Exact Data wd
We start with the data-driven version of the general interpola-
tion/approximation problem (25) assuming exact data wd ∈B|Td .
The given data is w|Igiven , i.e., the specified elements of the T-
samples long trajectories w, and the whole Td-samples long
trajectory wd. Consider also a user defined hyper-parameter L,
which is an integer in the interval `+ 1 ≤ L ≤ T. Assuming
the generalized persistency of excitation condition (18) and
using (16) for the constraint of (25), we obtain

minimize over ŵ ‖w|Igiven − ŵ|Igiven‖2
W

subject to rank
[
HL(wd) HL(ŵ)

]
= mL+n,

(30)

which is a mosaic-Hankel structured low-rank matrix completion
and approximation problem [29]. Due to the rank constraint, (30)
is nonconvex. For L = T, however, using (20) for the constraint
of (25), the problem becomes a linear least-squares problem

minimize over g ‖w|Igiven −HT(wd)|Igiven g‖2
W . (31)

In general, a minimizer g of (31) is not unique. However,
any g that minimizes (31) gives rise to the same approxima-
tion/interpolation ŵ = HT(wd)g of the data w|Igiven . The non-
uniqueness of g is effectively used in the case of noisy data by
regularization techniques.

In case of a positive definite weight matrix W, using the
least-norm minimizer (computed with the pseudo-inverse †)

g =
(√

WHT(wd)|Igiven

)†√Ww|Igiven ,

we obtain a closed-form expression for a solution of (25)

ŵ = HT(wd)
(√

WHT(wd)|Igiven

)†√Ww|Igiven . (32)

If the solution (25) is not unique, the set of all possible solutions
is affine and can be characterized explicitly, see [31].

The data-driven interpolation/approximation method (32) has
no hyper-parameter. Although the model complexity c = (m,`,n)
is needed for checking the generalized persistency of excitation
condition (18), the method does not depend on it. This suggests
that the direct data-driven method (32) has an advantage over
indirect methods based on parametric model representations
for high-complexity systems. This is confirmed empirically in
Sidebar “Data-driven simulation of high-order system”.

Models for Inexact Data wd
By “wd inexact” we mean that there is no bounded complexity
LTI system B for which wd is a trajectory. Prior knowledge
about wd is needed then. This prior knowledge is a model.
Three commonly used models reflect the source of inexactness—
measurement noise, disturbance, and nonlinear dynamics:

1) errors-in-variables—additive measurement noise on wd,
2) auto-regressive moving-average exogenous (ARMAX) —

unobserved disturbances acting on the system and mea-
surement noise on the output yd, and

3) nonlinear time-varying system—the data-generating sys-
tem is not bounded complexity LTI.

In the errors-in-variables model, the system B is bounded com-
plexity LTI, however, wd is observed with measurement noise

that is modeled as a stochastic process. In the ARMAX model,
the system B has an additional unobserved input, called distur-
bance, and the output yd is observed with measurement noise.
The disturbance and the output noise are modeled as stochastic
processes. In the stochastic setting of the errors-in-variables and
ARMAX models, the goal is to obtain the maximum-likelihood
estimator for the true value of the signal wd. As shown next for
the errors-in-variables setup, the maximum-likelihood estimator
is defined by a nonconvex optimization problem.

Consider the interpolation/approximation problem (25) in the
errors-in-variables setup wd = wd+ w̃d, where wd ∈B|Td is the
true value and w̃d is a zero mean white Gaussian measurement
noise [33]. We assume that the model complexity c = (m,`,n) is
a priori given. Thus, the prior knowledge is concisely written as
B ∈L

q
c . The maximum-likelihood estimation problem for the

missing data w|Imissing with prior knowledge B ∈L
q
c is

minimize over ŵ, ŵd, B̂ ‖w|Igiven − ŵ|Igiven‖2
W

+ ‖wd− ŵd‖2
Wd

subject to ŵ ∈ B̂|T , ŵd ∈ B̂|Td , and B̂ ∈L
q
c ,

(33)

where W is the inverse of the covariance matrix of the additive
noise on w|Igiven , and Wd is the inverse of the covariance matrix
of the measurement noise w̃d.

Using (16) with L = `+ 1, (33) becomes a mosaic-Hankel
structured low-rank approximation and completion problem

minimize over ŵ, ŵd ‖w|Igiven − ŵ|Igiven‖2
W + ‖wd− ŵd‖2

Wd

subject to rank
[
H`+1(ŵd) H`+1(ŵ)

]
≤m(`+ 1)+n.

The problem is nonconvex. Local optimization methods can
be used for solving the mosaic-Hankel structured low-rank
approximation and completion problem, see [30], [34], [35],
however, these methods involve a kernel representation of B̂.

Another approach for solving (33) is the two-step procedure:
1) preprocess wd, aiming to remove the noise, and
2) using the “cleaned” signal ŵd, find w|Imissing .

The two-step procedure is akin to Figure 2 and reduces the
problem with noisy data to the already solved problem with exact
data. The signal ŵd, resulting from step 1, is an estimate of the
noise free signal wd. The maximum-likelihood estimation of wd
from wd and the prior knowledge that wd ∈B|Td and B ∈L

q
c is

minimize over ŵd, B̂ ‖wd− ŵd‖2
Wd

subject to ŵd ∈ B̂|Td and B̂ ∈L
q
c .

(34)

Problem (34) is a system identification problem. Similarly to
(33), (34) can be also posed and solved as a mosaic-Hankel
structured low-rank approximation problem.

Note also that step 2 is equivalent to model-based missing
data interpolation/approximation (25) with B = B̂. Thus, the
two-step procedure is a model-based approach for solving (33):

1) model identification: using wd, identify a model B̂, and
2) model-based interpolation/approximation: using B̂ and

w|Igiven , estimate w|Imissing .
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DATA-DRIVEN SIMULATION OF HIGH-ORDER SYSTEM
This sidebar compares the direct method (32) and an indirect
method, that is, system identification and model-based simula-
tion, on a step response simulation problem. Any identification
method can be used in the indirect approach. In the simulation
example, we use the function n4sid of the System Identification
Toolbox of Matlab, which implements state-of-the-art subspace
identification methods. The data-generating system B is a
random single-input single-output LTI system of order n = 100
(generated in Matlab with B = drss(100)), the data wd is a
random trajectory of B with Td = 319 samples, and Tf = 10, that
is, we aim to compute the first 10 samples of the step response.

In order to set up (25) for step response simulation, we
choose zero initial conditions wini = 0 with Tini = n and constant
unit input uf = 1. The estimate of the first Tf samples of the
step response of B is obtained then in the block ŷf of ŵ . We
verify that the data wd satisfies the generalized persistency of
excitation condition (18) with L = n+Tf = 110, so that the data-
driven representation (19) holds true. In order to verify that the
result computed by (32) is exact, we obtain the first 10 samples
s of the step response by simulation of B and compute the error
e = ‖s− ŷf‖. Its small value e = 10−10 is due to the floating point
computations and verifies the correctness of the direct method.

In the indirect method, n4sid fails with an error message:

There are too many parameters to

estimate for chosen estimation data

size. Reduce model order or use a

larger data set.

Note that a minimal state-space representation Bss(A,B ,C ,D)

of B has (n + 1)2 = 10201 parameters. Although this num-
ber can be reduced to 2n + 1 = 201 by using a canonical
parametrization, subspace identification methods generally re-
quire at least 5n data samples. Indeed, the maximal model
order accepted by n4sid is 59. The computed model B̂ of order
59, however, is not exact. Consequently, the step response ŝ
computed by simulation of B̂ has a nonzero error e = ‖s− ŝ‖.
The error is highly dependent on the data-generating system B.

The example shows that for high-complexity data-generating
systems, the direct approach is more data efficient than indi-
rect approaches due to the high number of parameters to be
estimated in the identification step. The data efficiency can be
quantified. For data-driven methods based on the representa-
tion (19), the minimum number of samples is [17], [32]

Tmin := (m +1)L+n−1,

where L is the prediction horizon. For indirect methods, the
minimum number of samples depends on the identification
method, but is typically a multiple of n, which may exceed Tmin.

In general, the two-step procedure is suboptimal. When
dim Igiven ≤ mT + n, however, exact interpolation of w|Igiven is
possible by any model B̂ with complexity (m,`,n). Therefore,
‖w|Igiven − ŵ|Igiven‖2

W = 0 and problem (33) decouples into (34)
followed by (25), that is, the two-step procedure is optimal.

A heuristic for preprocessing wd is to do rank-mT + n
approximation of HT(wd) by truncation of the singular value
decomposition. The heuristic is due to the fact that the Hankel
structure is not preserved. The resulting Algorithm 1 is data-
driven as it does not derive an LTI model B̂ of B.

Algorithm 1 Data-driven interpolation with low-rank approxi-
mation preprocessing.
Input: wd, Igiven, w|Igiven , m, and n.

1: Compute the SVD: HT(wd) = UΣV>.
2: Let r := mT +n and let P ∈RqT×r be the submatrix of U

consisting of its r leading columns.
3: Compute ŵ := P(P|Igiven )

†w|Igiven .
Output: ŵ.

Other methods for solving the missing data estimation with
noisy data are nuclear norm relaxation [36]

minimize over ŵd and ŵ ‖w|Igiven − ŵ|Igiven‖2
W

+ ‖wd− ŵd‖2
Wd

+ γ

∥∥∥[HT(ŵd) HT(ŵ)
]∥∥∥
∗
,

where the nuclear norm ‖·‖∗ of a matrix is the sum of its singular
values, and `1-norm regularization of (25)

minimize over g ‖w|Igiven −HT(wd)|Igiven g‖2
W +λ‖g‖1. (35)

The latter is proposed in [11] as a relaxation for solving a related
data-driven control problem (see section “Direct Data-Driven
Control”) and is used for data-driven interpolation in [31].

The performance of the methods is compared empirically on
data-driven simulation problems using synthetic data corrupted
with noise in the errors-in-variables setting and real-data from
the data-base for system identification DAISY [37], see [17,
Sect. 4.5] and [31, Sect. 5]. In Section “Application to Control
of Power Electronics Dominated Power Systems”, we validate
the performance of data-driven control methods presented in the
following section on applications in the energy domain.

Summary: This section demonstrated the synergy between
theory and algorithms. The basic direct data-driven interpola-
tion/approximation was presented for LTI systems. The solu-
tion (32) was given in closed form. It is hyper-parameters free. In
case of noisy data, the maximum-likelihood estimation problem
is a mosaic-Hankel structured low-rank approximation, which is
non-convex. Convex relaxation based on `1-norm regularization
is effective, however, it has a hyper-parameter controlling the
complexity–accuracy trade-off that needs ad hoc selection.
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DIRECT DATA-DRIVEN CONTROL
The field of data-driven control has a long and rich history,
and it is has been gaining significant traction in the last years
due to recent advances in technology (increasing availability
of data, storage, and computational power) as well as on the
methodological side (particularly, in high-dimensional statistics
and optimization algorithms). The field is rapidly expanding,
ever-more fragmented, and very much in motion at the time
of writing. We adopt the classic terminology of adaptive control
[38] to provide a classification of different approaches. Namely,
we refer to a data-driven control design method as indirect if
it is based on system identification (SysID) followed by model-
based design. Conversely, it is direct when it by-passes models.
Another distinction is certainty-equivalence versus robust design
depending on whether uncertainty is taken into account. Often
these classes are not mutually exclusive, and one may interpolate
between them [11], [39], [40]; see Figure 9 for a Venn diagram.

indirect

direct

ro
bu
st

certainty-
equivalent

FIGURE 9 Classification of data-driven control approaches – di-
rect, indirect, robust, & certainty-equivalent – displayed as Venn
diagram.

