# Data-driven systems theory, signal processing, and control

Ivan Markovsky





# Free fall as a dynamical system

### setup: mass *m* falling in gravitational field

\n- $$
w \in (\mathbb{R}^2)^{\mathbb{R}_+}
$$
 — position in 2D plane
\n- $v := \dot{w} \in (\mathbb{R}^2)^{\mathbb{R}_+}$  — velocity
\n- $w(0), v(0) \in \mathbb{R}^2$  — initial condition
\n

### task: given initial condition, find the trajectory *w*

### first work out the model-based approach

- 1. using physics, derive model (include friction force −γ*w*˙ )
- **2. write a function**  $w = \text{fall}(w0, v0, t, m, \text{gamma})$

# Modeling from first principles leads to affine time-invariant state-space model

second law of Newton  $+$  the law of gravity

 $m\ddot{w} = m\left[\begin{smallmatrix} 0 \\ -9.81 \end{smallmatrix}\right] + f$ , where  $w(0) = w_{\text{ini}}$  and  $\dot{w}(0) = v_{\text{ini}}$ 

 $\triangleright$  9.81 — gravitational constant  $\blacktriangleright$   $f = -\gamma v$  — force due to friction in the air

state  $x = (w_1, w_1, w_2, w_2, x_5)$ , where  $x_5 = -9.81$ 

initial state  $x_{\text{ini}} := (w_{\text{ini},1}, v_{\text{ini},1}, w_{\text{ini},2}, v_{\text{ini},2}, -9.81)$ 

Modeling from first principles leads to affine time-invariant state-space model

$$
\dot{x} = \begin{bmatrix} 0 & 1 \\ 0 & -\gamma/m \\ & 0 & 1 \\ & & 0 & -\gamma/m \\ & & & 0 \end{bmatrix} x, \quad x(0) = \begin{bmatrix} w_{\text{ini},1} \\ v_{\text{ini},1} \\ w_{\text{ini},2} \\ v_{\text{ini},2} \\ -9.81 \end{bmatrix}
$$

$$
w = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix} x
$$

data:  $N$ ,  $T<sub>d</sub>$ -samples long discretized trajectories

## MATLAB function for free fall simulation

**function**  $[w, t, sys] = fall(w0, v0, t, m, gamma)$  $a1 = [0 1; 0 - \gamma]$  mma / m]; a = blkdiag(a1, a1, 0);  $a(4, 5) = 1$ ;  $c = \text{zeros}(2, 5); c(1, 1) = 1; c(2, 3) = 1;$  $sys = ss(a, []$ ,  $c, []$ ;  $x0 = [w0(1); v0(1); w0(2); v0(2); -9.81];$  $[w, t] = initial(sys, x0, t);$ 

the Control Toolbox initial simulates the LTI system

## Data-driven approach to free fall simulation simulate  $T_d = 100$ -samples trajectories

- $N = 10$  "data" trajectories  $w_d^1, \ldots, w_d^N$  and
- ▶ one "to-be-predicted" trajectory *w*

verify the data "informativity" condition

$$
\text{rank}\begin{bmatrix} w_d^1 & \cdots & w_d^N \end{bmatrix} = 5
$$

implement and verify the data-driven method

1. solve 
$$
\begin{bmatrix} w_d^1(1) & \cdots & w_d^N(1) \\ w_d^1(2) & \cdots & w_d^N(2) \\ w_d^1(3) & \cdots & w_d^N(3) \end{bmatrix} g = \begin{bmatrix} w(1) \\ w(2) \\ w(3) \end{bmatrix}
$$
  
2. define  $w := \begin{bmatrix} w_1^1 & \cdots & w_d^N \end{bmatrix} g$ 



%% simulate data using the function fall.m  $t =$  linspace(0, 1, T);  $\frac{1}{2}$  time vector Wini = rand(2, N);  $\frac{1}{2}$   $\$ Vini =  $5 * \text{rand}(2, \text{ N})$ ;  $\frac{2}{3}$  initial velocities  $W0 = []$ ;  $W0 = {}\$ ;  $\%$  collect the trajectories **for**  $i = 1:N$  $w0i = fall(Wini(:, i), Vini(:, i), t, m, gamma);$  $W0 = [W0 \text{ vec}(W0i^{\dagger})]; W0[i] = W0i;$ **end**  $n =$  rank(W0)  $\frac{1}{6}$  -> 5

%% simulate the to-be-predicted trajectory wini = rand(2, 1); vini =  $5 * \text{rand}(2, 1)$ ; w new = fall(wini, vini, t, m, gamma);

%% validation criterion:  $e = \theta(\text{wh})$  100  $\star$  norm(w new - wh, 'fro') ... / norm(w\_new, 'fro');

```
%% direct method with pseudo-inverse
q = \text{pinv}([Wini; Vini; ones(1, N)]) ...\star [wini; vini; 1];
wh dd = reshape(W0 * q, 2, T)';
```

```
% resultse(wh dd) \frac{1}{6} -> 0
```
# Dynamical systems as set of signals

 $\mathscr{B} \subset (\mathbb{R}^q)^{\mathbb{Z}}$  —  $q$ -variate discrete-time system

consider the identification problem  $w_d \mapsto \mathscr{B}$ given data  $w_\mathsf{d} \in \mathscr{B}$ , find  $\widehat{\mathscr{B}} \subset (\mathbb{R}^q)^\mathbb{Z}$ , such that  $w_\mathsf{d} \in \widehat{\mathscr{B}}$ 

questions

- $\blacktriangleright$  is there a solution?
- $\blacktriangleright$  if so, is it unique?
- If so, is  $\hat{\mathscr{B}} = \mathscr{B}$ ?

