Data-driven systems theory, signal processing, and control

Ivan Markovsky

Free fall as a dynamical system

setup: mass m falling in gravitational field

task: given initial condition, find the trajectory w

first work out the model-based approach

- 1. using physics, derive model (include friction force $-\gamma \dot{w}$)
- 2. write a function w = fall(w0, v0, t, m, gamma)

Modeling from first principles leads to affine time-invariant state-space model

second law of Newton + the law of gravity

 $m\ddot{w} = m\begin{bmatrix} 0\\ -9.81\end{bmatrix} + f$, where $w(0) = w_{ini}$ and $\dot{w}(0) = v_{ini}$

9.81 — gravitational constant
 f = -γν — force due to friction in the air

state $x := (w_1, \dot{w}_1, w_2, \dot{w}_2, x_5)$, where $x_5 = -9.81$

initial state $x_{ini} := (w_{ini,1}, v_{ini,1}, w_{ini,2}, v_{ini,2}, -9.81)$

Modeling from first principles leads to affine time-invariant state-space model

$$\dot{x} = \begin{bmatrix} 0 & 1 & & & \\ 0 & -\gamma/m & & & \\ & 0 & 1 & & \\ & 0 & -\gamma/m & 1 \\ & & & 0 \end{bmatrix} x, \qquad x(0) = \begin{bmatrix} w_{\text{ini},1} \\ v_{\text{ini},2} \\ v_{\text{ini},2} \\ -9.81 \end{bmatrix}$$
$$w = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix} x$$

data: N, T_d -samples long discretized trajectories

MATLAB function for free fall simulation

function [w, t, sys] = fall(w0, v0, t, m, gamma)
a1 = [0 1; 0 -gamma / m];
a = blkdiag(a1, a1, 0); a(4, 5) = 1;
c = zeros(2, 5); c(1, 1) = 1; c(2, 3) = 1;
sys = ss(a, [], c, []);
x0 = [w0(1); v0(1); w0(2); v0(2); -9.81];
[w, t] = initial(sys, x0, t);

the Control Toolbox initial simulates the LTI system

Data-driven approach to free fall simulation simulate $T_d = 100$ -samples trajectories

- ▶ N = 10 "data" trajectories w_d^1, \ldots, w_d^N and
- one "to-be-predicted" trajectory w

verify the data "informativity" condition

$$\operatorname{rank} \begin{bmatrix} w_d^1 & \cdots & w_d^N \end{bmatrix} = 5$$

implement and verify the data-driven method

1. solve
$$\begin{bmatrix} w_{d}^{1}(1) & \cdots & w_{d}^{N}(1) \\ w_{d}^{1}(2) & \cdots & w_{d}^{N}(2) \\ w_{d}^{1}(3) & \cdots & w_{d}^{N}(3) \end{bmatrix} g = \begin{bmatrix} w(1) \\ w(2) \\ w(3) \end{bmatrix}$$

2. define $w := \begin{bmatrix} w_{d}^{1} & \cdots & w_{d}^{N} \end{bmatrix} g$

%% simulation	parameters
m = 1;	% mass
gamma = 0.5;	% firction coefficient
N = 20;	% number of experiments
T = 101;	% number of samples
MC = 100;	<i>% Monte-Carlo repetitions</i>

%% simulate data using the function fall.m
t = linspace(0, 1, T); % time vector
Wini = rand(2, N); % initial positions
Vini = 5 * rand(2, N); % initial velocities
W0 = []; w0 = {}; % collect the trajectories
for i = 1:N
 w0i = fall(Wini(:, i), Vini(:, i), t, m, gamma);
 w0 = [W0 vec(w0i')]; w0{i} = w0i;
end
n = rank(W0) % -> 5

8/21

%% simulate the to-be-predicted trajectory
wini = rand(2, 1); vini = 5 * rand(2, 1);
w_new = fall(wini, vini, t, m, gamma);

```
%% results
e(wh_dd) % -> 0
```

Dynamical systems as set of signals

 $\mathscr{B} \subset (\mathbb{R}^q)^{\mathbb{Z}}$ — *q*-variate discrete-time system

consider the identification problem $w_d \mapsto \mathscr{B}$ given data $w_d \in \mathscr{B}$, find $\widehat{\mathscr{B}} \subset (\mathbb{R}^q)^{\mathbb{Z}}$, such that $w_d \in \widehat{\mathscr{B}}$

questions

- is there a solution?
- if so, is it unique?
- if so, is $\widehat{\mathscr{B}} = \mathscr{B}$?