In what follows, we focus on methods surrounding the Fun-
damental Lemma [21] resulting in the data-driven representation
(19) of the restricted behavior parametrizing the set of all finite-
length trajectories by a matrix data time series. We do not
provide a comprehensive coverage of the literature but refer the
reader to the recent survey [41]. In particular, we will not cover
explicit control policies derived from the fundamental lemma,
c.f., [42]–[44]. Rather we focus on an implicit receding horizon
control approach as in classic model predictive control (MPC)
augmented with moving horizon estimation (MHE) [45], [46].

At first glance it seems unconventional to bring the elegant,
scholarly, and abstract concept of behavioral systems theory
together with MPC which is a pragmatic, computational, and
highly applicable method. Indeed, Willems was ambivalent:

“For my own taste, it [MPC] has perhaps too little
system theory and too much brute force computation
in it, but MPC is an area where essentially all aspects
of the field, from modeling to optimal control, and
from observers to identification and adaptation, are in
synergy with computer control and numerical mathe-
matics.” J. C. Willems, 2007, [47]

For context, we remark that the above quote dates back to
2007, when the system theory of MPC and MHE was much

less developed as compared to today. Aside from the evergreen
discussion of scientific elegance versus brute force computation,
we should observe that the core concept of behavioral systems
theory, the set of trajectories, is also the main side constraint of
MPC and MHE. In a data-driven context, what makes behavioral
systems theory useful is the very fact that it is abstract, i.e.,
representation-free: the set of trajectories can be spanned by a
parametric model or mere data as in (19).

Open-loop linear quadratic tracking: from
indirect to direct data-driven formulations
We start our journey with indirect and certainty-equivalent data-
driven control design and then move towards direct and robust
approaches. In particular, we begin with a refined version of the
data-driven approximation problem (25). Consider the open-loop
linear quadratic (LQ) optimal tracking control problem

minimize
uf,yf

Tf

∑
t=1
‖yf(t)−yr(t)‖2

Q + ‖uf(t)−ur(t)‖2
R

subject to (uini,yini)∧ (uf,yf) ∈B|Tini+Tf

(36)

on a finite horizon Tf > 0, where wr = (ur,yr) ∈ RqTf is a
user-defined reference trajectory (not necessarily in B|Tf ), and
wf = (uf,yf) ∈ RqTf is the future trajectory of length Tf ≥ 1
to be designed. Further, Q � 0 and R � 0 are user-defined
weighting matrices, where � (�) and ≺ (�) denote positive and
negative (semi)definiteness, respectively, and ‖e‖Q =

√
eTQe is

a (semi-)norm for Q � 0. Finally, wini = (uini,yini) is a given
pre-fix trajectory of length Tini ≥ ` setting the initial condition
xini akin to MHE [23]. Indeed, when resorting to a state-space
representation, xini can be uniquely recovered from

yini = OTini (A,C)xini +CTini (A,B,C,D)uini

since OTini (A,C) has full rank for Tini ≥ `; see also Lemma 1.
Predictive control problems such as (36) are often augmented

with terminal ingredients to assure closed-loop stability for
receding-horizon implementation. This topic will be addressed
in the later sections, and we focus on the open loop for now.

The LQ control problem (36) can be solved by a variety of
methods provided that a model of B is available [48], typically
a state-space model as in (14). In this case, (36) becomes

minimize over uf, yf, xini ‖yf−yr‖2
Q + ‖uf−ur‖2

R

subject to

[
yini
yf

]
= OTini+Tf (A,C)xini

+CTini+Tf (A,B,C,D)

[
uini
uf

]
,

(37)

where (with slight abuse of notation) we redefined Q and R
as blkdiag(Q, . . . ,Q) and blkdiag(R, . . . ,R), respectively. The
formulation (37) is standard in MPC and MHE. We now focus
on the LQ problem if no model and only raw data is available.

In a conventional indirect setting, SysID and LQ control are
sequential: find the best control subject to a model, where the
model itself is fitted to data. To formalize this idea, consider data
wd = (ud,yd) collected offline and assembled in a Hankel matrix
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HTini+Tf (wd). According to wini = (uini,yini) and wf = (uf,yf),
permute and partition the Hankel matrix as

[
wini
wf

]
∼


uini
uf

yini
yf

 , HTini+Tf (wd) ∼


Up

Uf

Yp

Yf

=

[
HTini+Tf (ud)

HTini+T(yd)

]
,

where ∼ denotes similarity under a permutation of the rows.
As an identifiability condition, we assume that the data wd =

(ud,yd) is persistently exciting, i.e., HTini+Tf (wd) is of rank
m ·(Tini+Tf)+n, where Tini≥ ` and (`,n) are a-priori estimates
(or upper bounds) on the lag and order of the underlying system.

In the indirect setting, we seek a linear model from data. In
particular, having in mind the finite-horizon LQ optimal control
problem (36) we seek a linear multi-step predictor, i.e., a matrix
K relating past as well as future inputs and outputs:

yf =
[
Kp Kf

]
︸ ︷︷ ︸

=K

uini
yini

uf

 . (38)

Alternatively, of course a single-step predictor (e.g., in the form
of a state-space model) can be identified, and a multi-step
predictor can be built recursively as in (37). We refer to [49] for
a general discussion on multi-step versus single-step predictors.

The multi-step predictor K can also be found from data by
replacing the variables (uini,yini,uf,yf) in (38) by Hankel matrix
data (Up,Yp,Uf,Yf) and solving for K in a least-square sense

K = argmin
K̂

∥∥∥∥∥∥∥Yf− K̂ ·

Up

Yp

Uf


∥∥∥∥∥∥∥

F

= Yf

Up

Yp

Uf


†

, (39)

where ‖·‖F denotes the Frobenius norm. The multi-step predictor
(38)–(39) is well known in the context of subspace predictive
control [50], [51]; see the Sidebar Subspace Predictive Control
(SPC). It is educational to compare this purely data-based multi-
step predictor to the model-based predictor in (37) parameterized
by A, B, C, and D. For exact data, we have that rank (Kp) = n
(assuring LTI behavior of desired complexity) and a lower block-
triangular zero pattern of Kf (assuring causality).

Thus, the indirect approach (least-square ID (39) followed by
LQ control (36)) can be formalized as a bi-level program:

minimize over uf, yf ‖yf−yr‖2
Q + ‖uf−ur‖2

R

subject to yf = K

uini
yini

uf


K = argmin over K̂

∥∥∥∥∥∥∥Yf− K̂

Up

Yp

Uf


∥∥∥∥∥∥∥

F

(40)

We now present a direct data-driven approach to LQ control.
The fundamental lemma implies that the concatenated initial and
future trajectory w := wini∧wf ∈B|Tini+Tf lies in the image of
HTini+Tf (wd). Thus, w = HTini+Tf (wd)g for some g, and the

LQ control problem (36) can be posed as

minimize over uf, yf, g ‖yf−yr‖2
Q + ‖uf−ur‖2

R

subject to


Up

Yp

Uf
Yf

g =


uini
yini
uf
yf

 .
(42)

This direct LQ control formulation has been proposed in [23].
Its interpretation is intuitive from the perspective of dictionary
learning. The columns of the Hankel matrix HTini+Tf (wd) serve
as a trajectory library spanning B|Tini+Tf . These are then linearly
combined through the vector g to match the pre-fix trajectory
wini = (uini,yini) and to optimally synthesize the future control
trajectory wf = (uf,yf); see Figure 10 for a schematic illustra-
tion. The general idea of synthesizing optimal trajectories by
linearly combining elements from a library appears throughout
the field and in applications, e.g., in the context of motion
primitives in robotics for motion planning [52] and predictive
control [53].

Of course, all formulations (36)–(42) are identical for exact
data. For inexact data, the relations among these formulations
have been studied in [41], [55]–[58], and we will resume this
discussion when it comes to suitable regularizations.

A comparison of the direct and indirect problem formula-
tions, reveals the usual pros and cons which have often been
elaborated upon [4]. For example, the indirect approach consists
of modular and well understood steps, but it requires model
selection, pre-/post-processing of the data, it is hard to propagate
uncertainty, and it is often regarded as an “art” and cumbersome
by practitioners. Conversely, the last direct formulation (42) is
computationally more involved (more decision variables and less
structured matrices), which reveals a strength of parametric mod-
els: they are compact, cleaned-up, and de-noised representations.
However, the direct approach is end-to-end, arguably simple,
and it holds the promise to extend beyond deterministic LTI
systems; to be adaptive (i.e., the data matrices could be updated
online); and to improve over the sequential bi-level approach (40)
(since there is no separation principle for the nested optimization
problems). It is the starting point for the expanding literature on
data-enabled predictive control presented next, and we will see
how to robustify it in case of noisy data or nonlinear dynamics.

Data-enabled predictive control
Data-driven approaches to MPC date back to dynamic matrix
control [59], [60] and the previously reviewed SPC [50], [51].
We refer [61]–[63] for recent surveys and contemporary learning-
based MPC approaches. Here, our starting point is the formula-
tion (42) proposed for deterministic LTI systems in [23].

In case of inexact data or non-LTI dynamics, it is tempting
to opt for certainty-equivalence: take the data at face value and
implement the control (42). However, this approach is doomed
to fail. This can be intuitively understood from the perspective of
dictionary learning alluded to in Figure 10. The optimal control
trajectory is synthesized by linearly combining columns of the
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SUBSPACE PREDICTIVE CONTROL (SPC)

By substituting the explicit least-square solution (39) into (40)
one arrives at the SPC problem formulation coined in [50]:

minimize over uf, yf ‖yf−yr‖2Q + ‖uf−ur‖2R

subject to yf = Yf

Up

Yp

Uf


†uini

yini

uf

 .
(S41)

In case of inexact data, SPC is often augmented with further
pre- and post-processing of the data, e.g., low-rank approxi-
mation (typically, via singular-value thresholding) to select the

model complexity and thresholding of matrix elements to arrive
at a causal (lower-triangular) sparsity. SPC has a long and rich
history, it is easy to implement, and has demonstrated excellent
performance in numerous case studies; see [51] for a review.

In relation to Data-EnablEd Predictive Control (DeePC) (43),
the main difference is that SPC is focused on the predictor
(S41), whereas DeePC (43) is focused on the prediction itself.
Hence, the de-noising and robustification schemes are different
(e.g., low-rank approximation versus regularization). However,
the two methods become identical when using the projection-
based regularizer (50) with sufficiently large coefficient λg [11].

time series data

linear combination

prediction

FIGURE 10 Schematic illustration of the direct data-driven LQ
control approach (42) to synthesize the motion of a quadcopter.
Trajectories from a library are linearly combined to match the pre-fix
trajectory and to optimally synthesize the future control trajectory.
We refer to [54] for an implementation of this case study.

Hankel matrix HTini+Tf (wd) which spans B|Tini+Tf . However,
a superposition of trajectories from B|Tini+Tf is again a valid
trajectory of B|Tini+Tf only for deterministic LTI systems. What
is even more detrimental in a practical setting is that a Hankel
matrix HTini+Tf built from noisy or nonlinear data will almost
surely have full rank, and thus any future trajectory (uf,yf) is
feasible for (42). As a result, the predicted trajectory can be ar-
bitrarily optimistic and non-realizable when implemented on the
real system. Further, the data (uini,yini) collected online (before
implementing an instance of the optimal control (42)) is typically
noise-corrupted as well which leads to further deterioration of
the realized performance and even feasibility issues.