always exist "trivial" solutions:  $\widehat{\mathscr{B}} = \set{w_\mathsf{d}}$  and  $\widehat{\mathscr{B}} = (\mathbb{R}^q)^{\mathbb{Z}}$ 

the problem find  $\widehat{\mathscr{B}}\subset(\mathbb{R}^q)^{\mathbb{Z}},$  such that  $\mathsf{w}_{\mathsf{d}}\in\widehat{\mathscr{B}}$  is ill-posed

additional conditions are needed for well-posedness, *e.g.*, 1.  $\widehat{\mathscr{B}} \in \mathscr{M}$  — a given class of systems (*e.g.*, linear systems) 2. find the "simplest" exact model in  $\widehat{\mathscr{B}} \in \mathscr{M}$  $\rightarrow \widehat{\mathscr{B}}$  = mpum( $w_d$ ) — the most powerful unfalsified model

if  $w_d \in \mathscr{B} \in \mathscr{M}$ , mpum $(w_d) \subset \mathscr{B}$ 

additional conditions are needed for mpum( $w_d$ ) =  $\mathscr{B}$  $\rightsquigarrow$  identifiability conditions

## Consider the case of linear static system  $\mathscr B$

#### $\mathscr{L}^{\mathsf{q}}_0$  $\frac{1}{0}^{\alpha}$  class of linear static systems

- **►** static system with *q* variables:  $\mathscr{B} \subset \mathbb{R}^q$
- linear static system subspace  $\mathscr{B}$  of  $\mathbb{R}^q$
- **D** complexity of  $\mathscr{B} \in \mathscr{L}_0^q$  := *dim*  $\mathscr{B}$

### identification problem:

- **D** given data:  $\mathcal{W}_d = \{w_d^1, \ldots, w_d^N\}, w_d^i \in \mathcal{B} \in \mathcal{L}^q$
- If find  $\widehat{\mathscr{B}} = \underset{\sim}{\text{mpum}}(\mathscr{W}_{d})$  in the model class  $\mathscr{L}_{0}^{q}$ 0

$$
\triangleright \text{ when is } \widehat{\mathscr{B}} = \mathscr{B}
$$
?

$$
\widehat{\mathscr{B}} = \text{mpum}(w_d) = \text{span}\,\mathscr{W}_d
$$

$$
\widehat{\mathscr{B}} \subseteq \mathscr{B}
$$
, equality holds iff dim  $\widehat{\mathscr{B}} = \dim \mathscr{B}$ 

computational procedure for checking  $\widehat{\mathscr{B}} = \mathscr{B}$ rank  $w_d^1$ d ··· *w N* d  $\big]$  = dim  $\mathscr{B}$ note that prior knowledge of dim $B$  is needed

Follow-up questions for self-work

how to representation  $\mathscr{B}\in \mathscr{L}^q_0$ 0 ?

how to find a representation from data  $\mathscr{W}_{d} \subset \mathscr{B}$ ?

how to find a representation from "noisy data"  $w_d = \overline{w} + \widetilde{w}$ , where  $\overline{w} \in \mathcal{B} \in \mathcal{L}^q$  and  $\widetilde{w}$  is noise

Interpretation of dim  $\mathscr{B}|_L = m(\mathscr{B})L + n(\mathscr{B})$ 

### question: does it make sense? explain

### answer:

- $\mathscr{B}|_{\mathsf{L}}$  subspace of  $\mathbb{R}^{q\mathsf{L}}$
- $dim\mathscr{B}|_I$  # of degrees of freedom in choosing  $w \in \mathscr{B}|_I$
- $m(\mathscr{B})$  # of degrees of freedom per time step
- $m(\mathcal{B})L$  # of degrees of freedom due to the inputs
- $n(\mathscr{B})$  # of degrees of freedom due to the initial conditions

# Interpretation of  $\mathcal{H}_1(w_{d})$

### what is the system theory meaning of  $\mathcal{H}_1(w_d)$ ?

### answer: by definition

$$
\mathscr{H}_L(\textit{w}_d):=\begin{bmatrix}(\sigma^0\textit{w}_d)|_L & (\sigma^1\textit{w}_d)|_L & \cdots & (\sigma^{T_d-L}\textit{w}_d)|_L\end{bmatrix}
$$

 $\implies$  every column of  $\mathcal{H}_1(w_d)$  is *L*-samples trajectory of  $\mathcal{B}$ 

Follow-up questions for self-work

what is the meaning of image  $\mathcal{H}_1(w_d)$ ?

how to use it in practice, *e.g.*, for simulation?

try it out on a numerical example?

Comparison of the heuristic methods for dealing with noise on simulated data

### implement (SOL) and try it on an example

- 1. using exact data (random trajectory of a random system)
- 2. using noisy data  $w_d = \overline{w} + \widetilde{w}$ , where  $\overline{w} \in \mathcal{B} \in \mathcal{L}^q$

### modify the solution of (SOL)

- 1. using the pseudo-inverse
- 2. using SVD truncation, imposing rank  $m(\mathscr{B})L+n(\mathscr{B})$
- 3.  $\ell_1$ -norm using regularization

### comment on the results