always exist "trivial" solutions: $\widehat{\mathscr{B}} = \{ w_d \}$ and $\widehat{\mathscr{B}} = (\mathbb{R}^q)^{\mathbb{Z}}$

the problem find $\widehat{\mathscr{B}} \subset (\mathbb{R}^q)^{\mathbb{Z}}$, such that $w_d \in \widehat{\mathscr{B}}$ is ill-posed

additional conditions are needed for well-posedness, *e.g.*,
1. B ∈ M — a given class of systems (*e.g.*, linear systems)
2. find the "simplest" exact model in B ∈ M ~ B = mpum(w_d) — the most powerful unfalsified model

if $w_d \in \mathscr{B} \in \mathscr{M}$, mpum $(w_d) \subseteq \mathscr{B}$

additional conditions are needed for $mpum(w_d) = \mathscr{B}$ \rightsquigarrow identifiability conditions

Consider the case of linear static system \mathscr{B}

\mathscr{L}^q_0 class of linear static systems

- static system with q variables: $\mathscr{B} \subset \mathbb{R}^q$
- ▶ linear static system subspace \mathscr{B} of \mathbb{R}^q
- complexity of $\mathscr{B} \in \mathscr{L}_0^q := \dim \mathscr{B}$

identification problem:

- ▶ given data: $\mathscr{W}_d = \{ w_d^1, \dots, w_d^N \}, w_d^i \in \mathscr{B} \in \mathscr{L}^q$
- find $\widehat{\mathscr{B}} = \operatorname{mpum}(\mathscr{W}_d)$ in the model class \mathscr{L}_0^q

• when is
$$\widehat{\mathscr{B}} = \mathscr{B}$$
?

$$\widehat{\mathscr{B}} = \mathsf{mpum}(w_{\mathsf{d}}) = \mathsf{span} \, \mathscr{W}_{\mathsf{d}}$$

 $\widehat{\mathscr{B}} \subseteq \mathscr{B}$, equality holds iff dim $\widehat{\mathscr{B}} = \dim \mathscr{B}$

computational procedure for checking $\widehat{\mathscr{B}} = \mathscr{B}$ rank $\begin{bmatrix} w_d^1 & \cdots & w_d^N \end{bmatrix} = \dim \mathscr{B}$ note that prior knowledge of dim \mathscr{B} is needed Follow-up questions for self-work

how to representation $\mathscr{B} \in \mathscr{L}_0^q$?

how to find a representation from data $\mathcal{W}_d \subset \mathcal{B}$?

how to find a representation from "noisy data" $w_d = \overline{w} + \widetilde{w}$, where $\overline{w} \in \mathscr{B} \in \mathscr{L}^q$ and \widetilde{w} is noise Interpretation of dim $\mathscr{B}|_L = \mathbf{m}(\mathscr{B})L + \mathbf{n}(\mathscr{B})$

question: does it make sense? explain

answer:

- $\mathscr{B}|_L$ subspace of \mathbb{R}^{qL}
- $\dim \mathscr{B}|_L$ # of degrees of freedom in choosing $w \in \mathscr{B}|_L$
- $\mathbf{m}(\mathscr{B})$ # of degrees of freedom per time step
- $\mathbf{m}(\mathscr{B})L$ # of degrees of freedom due to the inputs
- $\mathbf{n}(\mathscr{B})$ # of degrees of freedom due to the initial conditions

Interpretation of $\mathscr{H}_L(w_d)$

what is the system theory meaning of $\mathscr{H}_L(w_d)$?

answer: by definition

$$\mathscr{H}_{L}(w_{d}) := \left[(\sigma^{0} w_{d})|_{L} (\sigma^{1} w_{d})|_{L} \cdots (\sigma^{T_{d}-L} w_{d})|_{L} \right]$$

 \implies every column of $\mathscr{H}_L(w_d)$ is L-samples trajectory of \mathscr{B}

Follow-up questions for self-work

what is the meaning of image $\mathscr{H}_L(w_d)$?

how to use it in practice, e.g., for simulation?

try it out on a numerical example?

Comparison of the heuristic methods for dealing with noise on simulated data

implement (SOL) and try it on an example

- 1. using exact data (random trajectory of a random system)
- 2. using noisy data $w_d = \overline{w} + \widetilde{w}$, where $\overline{w} \in \mathscr{B} \in \mathscr{L}^q$

modify the solution of (SOL)

- 1. using the pseudo-inverse
- 2. using SVD truncation, imposing rank $\mathbf{m}(\mathscr{B})L + \mathbf{n}(\mathscr{B})$
- 3. ℓ_1 -norm using regularization

comment on the results