For these reasons, a robust approach is favored over certainty
equivalence. Data-EnablEd Predictive Control (DeePC) [64] is
a robustified version of direct data-driven LQ control (42):

minimize over uf, yf, g, σuini , σyini ‖yf−yr‖2
Q + ‖uf−ur‖2

R

+λuini‖σuini‖2
2 +λyini‖σyini‖2

2 +λg ·h(g)

subject to


Up

Yp

Uf
Yf

g =


uini +σuini

yini +σyini

uf
yf

 and (uf,yf) ∈U ×Y

(43)

Let us walk slowly through the DeePC problem formulation (43).
First, recall that wini = (uini,yini) are online measurements

used to estimate an initial condition via the constraint equations

Upg = uini and Ypg = yini in the certainty-equivalence LQ
control (42). However, for inexact data these constraints may not
be feasible. Hence, DeePC (43) opts for least-square estimation
akin to MHE and softens these constraints with the slack
variables σuini and σyini , which are penalized in the cost with
nonnegative coefficients λuini , λyini . Different variations of the
penalty are conceivable, e.g., weighting the norms by inverse
noise covariances, disregarding σuini in absence of input noise,
or opting for a linear penalty in the spirit of exact penalization.

A second minor – yet practicably important – modification
is to augment the data-driven LQ problem (42) with input and
output constraints uf ∈ U and yf ∈ Y , respectively. These can
account for, e.g., input saturation, operational limits, or terminal
constraints. The latter are useful for closed-loop stability when
implementing (43) as a receding horizon predictive controller
[45], [46]; see Figure 11. We will return to these points later in
Section “DeePC: closed-loop & implementation aspects”.

Third, aside from uncertainty in (uini,yini) affecting the
constraints additively, the certainty-equivalence LQ problem (42)
is also subject to multiplicative uncertainty, since the data-
matrices Up, Yp, Uf, and Yf may also be inexact (noisy or
from a nonlinear system). This source of noise can be mitigated
offline by pre-processing the trajectory library (e.g., by seeking
a low-rank approximation of HTini+Tf (wd)), but in the spirit of
direct data-driven control – seeking an online decision based on
raw data – DeePC opts for regularizing the problem (42). In
particular, a nonnegative term h(g) is added to the cost function
with a to-be-tuned regularization coefficient λg ≥ 0. Different
regularization terms will be derived and motivated below.

Last, it is instructive to recall the involved time scales
and data sets when implementing DeePC (43) or any of the
approaches (36)–(42). We refer to Figure 11 for a schematic
illustration. The data (ud,yd) of length Td is collected offline
and directly parametrizes the optimal control problem via the
matrices Up, Yp, Uf, and Yf. In a model-based setting, the offline
data is used to identify a model. In the online stage, the last Tini
measurements (uini,yini) are used to initialize the optimal control
problem and to predict the future system evolution (uf,yf) of
length Tf. Finally, in a receding horizon implementation, the
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DeePC problem (43) is repeatedly called upon for estimation and
prediction, and the data sets (uini,yini) and (uf,yf) are updated
accordingly. Of course, a natural (albeit non-trivial) extension is
to update the data matrices online in the spirit of adaptive control.

The role of regularization in DeePC
Observe that the DeePC formulation (43) can be compactified
by eliminating the variables uf, yf, σuini , σyini :

minimize over g ‖Yfg−yr‖2
Q + ‖Ufg−ur‖2

R

+λyini‖Ypg−yini‖2
2 +λuini‖Upg−uini‖2

2 +λg ·h(g)

subject to (Ufg,Yfg) ∈U ×Y

(44)

Define further wr,ini = (uini,yini,ur,yr) and the block-diagonal
matrix P = blkdiag(λuini I,λyini I,R,Q), then in absence of con-
straints, (44) takes the form of a regularized regression problem:

minimize over g ‖HTini+Tf (wd)g−wr,ini‖2
P +λg ·h(g) (45)

The compact formulation (45) provides a regression perspective
on DeePC illustrated in Figure 12, and it motivates the applica-
tion of Bayesian, non-parametric, or robust regression methods.
In particular, we can draw from the vast literature on regularized
regression to derive, inspire, or interpret different regularizers
h(g). The Sidebar Roles of Regularization motivates three often
advocated dominant reasons for why to regularize:

» aid the optimization by strong convexification;
» condition models on prior knowledge; and
» robustify the problem formulation.

For the DeePC problem (43) different regularizations have
first been proposed as heuristics [64] before being constructively
derived. In what follows, we present different variations in a
tutorial style and refer to [41] for a more detailed account.

Regularization derived from pre-processing: For inexact data,
the matrix HTini+Tf (wd) generically does not have rank m(Tini+

Tf) + n and does not reveal an LTI behavior of desired com-
plexity. As previously discussed, the noisy data matrix can be
pre-processed via structured low-rank approximation. Formally,
this can be posed as a bi-level optimization problem: solve the
optimal control problem subject to pre-processing of the data:

minimize over g ‖HTini+Tf (ŵ
?
d)g−wr,ini‖2

P

subject to ŵ?
d ∈ argmin over ŵd ‖wd− ŵd‖

subject to rankHTini+Tf (ŵd) ≤m · (Tini +Tf)+n

This non-convex bi-level problem can be formally reduced and
convexified. We refer to [56] for details and provide an informal
account. Since the processed data matrix HTini+Tf (ŵ

?
d) has low-

rank, g can be chosen to have at most m · (Tini +Tf)+n entries,
and one may (without affecting feasibility or optimality) add a
cardinality constraint to the outer problem: ‖g‖0 ≤ m · (Tini +

Tf)+n. This constraint can be relaxed to an `1-norm and lifted

to the objective (with sufficiently large penalty) resulting in

minimize over g ‖HTini+Tf (ŵ
?
d)g−wr,ini‖2

P +λg · ‖g‖1

subject to ŵ?
d ∈ argmin over ŵd ‖wd− ŵd‖

subject to rankHTini+Tf (ŵd) ≤m · (Tini +Tf)+n

for λg ≥ 0 sufficiently large. Next, the inner problem is relaxed
by dropping the rank constraint so that ŵ?

d = wd, i.e., the data is
taken at face value. Hence, we arrive at the regularized problem
(45) with h(g) = ‖g‖1. In summary, an `1-norm regularizer can
be interpreted as a surrogate for pre-processing the data via a
low-rank approximation to select the model complexity.

Of course, such a problem relaxation allows for a larger
solution space including trajectories which may not be consistent
with the plant behavior. In the authors’ experience stemming
from manifold implementations, such relaxed solutions may still
lead to excellent performance and may even out-compete (local)
solutions targeting the non-convex bi-level problem, see e.g. [11],
[31] – provided that the coefficient λg is suitably selected which
will be a recurring point throughout the remainder of this paper.

Regularization derived from least-square SysID: Recall the
indirect LQ control (40). Note that the explicit multi-step pre-
dictor (38)-(39) can be written as yf = Yfg with g satisfyingUp

Yp

Uf

g =

uini
yini
uf

 and 0 =

∥∥∥∥∥
(

I−
[Up

Yp
Uf

]† [Up
Yp
Uf

]
︸ ︷︷ ︸

=:Π

)
g

∥∥∥∥∥
p

. (49)

In (49) we identify the first three constraint equations of the data-
driven LQ problem (42) and an orthogonality constraint with the
projector Π assuring that a minimum-norm solution ‖g‖p (for
any p∈ [1,∞]) to these equations is sought. Thus, for exact data,
without affecting feasibility or optimality, the regularizer

h(g) = ‖(I−Π)g‖p (50)

can be added to problem (42): indeed, for perfect data, all
feasible solutions g to (42) result in the same control sequence
(uf,yf), and the regularizer merely selects a particular solution.
However, for inexact data, this regularizer promotes selecting
the same solution as the bi-level (SysID followed by control)
problem (40). Hence, unlike norm-based regularizers ‖g‖p the
projection I−Π ensures consistency: it does not bias the solution
obtained for perfect data. We refer to [56] for further details,
to [58] for an alternative derivation, and to [39], [65] for an
application of the regularizer to the infinite-horizon LQ regulator.

The above two regularizers can be interpreted in Bayesian
sense, see the Sidebar Roles of Regularization, i.e., they condi-
tion the data-driven optimal control problem on prior knowledge:
namely, they are both derived from a hidden indirect problem
formulation, where the data is either pre-processed according to
a linear model or such a model is identified via least squares.
The magnitude of the regularization coefficient λg ensures to
which extent the inner pre-processing/identification problems
are (approximately) enforced. However, unlike in the indirect
formulations, no projection on the the class of LTI models
of desired complexity is enforced. As a result, the noise is
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FIGURE 11 Illustration of the different time scales and data sets when implementing DeePC (43). In the offline stage, the data (ud,yd)
of length Td is collected to build the matrices Up, Yp, Uf, and Yf. In the online stage, the last Tini measurements (uini,yini) are used to
initialize the optimal control and to predict the future evolution (uf,yf) of length Tf. In a receding horizon setting, the DeePC problem (43)
is repeatedly called upon after k time steps (k being the control horizon), and the data sets (uini,yini) and (uf,yf) are updated.
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FIGURE 12 Schematic illustration of the DeePC formulation (45) as
a regression problem. The vector g robustly selects elements from
the trajectory library spanHTini+Tf (wd) to match the past pre-fix
trajectory (uini,yini) as well as the future reference trajectory (ur,yr).
Robustness is enforced by choosing the regularizer in (45).

not entirely removed (no variance reduction) but no erroneous
model selection (no bias) is encountered. These bias-variance
trade-off discussions give an intuition when indirect data-driven
control approaches are inferior (respectively, superior) to the
direct DeePC formulation; see [56], [67] for further elaborations.

Regularizations derived from robust optimization: One may
also take the robust minmax regression perspective presented in
(S48) to robustify the certainty-equivalence LQ problem (42) as

minimize over g maximize over ŵd ∈W(wd)

‖HTini+Tf (ŵd)g−wr,ini‖2
P ,

where W(wd) is an uncertainty set typically centered at the
collected offline data wd. Similar to the triangle inequality
manipulation following (S48), one can show equivalence of
the inner maximization and a regularization. Different uncer-
tainty sets give rise to different regularizers. One may consider
structured and unstructured uncertainty sets ranging from mere
norm balls, over interval-valued and column-wise uncertainties,
to uncertainties with Hankel structure. For each of these [66],
[68] propose tractable reformulations, many of which result in
regularization terms h(g) taking the form of weighted p-norms:
e.g., a uniform column-wise uncertainty (e.g., relevant for a
trajectory matrix data structure) results in h(g) = ‖g‖1.

A similar (albeit stochastic) perspective leading to regu-
larization is due to distributional robustness; see the Sidebar
Distributional Robustness in Trajectory Space for details. Last,
we also remark that regularization is a key aspect in the closed-
loop stability and robustness analysis of DeePC [69].

