
Data-driven systems theory,
signal processing, and control

Ivan Markovsky

1 / 21

Free fall as a dynamical system

setup: mass m falling in gravitational field
I w ∈ (R2)R+ — position in 2D plane
I v := ẇ ∈ (R2)R+ — velocity
I w(0),v(0) ∈ R2 — initial condition

task: given initial condition, find the trajectory w

first work out the model-based approach
1. using physics, derive model (include friction force −γẇ)
2. write a function w = fall(w0, v0, t, m, gamma)

3 / 21

Modeling from first principles leads to
affine time-invariant state-space model

second law of Newton + the law of gravity

mẅ = m
[0
−9.81

]
+ f , where w(0) = wini and ẇ(0) = vini

I 9.81 — gravitational constant
I f =−γv — force due to friction in the air

state x := (w1, ẇ1,w2, ẇ2,x5), where x5 =−9.81

initial state xini := (wini,1,vini,1,wini,2,vini,2,−9.81)

4 / 21

Modeling from first principles leads to
affine time-invariant state-space model

ẋ =


0 1
0 −γ/m

0 1
0 −γ/m 1

0

x , x(0) =


wini,1

vini,1

wini,2

vini,2

−9.81


w =

[
1 0 0 0 0
0 0 1 0 0

]
x

data: N, Td-samples long discretized trajectories

5 / 21

MATLAB function for free fall simulation

function [w, t, sys] = fall(w0, v0, t, m, gamma)
a1 = [0 1; 0 -gamma / m];
a = blkdiag(a1, a1, 0); a(4, 5) = 1;
c = zeros(2, 5); c(1, 1) = 1; c(2, 3) = 1;
sys = ss(a, [], c, []);
x0 = [w0(1); v0(1); w0(2); v0(2); -9.81];
[w, t] = initial(sys, x0, t);

the Control Toolbox initial simulates the LTI system

6 / 21

Data-driven approach to free fall simulation
simulate Td = 100-samples trajectories
I N = 10 “data” trajectories w1

d , . . . ,w
N
d and

I one “to-be-predicted” trajectory w

verify the data “informativity” condition

rank
[
w1

d · · · wN
d

]
= 5

implement and verify the data-driven method

1. solve

w1
d (1) · · · wN

d (1)
w1

d (2) · · · wN
d (2)

w1
d (3) · · · wN

d (3)

g =

w(1)
w(2)
w(3)


2. define w :=

[
w1

d · · · wN
d

]
g

7 / 21

Solution
%% simulation parameters
m = 1; % mass
gamma = 0.5; % firction coefficient
N = 20; % number of experiments
T = 101; % number of samples
MC = 100; % Monte-Carlo repetitions

%% simulate data using the function fall.m
t = linspace(0, 1, T); % time vector
Wini = rand(2, N); % initial positions
Vini = 5 * rand(2, N); % initial velocities
W0 = []; w0 = {}; % collect the trajectories
for i = 1:N
w0i = fall(Wini(:, i), Vini(:, i), t, m, gamma);
W0 = [W0 vec(w0i')]; w0{i} = w0i;

end
n = rank(W0) % -> 5

8 / 21

Solution

%% simulate the to-be-predicted trajectory
wini = rand(2, 1); vini = 5 * rand(2, 1);
w_new = fall(wini, vini, t, m, gamma);

%% validation criterion:
e = @(wh) 100 * norm(w_new - wh, 'fro') ...

/ norm(w_new, 'fro');

%% direct method with pseudo-inverse
g = pinv([Wini; Vini; ones(1, N)]) ...

* [wini; vini; 1];
wh_dd = reshape(W0 * g, 2, T)';

%% results
e(wh_dd) % -> 0

9 / 21

Dynamical systems as set of signals

B ⊂ (Rq)Z — q-variate discrete-time system

consider the identification problem wd 7→B

given data wd ∈B, find B̂ ⊂ (Rq)Z, such that wd ∈ B̂

questions
I is there a solution?
I if so, is it unique?
I if so, is B̂ = B?

11 / 21

Solution

always exist “trivial” solutions: B̂ = {wd } and B̂ = (Rq)Z

the problem find B̂ ⊂ (Rq)Z, such that wd ∈ B̂ is ill-posed

additional conditions are needed for well-posedness, e.g.,
1. B̂ ∈M — a given class of systems (e.g., linear systems)
2. find the “simplest” exact model in B̂ ∈M
 B̂ = mpum(wd) — the most powerful unfalsified model

if wd ∈B ∈M , mpum(wd)⊆B

additional conditions are needed for mpum(wd) = B
 identifiability conditions

12 / 21

Consider the case of linear static system B

L q
0 class of linear static systems

I static system with q variables: B ⊂ Rq

I linear static system — subspace B of Rq

I complexity of B ∈L q
0 — := dimB

identification problem:
I given data: Wd = {w1

d , . . . ,w
N
d }, w i

d ∈B ∈L q

I find B̂ = mpum(Wd) in the model class L q
0

I when is B̂ = B?

13 / 21

Solution

B̂ = mpum(wd) = spanWd

B̂ ⊆B, equality holds iff dimB̂ = dimB

computational procedure for checking B̂ = B

rank
[
w1

d · · · wN
d

]
= dimB

note that prior knowledge of dimB is needed

14 / 21

Follow-up questions for self-work

how to representation B ∈L q
0 ?

how to find a representation from data Wd ⊂B?

how to find a representation from “noisy data”

wd = w + w̃ , where w ∈B ∈L q and w̃ is noise

15 / 21

Interpretation of dimB|L = m(B)L+n(B)

question: does it make sense? explain

answer:

B|L subspace of RqL

dimB|L # of degrees of freedom in choosing w ∈B|L
m(B) # of degrees of freedom per time step
m(B)L # of degrees of freedom due to the inputs
n(B) # of degrees of freedom due to the initial conditions

17 / 21

Interpretation of HL(wd)

what is the system theory meaning of HL(wd)?

answer: by definition

HL(wd) :=
[
(σ0wd)|L (σ1wd)|L · · · (σTd−Lwd)|L

]
=⇒ every column of HL(wd) is L-samples trajectory of B

18 / 21

Follow-up questions for self-work

what is the meaning of imageHL(wd)?

how to use it in practice, e.g., for simulation?

try it out on a numerical example?

19 / 21

Comparison of the heuristic methods for
dealing with noise on simulated data

implement (SOL) and try it on an example
1. using exact data (random trajectory of a random system)
2. using noisy data wd = w + w̃ , where w ∈B ∈L q

modify the solution of (SOL)
1. using the pseudo-inverse
2. using SVD truncation, imposing rank m(B)L+n(B)
3. `1-norm using regularization

comment on the results

21 / 21

	Free fall
	Data fitting
	Data-driven representation
	Dealing with noise