Aside from regularizations, alternative robustifications of the
certainty-equivalence LQ problem (42) have been proposed.
We mention, among others, [70], [71] presenting a data-driven
formulation of system-level and input-output parameterizations
[72], [73] by means of the representation (19). Further, [74]
directly robustifies the problem formulation (42) to adversarial
and measurable disturbances. Finally, [75] proposes a maximum
likelihood approach to DeePC. We refer to [17] for a detailed
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ROLES OF REGULARIZATION

In what follows, we provide an intuition of the different roles
that regularization plays and which objectives it can achieve

by revisiting classic least-square regression akin to (31) or (45).
Consider a set of n data pairs {xi ,yi} ∈Rp×R, i ∈ {1, . . . ,n},

denoting independent and dependent variables, i.e., inputs and
outputs. We aim to relate these by a linear model yi = x>i θ and
seek to estimate a suitable parameter vector θ ∈Rp . By stack-
ing all measurements, we obtain Y =X θ , where Xij denotes the
j th entry of the i th measurement and Y = [y1 . . . yn ]

>.
If we assume that the output measurements are subject

to additive unit-variance Gaussian noise, then a maximization
of the log-likelihood function (i.e., the likelihood of observing
the data given the parameters) leads to the classic estimation
criterion of minimizing the residual sum of squares [S1]:

minimizeθ ‖Y −X θ‖22 (S46)

A unique least-square solution θ ? =
(
X>X

)−1 X>Y exists pro-
vided that X has full column rank. If that is not the case,
then a standard modification to the optimization objective (S46)
is Tikhonov (or ridge) regularization strongly convexifying the
optimization problem (S46) by adding a quadratic penalty [S2]:

minimizeθ ‖Y −X θ‖22 +λ‖θ‖22 (S47)

For a positive coefficient λ > 0, a unique solution to (S47) of
the form θ ? =

(
X>X +λ I

)−1 X>Y always exists. Here, regular-
ization acts as patch to literally regularize an otherwise singular
matrix X>X and to stabilize numerical optimization algorithms.
However, regularization can also be derived from principled
arguments. Two classic derivations are below. They are both
motivated from the fact that in case of noisy data the solution
of the least-square problem (S46) might be overfitting the data
set, and its solution θ ? may perform poorly out-of-sample, that
is, when applying the estimated model y = x>θ ? to unseen
data. Hence, either side information (prior knowledge) must be
incorporated or the estimation criterion has to be roubstified.

In a Bayesian setting, the parameter vector θ is explicitly
regarded as a random variable, and a prior belief might be that
all parameters θi are distributed according to a Gaussian with
zero mean and variance 1/λ 2. Then the maximum a posteriori
probability estimate can be obtained by solving the regularized
problem (S47) [S1]. In words, conditioning the regression (S46)
on a prior belief about the model results in a regularization.

In a robust estimation setting, one may go beyond additive
uncertainty and also consider multiplicative uncertainty affecting
the measurement equation Y = X θ , i.e., X is noise-corrupted.
Then a robust version of the least-squares problem (S46) is

minθ max∆:‖∆‖F≤ρ ‖Y − (X +∆)θ‖2 (S48)

with compact uncertainty set {∆ : ‖∆‖F ≤ ρ}. By the triangle
inequality, the inner maximization can be upper-bounded as

max∆:‖∆‖F≤ρ ‖Y − (X +∆)θ‖2
≤ max∆:‖∆‖F≤ρ ‖Y −X θ‖2 + ‖∆θ‖2 = ‖Y −X θ‖2 +ρ · ‖θ‖2 ,

where the last equality follows from submultiplicativity. Finally,
note that the triangle inequality is tight within the uncertainty
set, i.e., when ∆ is chosen so that Y −X θ and ∆θ are collinear:

∆ =
ρ

‖θ‖wθ
> where w =

{
Y−X θ

‖Y−X θ‖ if Y 6= X θ

any unit norm vector otherwise

Thus, the robust least-squares problem (S48) is equivalent to a
regularized least-squares problem:

minimizeθ ‖Y −X θ‖2 +ρ · ‖θ‖2
Similarly, other regularizers (such as the popular `1-regularizer
‖θ‖1) can be derived from either Bayesian perspectives [S1] or
(distributionally) robust problem formulations [S3], [S4].

In summary, regularizations (i ) aid the optimization by ren-
dering the solution unique, (ii ) condition models on prior knowl-
edge, and (iii ) robustify problem formulations. These concep-
tual insights apply beyond the considered regression problem,
e.g., in system identification [S5] [10] or in data-driven control
[25], [39], [58], [65], [66], as elaborated upon in the main text.
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overview discussing and comparing different approaches.

DeePC: closed-loop & implementation aspects
So far we discussed DeePC (43) as an open-loop optimal control
problem. We now delve into different aspects when implement-
ing it in closed-loop receding-horizon control. In particular, we
discuss aspects related to stability, nonlinearity, feasibility, the
trajectory library, and computation. We conclude by providing
tuning recommendations that proved useful in different domains;
see the Sidebar Selected Implementations of DeePC.

Stability: First and foremost, we discuss closed-loop stability
and robustness in presence of noisy data. The sequence of articles
[27], [78]–[81] by Berberich and co-workers has shown that
many stability and robustness certificates for MPC carry over
to the data-driven domain, but particular care must be taken
when addressing, e.g., noise in the data matrix HTini+Tf (wd) and
terminal ingredients which are useful for stability and normally
computed from model information. We refer to [82] for a recent
tutorial and give a brief self-contained exposition below.

The initial work [69] certifies closed-loop practical exponen-
tial stability of DeePC (43) with input constraints and when
applied to noisy LTI systems. The analysis assumes terminal
equality constraints, and the proof relies a non-minimal state-
space realization consisting of inputs, outputs, and their shifts,
as well as an input-output-to-state stability Lyapunov function
since the state is not directly penalized in the cost. Further,
when certifying robust stability in the noisy case, [69] consid-
ers regularizations as in (43), where h(g) = ‖g‖2

2 is a ridge-
regularizer – though the analysis also carries through1 when
using the projection-based regularizer in (50). Since terminal
equality constraints are often not desired in practice (e.g., due to
aggressive behavior or fragile feasibility), the analysis has been
extended to terminal equality constraints with an artificial set-
point [27], terminal costs and constraints computable directly
from data [79], as well as implementations without terminal
ingredients [80]. The latter case without terminal ingredients is
particularly useful in practice as terminal ingredients are hard
to design, sometimes result in numerical challenges, and often
result in unsatisfactory performance. Further notable extensions
address robust output constraint satisfaction [81], time-varying
references [78], linear tracking control for affine and nonlinear
systems [27], and offset-free tracking via incremental inputs [83].

Nonlinearity: To remain on the theme of nonlinearity, the
DeePC method is founded on LTI systems: an optimal trajectory
is synthesized by linearly (albeit robustly) combining trajectories
from a library according to the superposition principle. Though,
many case studies (see the Sidebar Selected Implementations of
DeePC) show that DeePC performs remarkably well in closed
loop with weakly nonlinear systems and often outperforms ap-
proaches based on linear SysID. To provide a first explanation of
this remarkable empirical performance, recall that regularizations
enforce robustness in the space of trajectories. Hence, regularized

1Confirmed in personal communication with the authors of [69].

DeePC is certainly robust to nonlinearity. A second argument
brought forward in [56] is that the DeePC formulation (43) does
not project the data on the class of LTI systems of certain order.
Hence, unlike indirect data-driven methods, it cannot encounter
a bias error. Third, one may also take the pragmatic perspec-
tive that (sufficiently large) LTI systems approximate nonlinear
systems well on a finite time horizon, which is theoretically
supported by lifting arguments such as Koopman or Carleman
(bi)linearization. Alternatively, one may seek generalizations of
the fundamental lemma for classes of nonlinear systems, see
[17] for a review. In either case, so far only [27] has provided
theoretic certificates when applying DeePC (with a sliding data
window) in closed loop with a slowly varying nonlinear system.

Constraints & feasibility: We have already touched upon
terminal constraints ensuring closed-loop stability. We now re-
visit the other constraints in (43). The estimation constraints,
Upg = uini and Ypg = yini, have been softened within DeePC
(43) by means of slack variables. Instead of such a finite horizon
estimation, one may also adopt a Kalman filtering approach [84]
to recursively construct an estimate of a hidden state. Regarding
output constraints, Yfg ∈ Y , observe that these are based on
observed (and thus likely inexact) data. Hence, to literally be
on the safe side, these constraints have to be suitably robustified
and tightened. For instance, [66] considers robustified constraints
and provides bounds on the realized system performance. The
same methods can also be applied to distributionally robustify
stochastic output constraints [25]. Finally, [81] provides closed-
loop stability and feasibility certificates for tightened constraints.

Trajectory library: As discussed previously, the data matrix
HTini+Tf (wd) can take a Hankel or trajectory structure. Whereas
trajectory matrices can be formed by repeated short experiments
(each column equals one experiment), Hankel matrices can be
formed by a single long experiment and require considerably
less data than trajectory matrices. Other data structures fall in
between, such as Page or mosaic Hankel matrices. Depending on
the application of interest, either data collection approach can be
favorable. On the theory side, the main advantages of the differ-
ent matrix data structures are that the data is conditioned on time-
invariance (for Hankel matrices) or columns are independent (for
trajectory or Page matrices). The former narrows the hypothesis
space for optimal trajectories, which is advantageous in case of
inexact data. The latter allows for less structured pre-processing
(e.g., low-rank approximation by singular value thresholding) or
robustification, e.g., columnwise uncertainties can be considered
resulting in weighted `1-regularizations. Finally, empirical results
often show a superior realized performance when choosing less
structured trajectory or Page matrices [25], [66], [74].

Computational implementation: To efficiently implement
DeePC, the OSQP solver [85] proved to be a formidable choice.
A comparison of the compactified DeePC formulation (43) and
the model-based predictor (37) shows that DeePC contains more
decision variables (even when eliminating some as in (44)), its
constraints are not sparse, and they have no Toeplitz structure.
The computational complexity of DeePC can be reduced by
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DISTRIBUTIONAL ROBUSTNESS IN TRAJECTORY SPACE

In the regression formulation of DeePC (45), the columns
(or rows) of the Hankel matrix HTini+Tf

(ŵd) are trajectories,
and the objective is to minimize the loss by linearly combining
them; see Figure 12. We now take a stochastic perspective
and consider each trajectory as an observed sample from
some unknown stochastic process. Then we can equivalently
reformulate problem (45) (without regularization term) as

minimize over g Eŵd∼P̂

[∥∥HTini+Tf
(ŵd)g−wr,ini

∥∥2
P

]
, (S51)

where P̂ is the associated empirical distribution built using the
data samples wd, i.e., the measure of ŵd is supported on wd.

When implementing the solution of the so-called sample
average approximation (S51) on the real system, one should
expect a poor out-of-sample performance since the true data-
generating distribution is due to some (possibly nonlinear, non-
Gaussian) stochastic process that is only poorly represented by
the sample distribution P̂. To robustify against such processes,
[25], [76] propose the distributionally robust formulation

infg∈G sup
Q∈Bε (P̂)

Eŵd∼Q

[∥∥HTini+Tf
(ŵd)g−wr,ini

∥∥2
P

]
, (S52)

where the expectation is taken with respect to an unknown
distribution Q taking value in a so-called ambiguity set of all
distributions which are ε-close to the sample distribution P̂.
Problem (S52) seeks to be robust to all such distributions Q,
hence the terminology distributional robustness. More precisely,
the ambiguity set is a Wasserstein ball of radius ε > 0, centered
at P̂, and denoted by Bε (P̂). Let us elaborate on these ingredi-
ents from a high-level and accessible perspective.

More formally, let M (Ξ) be the set of all distributions
Q supported on Ξ (a subset of a vector space) such that
EQ[‖ξ‖p ] < ∞, where ‖ · ‖p is the p-norm for some p ∈ [1,∞].
The Wasserstein distance dW : M (Ξ)×M (Ξ)→R≥0 between
two distributions Q1 and Q2, each supported on Ξ, is

dW(Q1,Q2) = inf
Π

{∫
Ξ

∫
Ξ
‖ξ1−ξ2‖p dΠ(ξ1 ξ2)

}
, (S53)

where Π is the set of distributions over M (Ξ×Ξ) with marginal
distributions Q1 ∈M (Ξ) and Q2 ∈M (Ξ), respectively.

The semantics of (S53) are as follows: we seek the mini-
mum expected cost to transport the probability distribution Q1

onto the probability distribution Q2 when transporting a unit of
mass from ξ1 to ξ2 costs ‖ξ1 − ξ2‖p . We refer to Figure S1
for a graphical illustration. Hence, the Wasserstein distance is
colloquially also referred as the earth mover’s distance. While
there are many potential transport plans Π that map Q1 onto
Q2, the Wasserstein distance seeks the minimum cost solution.

Finally, given the distance (S53), we denote the Wasserstein
ball of radius ε ≥ 0 centered around a distribution Q by

Bε (Q) =
{

Q′ ∈M (Ξ) | dW(Q,Q′) ≤ ε
}

.

The Wasserstein distance has intimate connection to optimal
transport [S1], [S2], and unlike other distances (or divergences)
it can treat empirical and continuous distributions within a uni-
fied framework, which is utterly relevant in a data-driven context.

Finally, it is an analytically and computationally tractable metric
in distributional robust optimization problem as (S53) [S3], [S4].

FIGURE S1 Schematic illustration of the Wasserstein distance
between two distributions. Here Q1 is an absolutely continuous
distribution, Q2 is an empirical distribution, and Π is a joint
distribution (or a transport plan) with marginals Q1 and Q2.

To return to problem (S52), it ensures robustness to all
time series which are ε-close to the data samples ŵd. Hence,
while the problem formulation is intuitive – seeking probabilistic
robustness in the space of trajectories – it is an arguably hard
semi-infinite problem. Recently, [S5] has shown that, under suit-
able assumptions, distributionally robust regression problems
can be reformulated as regularizations of the sample average
approximation. When adopting these methods to (S52), [25] has
shown that, when the objective admits a Lipschitz constant L,
(S52) is equivalent to a version of regularized DeePC (44),

minimize over g ‖HTini+Tf
(wd)g−wr,ini‖P +Lε · ‖g‖q

where 1/p+1/q = 1, i.e., ‖·‖q is the dual norm of the one used
to construct the Wasserstein ball. For example, safeguarding
against uncertainty in `∞-norm in the space of trajectories is
equivalent to `1-norm regularization. The radius ε of the ambi-
guity can be estimated (albeit conservatively) from the number
of data samples, and it can be reduced by averaging data sets.
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SELECTED IMPLEMENTATIONS OF DEEPC
The simplicity of DeePC and its remarkable empirical perfor-
mance led to many recent experimental and computational case
studies across different domains. For example, demonstrations
within robotics include a quadcopter [54], an autonomous walk-
ing excavator [S1], leading cruise control [S2], [S3], and a
quadruped [S4] next to other small-scale laboratory implemen-
tations; see [17] for a survey. Within the energy domain, DeePC
has been implemented on grid-connected power converters
[68], synchronous motor drives [S5], [S6], building automation
[77], [S7], [S8], and battery charging [S9]. Further, [74] provides
a decentralized DeePC implementation for power system oscil-
lation damping, and [S10] uses DeePC to control a combined-
cycle power plant. At the time of writing, the latter two implemen-
tations are being further developed by industrial R&D groups.
Concerning the process control domain, an application to a four-
tank system is found in [S11]. Finally, yet another intriguing
implementation was in green house automation [S12], [S13].
Further applications of DeePC are regularly emerging. The
Section “Application to Control of Power Electronics Dominated
Power Systems” will present further case studies.
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considering low-rank decompositions [58], explicit solutions as
in (S41), or multiple shooting formulations [86]. Nevertheless,
DeePC is not as computationally efficient as model-based for-
mulations. This insight can also be found for other direct data-
driven methods and reveals a distinct advantage of models: they
are compressed, de-noised, and tidied-up representations.

Tuning of hyper-parameters: We highlight the simplicity of
the DeePC implementation: as in MPC and MHE a cost function,
estimation horizon Tini, prediction horizon Tf, and terminal
ingredients need to be chosen; see [45], [46] for standard tuning
recommendations. However, in comparison to MPC and MHE
no model is needed. The additional complexity comes from
collecting the data and tuning the regularizers. We offer some
general recommendations which have proved useful in many case
studies, and we refer to the next section for explicit examples.

In terms of data collection, the length Td of the data time
series wd has to be sufficiently long to assure persistency of
excitation; see the fundamental lemma. The lower bound for Td
depends on the system order which is generally unknown. On
the other hand, the more columns the data matrix has the better
since noise averages out [58]. In practice, a sufficiently large Td
typically is chosen, and the authors often had good experiences
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FIGURE 14 Qualitative illustration of the realized closed-loop
performance as a function of the coefficient λg for a projection-
based (red solid) and a norm-based (blue dashed) regularizer. This
qualitative behavior has been observed by the authors across many
case studies involving LTI systems and weakly nonlinear systems.

with choosing Td so that the data matrix HTini+Tf (wd) is square.
For the estimation penalty a quadratic cost, λuini‖σuini‖2

2 +

λyini‖σyini‖2
2, with sufficiently large coefficients (λuini ,λyini ) has

proved useful in terms of performance and computational ef-
ficiency. Recently, also bi-level formulations have emerged,
solving an inner optimal estimation problem [58], [77].
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As for the choice of regularizers and associated coefficients
λgh(g), the projection-based regularizer (50) with sufficiently
large coefficient λg has proved useful, especially for LTI systems
where it does not induce any bias. Often a squared regularizer is
preferred by quadratic programming solvers. A useful data-based
selection criterion for tuning the projection-based regularizers is
the Hanke-Raus heuristic [83], [87]. Norm-based regularizers
h(g) = ‖g‖p may perform equally well but are harder to tune:
the realized performance improves when increasing λg beyond a
certain threshold, remains constant for a large interval of λg , and
then increases again beyond a second threshold. The (fortunately
often shallow) minimum has to be found by cross-validation
or deduced from prior knowledge (e.g., from the size of an
uncertainty set). As a rule of thumb, an optimal λg can be
practically found by logarithmically increasing λg .

Figure 14 gives a qualitative summary of the above dis-
cussion, which is often (though not always) encountered in
case studies. For example, the projection-based regularizer ‖(I−
Π)g‖ sometimes strictly outperforms norm-based regularizers.
Further, the realized performance with the projection-based reg-
ularizer is not always monotonically decreasing (as indicated in
Figure 14) but may display a strict minimum implying that the
SPC solution (obtained for λg sufficiently large) is suboptimal.
The case study in the next section will revisit this discussion.

Summary: This section has presented different indirect (i.e.,
model-based) and direct data-driven control methods. The
DeePC formulation (43) has been presented as a robust direct
data-driven optimal control formulation. The main robustifi-
cations are due to softening the estimation constraints and
regularizations accounting for an implicit system identification
or promoting robustness in the space of trajectories.

APPLICATION TO CONTROL OF POWER
ELECTRONICS DOMINATED POWER SYSTEMS
To tackle climate change, countries from all over the world
have made ambitious plans to reduce carbon emissions, with the
ultimate goal to achieve net zero. As a dominant carbon emitter,
the power and energy industry plays a vital role towards this
goal, where integrating renewable energy sources is one of the
primary approaches for decarbonization.

Renewable energy sources are distinct from conventional
fossil-fuel-based power plants – they have low inertia, suffer
from the intermittency of renewables, and are distributed and
non-dispatchable [88], [89]. Moreover, fossil-fuel-based power
plants are connected to the power grid via synchronous genera-
tors (SGs), whereas renewable energy sources are connected to
the power grid via power electronics converters that intercon-
nect direct current (DC) circuits with alternating current (AC)
circuits [90]. For instance, a solar panel produces DC voltage
and current, and a power converter is needed to connect the solar
panel to the AC power grid; as another example, a direct-drive
wind turbine produces AC voltage and current with a variable
frequency due to the fluctuation of wind speed, and two back-to-

back power converters are needed to connect it to the AC power
grid (with fixed frequency), as shown in Figure 15. Moreover,
power converters are also widely used as grid interfaces of
energy storage systems, high-voltage DC transmission systems,
electric vehicles, and so on. Hence, with more and more fossil-
fuel-based power plants replaced by renewable energy sources,
many countries worldwide are currently witnessing the establish-
ment of power electronics dominated power systems, as shown
in Figure 15.

Unlike SGs, power converters have fast actuation and high
flexibility in controlling the voltage angle and magnitude. For
instance, according to Newton’s laws of motion, one can only
indirectly change the rotor angle of a SG by changing the
torques to accelerate or decelerate the rotor; however, in a power
converter, one can directly change the voltage angle by giving
a command in the control algorithm. Therefore, it is possible
to ensure a resilient power electronics dominated power system
given appropriate control design. However, there are a lot of
challenges in designing reliable controllers for grid-connected
power converters, as discussed in the Sidebar Challenges in
Control of Power Electronics Dominated Power Systems.

The dynamics of a grid-connected power converter depends
on both the inherent control scheme as well as the characteristics
of the power grid. However, on the one hand, the real power
grid is complex, variable, and generally unknown from the
perspective of a power converter [55]. On the other hand, power
converter suppliers usually do not share their proprietary models
to the manufacturers of wind generators. Moreover, in a wind
farm, there are complex aerodynamic interactions among the
wind turbines, which are in general difficult to model and treated
as disturbances [91]. Hence, in practice, it would be cumbersome
to do model-based design and manual tuning by commissioning
engineers, as they may have neither a model of the grid nor a
model of the converter. Nonetheless, the dynamics of a grid-
connected wind generator can be captured by the input and
output data in the controller of the power converter which
interacts with the power grid in a closed-loop manner. These
input and output data can be used in data-driven control design,
and one open question is whether direct data-driven methods
have advantages over indirect data-driven methods?

In what follows, we apply the DeePC method from the
previous section for direct data-driven optimal control in wind
generators, which may shed some light on the above question.
We consider both device-level control (including two scenarios:
1) stabilization of wind generators as well as 2) grid synchro-
nization and DC voltage regulation) and system-level control
(frequency control provided by wind farms) to demonstrate the
possibilities and potentials of using data-driven control to ensure
a resilient power electronics dominated power system.

Case study I: stabilizing wind generators
The conventional control design of wind generators is model-
based, which implicitly assumes that the power grid is an ideal
one (with fixed voltage magnitude and frequency). However,
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FIGURE 15 An illustration of a power electronics dominated power system.

as discussed in the Sidebar Challenges in Control of Power
Electronics Dominated Power Systems, the resulting controller
may lead to inferior performance or even instabilities when
the wind generators are connected to nonideal grids. Although
conventional robust and adaptive model-based methods can
potentially be used to handle these problems, they may result
in complex controllers (with often disappointing performance).
Moreover, it is in general difficult to find a single fixed controller
that is robust to all possible power grid situations.

In what follows, we use DeePC to eliminate oscillations in
wind generators, which are caused by the closed-loop interaction
between the grid-side power converter and the unknown power
grid [92], [93]. Here we abstract the power grid as a voltage
source behind a transmission line, whose impedance is unknown
from the perspective of the wind generator. This assumption
is mainly for simplicity of presentation and will be lifted in a
subsequent case study. Although the DeePC method is general,
to illustrate the point we consider the direct-drive (type 4) wind
generator in Figure 16. We use an industrial wind generator
model implemented in MATLAB/Simulink (2020b): “Wind Farm
- Synchronous Generator and Full Scale Converter (Type 4)
Average Model”. This simulation model is of high fidelity
and contains details of a wind generator, including the turbine
dynamics, flux dynamics, filters, speed control, pitch control,
converter control, maximum power point tracking (MPPT), etc. It
has 37 state variables and is highly nonlinear due to the nonlinear
power flow equation, MPPT curve, (adaptive) phase-locked loop
(PLL), etc. In industrial practice this model and its parameters
might be proprietary and unknown to commissioning control
engineers and system operators of the power grid. It might also
be difficult to use conventional system identification methods to

obtain a detailed and accurate model due to the high complexity.
To study the oscillation problem, we change the length of

the transmission line in the original model to create a weak
power grid (i.e., a power grid that has long transmission lines
and little rotational generation) with the short-circuit ratio being
2.23. Note that in a grid-connected single-device system, the
short-circuit ratio is the inverse of the grid impedance (in per-unit
values), which characterizes the strength of the power grid [94].
The studied wind generator relies on a synchronous reference
frame PLL [95], [96] to detect the voltage phase of the power
grid and realize synchronization. We disable the automatic gain
control of the PLL in the original model and fix the PLL band-
width to be 60rad/s to avoid strongly time-varying dynamics.
When connected to such a weak power grid, the wind generator
has low stability margin and can easily become unstable when
the power grid changes. To deal with this issue, we employ
the DeePC method to perform direct data-driven control and
stabilize the system. As shown in Figure 16, we choose the
active power (PE) and reactive power (QE) to be the two
outputs of the unknown system, and DeePC provides two control
inputs added to the current references. The input/output signals
are all in per-unit values (p.u.). We consider three different
regularizers including a quadratic regularizer h(g) = ‖g‖2

2, a one-
norm regularizer h(g) = ‖g‖1, and a projection-based regularizer
h(g) = ‖(I−Π)g‖2

2. The parameters of DeePC are: Td = 600,
Tini = 6, Tf = 12, R = I, Q = 100I, and λyini = 1000. We assume
no input noise in our case studies and thus disregard the slack
variable σuini . We choose λg = 1 for the quadratic regularizer
and the projection-based regularizer, and λg = 0.01 for the one-
norm regularizer, respectively. Note that the hyper-parameters
in our case studies are selected manually, and one may achieve
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CHALLENGES IN CONTROL OF POWER ELECTRONICS
DOMINATED POWER SYSTEMS
The large-scale integration of power electronics converters
into power systems is an inevitable trend, as they act as
interfaces between the power grid and renewable sources,
electric vehicles, high-voltage DC transmission systems, etc.
In these devices, by performing pulse-width modulation, one
can directly control the sinusoidal voltage angle and magnitude
of the converter at the AC side, which provides high flexibility
in designing the converters’ characteristics and enabling fast
control actions [S1].

However, the control design of power converters is a chal-
lenging problem, especially in the power system context. On the
one hand, due to the fast control, the converter can respond to
the disturbances from the power grid in different time scales,
but to maintain desired performance, the controller should be
robust against a variety of uncertainties. On the other hand,
in a very fast time scale (milliseconds), the controller needs to
be designed and implemented in a fully decentralized manner
considering constraints (e.g., current and voltage limitations), as
fast communication is rarely available in bulk power systems.
Moreover, the decentralized design should ensure that the
interconnected system has satisfactory performance.

Conventionally, the above requirements are handled by em-
ploying multiple nested control loops based on PID controllers
to achieve power/voltage regulations and grid synchronization
in power converters, and the constraints are implemented
using saturations and anti-windup strategies [S2], [S3]. The
corresponding control structure (i.e., how different loops are
connected) is designed based on engineering experience, and
the PID control gains are tuned manually. Also, lots of effort has
been put into the modeling of grid-connected power converters,
which provides insights into the system dynamics and criteria
for the PID gain tuning. However, detailed and accurate models
of such systems are rarely available for control design due to
three main reasons: (i) often the power converter manufacturers
do not share detailed proprietary models to the control designer
of wind turbine manufacturers, and vice versa; (ii) the power
grid, which interacts with the power converter in a closed-loop
manner, is generally unknown from the converter’s point of

view because the grid is ever-changing, high-dimensional, and
subject to lots of uncertainties; and (iii) finally exogenous dis-
turbances (e.g., intermittency of renewables) are hard to model,
especially on fast time scales. For simplicity, a presumed model
can be used for the control design, which usually assumes that
the converter is connected to an ideal source and an ideal
grid: a voltage source that has fixed frequency and voltage
magnitude. However, this assumption is often not (even close
to) true in practice, and thus the model-based control design
may result in inferior performance or even instabilities.

For instance, many oscillation events (small-signal instabili-
ties) have been observed in real-world wind farms all over the
planet, e.g., those in the U.S. and China, especially when the
wind farms are integrated in weak power grids [S4]. These os-
cillation events, which were caused by the mismatch between a
presumed model in the control design and the real-world model,
resulted in great loss of wind power as the wind farms had to
be disconnected from the grid to protect the wind generators.
This challenge can be difficult to address using model-based
control design methods. Fortunately, data is readily available
during the operation of a power system, which can be used to
capture the system dynamics and perform optimal control [74],
[S5]. In the Section Case study I: stabilizing wind generators, we
demonstrate how direct data-driven control excels in stabilizing
wind generators by performing optimal control.
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better performance by finding a better set of parameters; see Fig-
ures 18, 20 later on. The control horizon is k = 1, i.e., we apply
the first k elements of uf to the system before solving DeePC
again, see Figure 11. The reference trajectory is r = 1⊗

[
Ps
Qs

]
,

where 1 is the vector of ones, Ps and Qs are respectively the
steady-state values of active and reactive power, and ⊗ denotes
the Kronecker product. Hence, DeePC aims at minimizing the
deviations of active and reactive power from their steady-state
values, thereby eliminating power oscillations. The sampling
time is 5ms. In the constraints, we consider the lower and upper
bounds of the two inputs to be −0.05 and 0.05, respectively; the

lower and upper bounds of the active power (output 1) are 0 and
1.2, respectively; the lower and upper bounds of the reactive
power (output 2) are −1 and 1, respectively. In the following
case studies, we observe that these input/output constraints are
inactive due to the favorable tracking performance of DeePC.
Note that when the input/output constraints are inactive, one can
also derive closed-form solutions of DeePC when the quadratic
regularizer or the projection-based regularizer are used [68].

Figure 17 shows the time-domain responses of the wind
generator. At time = 1s, we change the short-circuit ratio from
2.23 to 2 to emulate an event in the power grid, e.g., tripping
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FIGURE 16 Application of data-driven control to stabilize a direct-
drive wind generator.

FIGURE 17 Time-domain responses of the wind generator: (a) ac-
tive power and (b) reactive power.

of transmission lines. It can be seen that the wind generator
starts to oscillate after the disturbance, which is caused by the
interactions among PLL, current/power control loops, and the
weak power grid [92]. After the oscillation is observed, we inject
band-limited white noise signals into the system through the two
input channels to excite the system and collect data. With the
sampling time being 5ms, we only require 3s (from time = 3s to
time = 6s as displayed in Figure 17) to collect the input/output
trajectory of length Td = 600 to construct the Hankel matrices.
One may use other types of persistently exciting input signals
to possibly achieve better performance and safe perturbations,

FIGURE 18 Average realized closed-loop cost of the system
(a) with different values of λg (when the projection-based regular-
izer is used, we use ∗ to label the value of λg obtained by the Hanke-
Raus heuristic [83], [87]) (b) with different values of λyini (c) with
different values of Tini, and (d) with different values of Tf.

e.g., a pseudorandom binary sequence. Moreover, one may
also avoid actively injecting excitation signals into the system
by collecting long enough oscillation data that satisfies the
persistency of excitation condition. The output signals are subject
to measurement noise with the signal-to-noise ratio (SNR) being
2×103. Here the SNR is defined as SNR = ‖∆yd‖2

2/‖ynoise‖2
2,

where ∆yd is the deviation of yd from its steady-state value and
ynoise is the noise sequence; it reflects how the noise compares
to the fluctuation in the outputs caused by the excitation signals.

The DeePC method is activated at time = 7s. It can be
seen that the oscillations are well eliminated when any of the
regularizers is employed. We also observe that the projection-
based regularizer achieves the best damping ratio in this case.
The DeePC optimization problem can be solved using standard
solvers for quadratic programs. Here we use OSQP [85] as
the solver. Note that DeePC with the one-norm regularizer can
also be reformulated as a quadratic program by considering
an additional decision variable g1 that satisfies the constraint
−g1 ≤ g ≤ g1 such that ‖g‖1 = 1>g1 in the optimizer, though
this reformulation results in a higher-dimensional problem with
additional constraints. On an Intel Core i7 9750H CPU with
16GB RAM, it takes about 0.013s to solve DeePC with the
quadratic regularizer; it takes about 0.02s to solve DeePC with
the one-norm regularizer; it takes about 0.02s to solve DeePC
with the projection-based regularizer. Hence, the DeePC method
can be implemented in real time by choosing a control horizon
k > 4. When the input/output constraints are inactive, one can
also use the closed-form solution to achieve faster calculations.

In what follows, we investigate how the DeePC parameters
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affect the closed-loop cost of the system. The closed-loop cost
is defined by ∑t ‖ut‖2

R + ‖yt− rt‖2
Q measured from the system

from 7s to 12s. Figure 18 (a) shows the average closed-loop cost
of the system when different regularization coefficients λg are
used. The average closed-loop cost is computed by repeating the
simulation for 10 times with different random seeds to generate
the excitation signals and the measurement noise. It can be
seen that the system has a satisfactory performance for a wide
range of λg . As mentioned before, the regularization on g in the
cost function assures robustness. Hence, the regularizers achieve
satisfactory performance when λg is large enough. However,
with the quadratic regularizer or the one-norm regularizer, the
performance deteriorates with a too large λg , as it conservatively
hedges against a too large inherent uncertainty set that results
in poor performance of the obtained control sequence [66].
By comparison, the projection-based regularizer still maintains
excellent performance even with a large λg , as the control is
robustified around the solution of the indirect problem. More-
over, we observe that the one-norm regularizer achieves better
performance than the quadratic regularizer when a very low or
a very high value of λg is applied. In summary, Figure 18 (a)
quantitatively confirms the illustration in Figure 14. The Hanke-
Raus heuristic [83], [87] to tune λg leads to the nearly optimal
value labelled by ∗ in Figure 18 (a) for the projection-based
regularizer. However, when the Hanke-Raus heuristic is used to
tune λg for the quadratic regularizer, we obtain λg in the order
of 102, and the resulting closed-loop cost is not satisfactory.

Figure 18 (b) shows the average closed-loop cost with dif-
ferent values of λyini , which indicates that a sufficiently large
λyini is needed to ensure satisfactory performance; see also [66,
Theorem III.1]. Figure 18 (c) and (d) show the average closed-
loop cost with different values of Tini and Tf, respectively. It can
be seen that the system achieves excellent performance when Tini
and Tf are sufficiently large, consistent with the results in [54],
[55], [74], etc. Usually the prediction horizon should be large
enough to ensure stability of the system [97]. We notice that
the lag of the system ` is at least 19 since the system has 37
state variable and 2 outputs, and theoretically Tini should be
larger than `. However, we observe from Figure 18 (c) that the
closed-loop system shows satisfactory performance with Tini≥ 5.
This may be because the data mainly captures the dynamics
of the dominant states for the studied problem (oscillation
damping). To verify our hypothesis, we use the data in the
Hankel matrices to identify the system by employing structured
low-rank approximation [35] with different presumed model
orders. The fitting error is plotted in Figure 19, which shows
that the optimal model order is n = 5 (in terms of balancing the
fitting error and the complexity). Hence, aligned with insights
from model-order reduction, in practice one may expect good
performance even when Tini is smaller than the theoretical lower
bound inferred from the real system order.

Figure 20 (a) plots the average closed-loop cost with different
values of Td, which shows that a sufficiently large Td leads
to satisfactory performance, and increasing Td does not always

FIGURE 19 Fitting error when assuming different model orders to
identify the system.

FIGURE 20 Average realized closed-loop cost of the system with
different length Td of input/output trajectory to construct Hankel
matrices (a) with a fixed λg and (b) for each value of Td, the optimal
value of λg is chosen from {0.001,0.01,0.1,1,10,100}.

improve the performance. For instance, with the projection-based
regularizer, we observe the best performance when Td is around
800; with the one-norm regularizer, the performance starts to de-
grade when Td≥ 1000. According to the interpretation from min-
max optimization (See Sidebar Roles of Regularization), one
may need to choose a larger λg when Td increases. Figure 20 (b)
further shows the average closed-loop cost where for each value
of Td, the optimal value of λg (with the lowest closed-loop
cost) is chosen from {0.001,0.01,0.1,1,10,100}. The results are
consistent with (and very close to) Figure 20 (a). Moreover, we
observe that the optimal value of λg increases with a larger Td
(data not shown). Overall, all the regularizers have satisfactory
performance when Td is sufficiently large.

In short, the above results demonstrate the robustness of
DeePC with regard to different choices of parameters. The
system presents excellent control performance with deliberately
tuned regularizers and sufficiently large Td, λyini , Tini, and Tf.
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FIGURE 21 DC voltage control and grid synchronization control of
direct-drive wind generators (a) using PI controllers and (b) using
data-driven control.

Case study II: grid synchronization and DC
voltage regulation
In the previous case study, we used DeePC as an auxiliary
control loop to stabilize wind generators, which will be activated
only when oscillations/instabilities are observed. During normal
operations, the wind turbines mainly use PID controllers to
achieve multiple control objectives, e.g., grid synchronization
and DC voltage regulation. Usually, a PLL is employed to
achieve grid synchronization, which uses the q-axis voltage
signal Vq to generate the converter’s internal frequency ω; see
Figure 21 (a). The PLL aims to regulate Vq to be 0 at steady state
such that the voltage vector is aligned with the d-axis. On this
basis, the DC voltage control loop uses the DC voltage tracking
error (i.e., ∆Vdc = Vref

dc −Vdc) to generate the d-axis (active)
current reference Iref

d . However, as discussed before, optimal
control performance can rarely be achieved in this paradigm due
to the absence of a detailed and accurate model.

In what follows, we employ DeePC to perform data-driven
optimal grid synchronization control and DC voltage regulation.
As shown in Figure 21 (b), we use the data-driven controller
to replace the conventional DC voltage control loop and PLL,
which measures the system outputs ∆Vdc and Vq and provides
control inputs Iref

d and ∆ω (the deviation of ω from the nominal
frequency ω0) to the system. In this manner, the converter’s
frequency is generated using both DC voltage and q-axis volt-
age as feedback signals. In fact, some grid-forming converters
also use the DC voltage to generate the frequency, e.g., those
in [98], [99]. Unlike PLL-based converters which follow the

grid frequency (also known as grid-following converters), grid-
forming converters establish their own frequencies in the power
grid and behave as coupled oscillators, which can provide fast
frequency/voltage support and stabilize the power grid [100]–
[104]. The data-driven controller in Figure 21 (b) has the poten-
tial to become a general optimal control framework that covers
both grid-forming control and PLL-based (i.e., grid-following)
control. An interesting question for future work is: how to design
the objective function of an optimal control problem to specify
it as a grid-forming (or grid-following) controller?

The input/output signals are all in per-unit values, and
the parameters of DeePC are: Td = 800, Tini = 5, Tf = 25,
R = I⊗ diag(1,20), Q = 1000I, and λyini = 1000. We choose
λg = 1 for the quadratic regularizer, λg = 0.01 for the one-norm
regularizer, and λg = 2 for the projection-based regularizer. The
control horizon is k = 1. The reference trajectory is r = 1⊗

[
0
0
]
.

Note that in the matrix R, we give high penalties to the future
trajectory of ∆ω to mitigate the frequency fluctuations. The
sampling time is chosen as 1ms to handle fast DC-link dynamics.
In the constraints, the lower and upper bounds of Iref

d (input 1)
are −1.2 and 1.2, respectively; the lower and upper bounds of
∆ω (input 2) are −0.01 and 0.01, respectively; the lower and
upper bounds of ∆Vdc (output 1) are −0.1 and 0.1, respectively;
the lower and upper bounds of Vq (output 2) are −0.2 and
0.2, respectively. We note that if one chooses the DC voltage
VDC as one output of the system (rather than its deviation from
the reference value ∆VDC), then the (linearized) wind generator
model becomes affine. In this case, an additional constraint (S3)
should be included [27].

Before DeePC is activated, we inject white noise signals for
0.8s to excite the system and collect input/output data. During
this period, Iref

d comes from the sum of a white noise signal
(variance: 4× 10−3) and a DC voltage control loop (shown in
Figure 21 (a)) which pre-stabilize the DC voltage; ω comes from
the sum of a white noise signal (variance: 1.75× 10−5) and a
PLL which pre-synchronize the converter with the power grid
during the data-collection period. The output signals are subject
to measurement noise (SNR: 104). Under this setting, Figure 22
shows the time-domain responses of the wind generator, where
the DC voltage reference steps from 1p.u. to 1.02p.u. at 0.5s,
and steps back to 1p.u. at 1.5s (by changing the reference
trajectory r accordingly). Note that the data collection was done
before time = 0s and it is not shown in Figure 22. When well-
tuned PI controllers are used for the DC voltage regulation
and grid synchronization, the system has large overshoots. By
comparison, the DeePC method (with any regularizer) achieves
excellent performance – faster responses, perfect tracking, and
nearly no overshoots. We also tested the performance of applying
SPC (S41), which shows faster responses but larger overshoots
and tracking errors. Moreover, the responses of the q-axis voltage
are smoother when DeePC is applied (with any regularizer).

Table 1 shows the effects of choosing Page matrices instead of
Hankel matrices in DeePC. Each of the simulations are repeated
100 times with 100 different random seeds to generate the
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FIGURE 22 Time-domain responses of the wind generator: (a) DC
voltage and (b) q-axis voltage using PI control, SPC, and DeePC.

excitation signals and the measurement noise (we use the same
set of 100 random seeds across different test settings to make a
fair comparison). We observe that the closed-loop performance
can usually be improved by using Page matrices as predictors,
which comes at the cost of collecting more input/output data.
Note that we use a longer trajectory (Td = 23130) to construct
the Page matrices such that they share the same dimensions with
the Hankel matrices. Table 1 also shows the performance of SPC.
However, we observe some unstable cases when SPC is applied
(the unstable cases are taken into account to calculate the average
costs). By comparison, all the simulation cases are stable when
DeePC is applied.

Case study III: frequency control provided by
wind farms
In what follows, we apply DeePC in a wind farm to perform
optimal frequency control and improve the frequency stability
of power systems (i.e., reduce frequency deviations and increase
the frequency nadir). Conventionally, wind generators operate in
MPPT mode and do not respond to the frequency deviation in
power grids. However, this behavior will result in unacceptable
frequency responses in a low-inertia system that has a high share
of renewable sources [88], [105]. In fact, many system operators
have required renewable sources to participate in frequency
regulation. With appropriate control design in wind generators,
one can use the kinetic energy stored in the spinning turbine
to provide additional energy for fast frequency support [106],
[107] without operating the wind generators in de-loading mode.

TABLE 1 Comparisons of average closed-loop costs
between Hankel matrices and Page matrices.

average
closed-loop cost

SNR: 104 SNR: 102

Hankel matrices
(h(g) = ‖g‖2

2)
17.12 26.69

Page matrices
(h(g) = ‖g‖2

2)
16.50 24.17

Hankel matrices
(h(g) = ‖g‖1)

31.03 49.04

Page matrices
(h(g) = ‖g‖1)

24.38 36.76

Hankel matrices
(h(g) = ‖(I−Π)g‖2

2)
31.85 43.12

Page matrices
(h(g) = ‖(I−Π)g‖2

2)
25.00 29.21

Hankel matrices
(SPC)

292.07
unstable (1 case)

912.59
unstable (3 case)

Page matrices
(SPC)

1.15×103

unstable (3 cases)
2.03×105

unstable (1 case)

SG 1

SG 2 SG 3
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FIGURE 23 A wind farm connected to a power grid (IEEE nine-
bus system). The wind speed at wind generators 1 ∼ 5 is 10m/s,
and the wind speed at wind generators 6∼ 10 is 9.5m/s due to the
wake effect. The total active power output of the three synchronous
generators (SGs) and the wind farm are 300MW and 51.5MW,
respectively.

However, it is in general difficult to tune the control parameters
when the power grid is unknown, and data-driven control can be
used to handle this issue.

Consider a wind farm that is connected to a power grid (IEEE
nine-bus system), where the wind farm consists of 10 direct-
drive wind generators (same model as the previous case studies),
as shown in Figure 23. The models of the power grid and
the wind farm are unknown from a control design perspective.
We consider the following DeePC setting: 1) the output of the
unknown system is the deviation of the frequency of SG 1 from
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FIGURE 24 A centralized implementation of data-driven frequency
control in the rotor speed control loop.

the nominal frequency (Hz), with the lower and upper bounds
being ±0.5; this output signal can be obtained from wide-area
measurements; 2) for each wind generator, DeePC provides an
auxiliary control input signal added to the rotor speed control
loop in the control scheme of the generator-side converter (see
Figure 24), with the lower and upper bounds being ±0.3; 3) the
parameters of DeePC are: Td = 500, Tini = 10, Tf = 25, R = I,
Q = 40I, λyini = 40, k = 1; we choose λg = 2 for the quadratic
regularizer, and λg = 0.4 for the one-norm regularizer and the
projection-based regularizer; 4) we choose the sampling time to
be 0.1s, as we focus on slow power grid frequency dynamics.

During the data collection period, we simultaneously inject
the same excitation sequence into all the wind generators to
cause fluctuations in the system output (within 0.05Hz); the out-
put is subject to measurement noise (SNR: 5×105). Under this
setting, since every wind generator collects the same input/output
data, one can implement DeePC in one central controller using
wide-area measurements and then distribute the obtained control
sequence to all the wind generators, i.e., they operate together as
a virtual power plant [108]. The implementation of this setting
is illustrated in Figure 24. DeePC can also be implemented
locally in each wind generator to avoid delays in the control
actuation; see [74] for an example. We will later present a
decentralized implementation using PLLs to measure the grid
frequency locally. In practice, one can possibly avoid actively
perturbing the system by collecting long enough operation data
of the wind farm, as the persistency of excitation condition can
generally be met thanks to the fluctuation of wind power.

Figure 25 shows the time-domain responses of the system
when an overload event (bus 6) occurs at time = 10s and causes
a frequency dip. The data collection was done before time = 0s
and it is not shown in Figure 25. We employ DeePC in a
central controller that provides identical control sequence to all
the wind generators. It can be seen from Figure 25 (a) that the
frequency nadir is improved when DeePC is applied, indicating
better frequency stability. For instance, the frequency nadir is
lifted from 59.66Hz to 59.75Hz when the quadratic regularizer
is used (R = I). In our case, the power generation of the wind

FIGURE 25 Time-domain responses of the system: (a) frequency
of SG 1 and (b) control inputs provided by DeePC. The wind
generators release the kinetic energy to support the grid frequency
without operating in de-loaded mode, which significantly increases
the frequency nadir. At the same time, the frequency recovery
process becomes slower as the wind generators need to absorb
energy to restore to the original speed (see also Figure 26).

farm is only 15% of the total generation in the grid, and the
frequency nadir can be improved more if the wind power has a
larger share. Moreover, the performance improvement does not
come at the cost of operating in de-loading mode, as we utilize
the kinetic energy stored in the spinning turbine to support the
grid frequency. Figure 25 further compares the responses with
different values of R, which shows that the control action is
mitigated with a larger R. Hence, one can conveniently reduce
the frequency support capability of the wind generators by
choosing a larger R that penalizes more on the control effort.
We also test the performance of SPC. However, as shown in
Figure 25, the system becomes unstable in this case. We suspect
that this is due to the nonlinearity of the system (e.g., the
nonlinear MPPT curve and the nonlinear relationship between
the captured wind power and rotor speed).

Figure 26 shows the active power and rotor speed of the
wind generators when the quadratic regularizer is used (λg = 2,
R = I). Note that wind generators 2∼ 4 have similar responses
to wind generator 1, and wind generators 7 ∼ 10 have similar
responses to wind generator 6. It can be seen that the wind
generators decelerate to release the kinetic energy, and thus the
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FIGURE 26 Time-domain responses of the wind generators with
DeePC (h(g) = ‖g‖2

2, R = I): (a) active power and (b) rotor speed.
The wind generators decelerate to provide kinetic energy to support
the grid frequency.

active power increases quickly after the overload event. Note that
the wind generators deviate from the MPPT curve during this
process, and the rotor speeds will be restored to the original point
to preserve the MPPT operation once the secondary frequency
control of the power grid brings the frequency back to the
nominal value (this process is not shown as it usually takes
several minutes). In the above simulations, it only takes about
0.02s to solve the optimization problem, and thus the algorithm
can be implemented in real time.

Instead of directly using wide-area measurements, we next
consider the scenario where each wind generator uses an ad-
ditional PLL (bandwidth: 5rad/s) to locally detect the grid
frequency and implement DeePC in a decentralized manner,
as shown in Figure 27. Again, we simultaneously inject the
same excitation sequence into all the wind generators during the
data collection period. However, different wind generators will
observe different grid frequency responses through their own
PLLs. Figure 28 displays the responses of the system under
this setting, which shows that DeePC provides similar control
inputs to the wind generators when implemented in a decentral-
ized manner. Again, DeePC (with any regularizer) effectively
improves the frequency nadir. Here we choose λg = 2 for the
quadratic regularizer, λg = 0.4 for the one-norm regularizer,
and λg = 0.1 for the projection-based regularizer. Under this
setting, the three different regularizers have similar responses
and performance, which significantly increase the frequency
nadir and thus improve the frequency stability. Note that the
DeePC hyper-parameters are not optimized in our case studies,
and one can achieve better performance by optimizing over the
parameters. We again observe that the system becomes unstable

FIGURE 27 A fully decentralized implementation of data-driven fre-
quency control in the rotor speed control loops of wind generators,
where fPLL is the PLL frequency and f0 is the nominal frequency.

FIGURE 28 Time-domain responses when PLL measurements are
used: (a) frequency of SG 1 and (b) control inputs of all the wind
generators provided by DeePC in a decentralized manner.

when applying SPC in this case. Compared with Figure 25, the
frequency responses in Figure 28 have lower but still satisfactory
damping ratio. Overall, the above results demonstrate the great
potential of applying DeePC to perform optimal frequency
regulation in power systems.

Summary: This section has presented the applications of
DeePC in power systems, including 1) stabilization of wind
generators, 2) grid synchronization and DC voltage regulation,
and 3) frequency control provided by wind farms. Our results
suggest a great potential of data-driven control in handling
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unknown and highly complex power grid dynamics as well as
ensuring a resilient power electronics dominated power system.

CONCLUSION
The data-driven representation of the finite horizon behavior
made possible the development of novel methods for analysis,
signal processing, and control that achieve a direct map from
observed data of the system to a desired solution. For exact
noise-free data of linear time-invariant systems, the methods
require simple linear algebra operations and have no hyper-
parameters. Modification using regularization techniques makes
the methods effective for noisy data and nonlinear dynamics.

Current limitations of the direct data-driven approach pre-
sented in the paper are: data- and computational-efficiency
for growing prediction horizons, lack of statistical analysis /
guarantees in case of noisy data, and direct design of feedback
controllers. These limitations open fruitful avenues for future
research including a principled and bottom up extension of the
methods to continuous-time, stochastic, and nonlinear systems
starting from their behaviors. We believe that real-time adapta-
tion of the presented methods holds great value both for theory as
well as practical implementations. For the latter we also highlight
automatic tuning of hyper-parameters as well as computationally
efficient methods as important directions.
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[91] M. Vali, V. Petrović, L. Y. Pao, and M. Kühn, “Model predictive active
power control for optimal structural load equalization in waked wind farms,” IEEE
Transactions on Control Systems Technology, vol. 30, no. 1, pp. 30–44, 2021.

[92] L. Huang, H. Xin, Z. Li, P. Ju, H. Yuan, Z. Lan, and Z. Wang, “Grid-
synchronization stability analysis and loop shaping for PLL-based power converters
with different reactive power control,” IEEE Transactions on Smart Grid, vol. 11,
no. 1, pp. 501–516, 2020.

[93] H. Liu, X. Xie, J. He, T. Xu, Z. Yu, C. Wang, and C. Zhang, “Subsynchronous
interaction between direct-drive pmsg based wind farms and weak ac networks,”
IEEE Transactions on Power Systems, vol. 32, no. 6, pp. 4708–4720, 2017.

[94] W. Dong, H. Xin, D. Wu, and L. Huang, “Small signal stability analysis of
multi-infeed power electronic systems based on grid strength assessment,” IEEE
transactions on Power Systems, vol. 34, no. 2, pp. 1393–1403, 2018.

[95] S. Golestan and J. M. Guerrero, “Conventional synchronous reference frame
phase-locked loop is an adaptive complex filter,” IEEE Transactions on Industrial
Electronics, vol. 62, no. 3, pp. 1679–1682, 2014.

[96] X. Wang, M. G. Taul, H. Wu, Y. Liao, F. Blaabjerg, and L. Harnefors, “Grid-
synchronization stability of converter-based resources—an overview,” IEEE Open
Journal of Industry Applications, vol. 1, pp. 115–134, 2020.

[97] L. Grüne and A. Rantzer, “On the infinite horizon performance of receding
horizon controllers,” IEEE Transactions on Automatic Control, vol. 53, no. 9, pp.
2100–2111, 2008.

[98] L. Huang, H. Xin, Z. Wang, K. Wu, H. Wang, J. Hu, and C. Lu, “A virtual
synchronous control for voltage-source converters utilizing dynamics of dc-link
capacitor to realize self-synchronization,” IEEE Journal of Emerging and Selected
Topics in Power Electronics, vol. 5, no. 4, pp. 1565–1577, 2017.

[99] C. Arghir, T. Jouini, and F. Dörfler, “Grid-forming control for power converters
based on matching of synchronous machines,” Automatica, vol. 95, pp. 273–282,
2018.

[100] C. Yang, L. Huang, H. Xin, and P. Ju, “Placing grid-forming converters to en-
hance small signal stability of PLL-integrated power systems,” IEEE Transactions
on Power Systems, vol. 36, no. 4, pp. 3563–3573, 2020.

[101] J. W. Simpson-Porco, F. Dörfler, and F. Bullo, “Synchronization and power
sharing for droop-controlled inverters in islanded microgrids,” Automatica, vol. 49,
no. 9, pp. 2603–2611, 2013.

[102] B. B. Johnson, S. V. Dhople, A. O. Hamadeh, and P. T. Krein, “Synchronization
of parallel single-phase inverters with virtual oscillator control,” IEEE Transactions
on Power Electronics, vol. 29, no. 11, pp. 6124–6138, 2013.

[103] M. Colombino, D. Groß, J.-S. Brouillon, and F. Dörfler, “Global phase and
magnitude synchronization of coupled oscillators with application to the control of
grid-forming power inverters,” IEEE Transactions on Automatic Control, vol. 64,
no. 11, pp. 4496–4511, 2019.

[104] Y. Gu and T. C. Green, “Power system stability with a high penetration of
inverter-based resources,” Proceedings of the IEEE, 2022.

[105] H. Gao, H. Xin, L. Huang, Z. Li, W. Huang, P. Ju, and C. Wu, “Common-
mode frequency in inverter-penetrated power systems: Definition, analysis, and
quantitative evaluation,” IEEE Transactions on Power Systems, 2022.

[106] P.-K. Keung, P. Li, H. Banakar, and B. T. Ooi, “Kinetic energy of wind-turbine
generators for system frequency support,” IEEE Transactions on power systems,
vol. 24, no. 1, pp. 279–287, 2008.

[107] L. Huang, H. Xin, L. Zhang, Z. Wang, K. Wu, and H. Wang, “Synchronization
and frequency regulation of dfig-based wind turbine generators with synchronized
control,” IEEE Transactions on Energy Conversion, vol. 32, no. 3, pp. 1251–1262,
2017.

[108] B. Marinescu, O. Gomis-Bellmunt, F. Dörfler, H. Schulte, and L. Sigrist,
“Dynamic virtual power plant: A new concept for grid integration of renewable
energy sources,” arXiv preprint arXiv:2108.00153, 2021.

JUNE 2022 « IEEE CONTROL SYSTEMS 35

https://ieeexplore.ieee.org/abstract/document/9789718
https://ieeexplore.ieee.org/abstract/document/9789718
https://ieeexplore.ieee.org/abstract/document/9661376
https://ieeexplore.ieee.org/abstract/document/9744574
https://ieeexplore.ieee.org/abstract/document/9744574

	
	Data-Driven Free Fall Prediction
	Behavioral Systems Theory
	Linear Time-Invariant Systems
	Classical vs Behavioral Approach

	Parametric Representations
	Representation of Restricted Behavior B|T
	Kernel representation and input/output partitions
	REFERENCES
	Using State-Space Representation


	Using Exact Raw Data
	Transformations Among Representations
	The fundamental lemma
	REFERENCES
	Model-free vs model-based methods
	Data-Driven Trajectories Interpolation and Approximation
	Problem Formulation


	Simulation, smoothing, and control as trajectory interpolation/approximation
	Simulation
	Smoothing
	Control

	REFERENCES
	Solution in Case of Exact Data wd

	Models for Inexact Data wd
	Data-driven simulation of high-order system
	Direct Data-Driven Control
	Open-loop linear quadratic tracking: from indirect to direct data-driven formulations


	Data-enabled predictive control
	Subspace Predictive Control (SPC)
	The role of regularization in DeePC
	Roles of Regularization

	REFERENCES
	DeePC: closed-loop & implementation aspects
	Distributional Robustness in Trajectory Space
	REFERENCES
	Selected Implementations of DeePC

	REFERENCES
	Application to Control of Power Electronics Dominated Power Systems
	Case study I: stabilizing wind generators
	Challenges in Control of Power Electronics Dominated Power Systems
	REFERENCES
	Case study II: grid synchronization and DC voltage regulation
	Case study III: frequency control provided by wind farms
	Conclusion

	Biographies
	Ivan Markovsky
	Linbin Huang
	Florian Dörfler

	REFERENCES

