Data-driven systems theory,
signal processing, and control

Ivan Markovsky
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The problems and methods reviewed today
differ from those you’ve learned yesterday

object parametric PDEs
yesterday: problem given {&,u;}, find € — u
approach neural network

object linear time-invariant systems
today: problem  given u, predict, filter, control
approach behavioral systems theory
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We are aiming at direct data-driven methods
for analysis and design of dynamical systems

given , desired
data direct data-driven design solution

the classical approach is “indirect data-driven”
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Data-driven does not mean model-free

data-driven methods make model assumptions
but don’t use parametric representations

they are non-parametric using directly the data
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Outline

Example: Free fall prediction
Linear time-invariant systems
Data-driven representation

Dealing with noise
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The goal is to predict free fall trajectory

object with mass m, falling in gravitational field

» w — position
> v:=w — velocity
» w(0),v(0) — initial condition

task: given initial condition, find the trajectory w

1. physics — parametric model
» model-based approach: 2. model parameter estimation
3. model + ini. conditions — w

> data-driven approach: data w},...,w} +ini. cond. — w

7/48



Modeling from first principles yields
affine time-invariant dynamical system

second law of Newton + the law of gravity
mw=m[ Qg ]+f, w(0)=wp and w(0) = Vi,
> 9.81 — gravitational constant

» f=—yw — force due to friction in the air

1st order equation
x=Ax, w=Cx, x(0)=Xpn;

> state x .= (W1 , W1 , Wo, Wg, —981)
> initial state Xini := (Wini 1, Vini.1, Wini.2, Vini 2, —9.81)
» A, C — model parameters (depend on m and y)
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Data-driven free fall prediction method

data: N, discrete-time trajectories w,..., w}’

rank [w(] wé\’] =5 “informativity" condition

algorithm for data-driven prediction:

[w(}m dem] {W(U]
1. solve [wl(2) - wl(2)|g=|w(2)
) o wd'(3) w(3)

——r
ini. cond.

2. define w:= [Wc] Wﬂg
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Summary: prediction of free fall trajectory

first principles modeling

» use Newton’s 2nd law, law of gravity, and friction
» and model parameters m, y, gravitational constant
> lead to autonomous affine time-invariant system

data-driven approach

> bypasses the knowledge of the physical laws
» and prior knowledge or estimation of model parameters
» no hyper-parameters to tune
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The exercises are linked to the lectures,
they are an integral part of the course

“l hear, | forget; | see, | remember; | do, | understand.”

your task

1. write a function for model-based free fall simulation
2. collect free falls data w(],...,wé\’ using the model
3. implement and try the direct data-driven method

if you have questions

> option 1: use the “raise hand” function
> option 2: post them in the chat
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Signals are functions of time

(R9)7 — signal space: functions .7 — (R9)
w € (R9)7 — real vector-valued signal

w(t) € R9is the value of w attime t € 7
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Signals are classified according to
# of variables g and type of time axis 7

g =1 — scalar signal
g > 1 — vector signal

7 =R — continuous-time
T = 7, — discrete-time

(RYR — (R9)% — sampling / time-discretization
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Signals are transformed by operators

(ow)(t) := w(t+ 1) — unit-shift operator

Ro+Rio+...+ Fa’gaf — polynomial operator
A(o)

Wl 1) @nd w|r — restriction to interval
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The classical view of dynamical system is
a “signal processor”: an input/output map

input —|

system

— output

accepts input signal and produces output signal

intuition: the input causes the output
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In the behavioral approach to systems theory,
dynamical system is a set of signals

% C (R9)%2 — g-variate discrete-time system

> g=1—scalar system
» g > 1— multivariable system

w e % — w is a trajectory of £

> w is allowed/predicted by %
> % is unfalsified by w

2P|t — restriction of A to the interval 1,..., T
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A ={w]|f(w)=0}is arepresentation of #

a given # allows different representations

> parametric vs non-parametric representations
» uniqueness of the parameters
» how to switch from one representation to another?

different representations ~~ different methods

problems related to a system %:

> % +— w — simulation
> wy— % — identification
> noise filtering, prediction, control, ...
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Example: free fall in gravitational field
w € (R?)R+ — object’s position (g =2, .7 =R,)

% C (R?)R+ — all possible free-fall trajectories
the object may have

representations

B = { we (R®E | mw=m[_ Qg ] —yw, wggﬂ € R“}
_ { w € (R?)R+ | there is x € (R%)®+, such that

X = Ax, w = Cx, x5(0) = —9.81 }
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Linearity, time-invariance, and complexity
are defined in terms of the set &

A is linear system <= Z s linear subspace
A is time-invariant «<— oA =%
Z9 linear time-invariant (LTI) model class

» m(Z#) — number of inputs

> ¢(#)—lag
> n(#)— order

Be LY = dimB|, =m(B)L+n(B), forall L > {(B)
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Kernel representation % = ker R(o)
is (-th order vector difference equation

{W| Row(t)+Ryw(t+1)+---+Rw(t+£)=0, forall t e 9}

()
{w | B0W+R16W+---+Rm‘iw:0}

A(o)

)
ker R(o) (KER)

the parameter is a polynomial matrix R(z) € R9*9[Z]
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Input/state/output representation
is 1-st order vector difference equation

{ w=T[}] | thereis x € (R"", such that

ox =Ax+Bu, y = 0x+Du} (1/S/0)

X — state , n = dimx — order
u — input , m = dimu — #ofinputs
y — output , p := dimy — #ofoutputs

the parameters are:

» permutation matrix I € R9*9 and
> matrices Ac R™" Bec R™M CecRP*" DecRP*M
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Summary: linear time-invariant systems

w e (R9)7  signals are functions of time

% C (R9)%  systems are sets of signals
2 can be represented by different equations

Z9 LTI model class: shift-invariant subspaces

» complexity: (# of inputs, lag, order)
» % =ker R(o) kernel representation
> input/state/output representation
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The finite-horizon behavior 4|, is used
for both analysis and computations
restriction of w to finite interval [1, L]

wi = (w(1),...,w(L)) € (RI)"

restriction of % to [1, L]

Bl ={w| |we B} (RI

if 2 is linear, 4|, is a linear subspace of (R9):
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2|, can be obtained experimentally
by collecting “informative” data
collect N > gL random trajectories

1 N
Wy,....Wy € B

by the linearity of %4, we have

span{wd,...,w)'} Cc 4|,

with probability one equality holds
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Discrete-time LTI systems over finite horizon
can be studied using linear algebra only

{WJ Wé\l} e RN — “trajectory matrix”

A 7
~

w

|, =image W — data-driven representation

now, we can do explorations, in particular check

dmAB| . =m(B)L+n(H) >rank W, for L > £(RB)
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dim 4|, is a piecewise affine function of L

dimZ|. irregular increase regular increase
N . mL

n

T R lp="1
dmZA|, =mL+n, forallL>/
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Data-driven representation (infinite horizon)

data: exact infinite trajectory wy of # € ¥
B = Brmpum(Wg) = span { wy, oWy, 2wy, ... }

identifiability condition: % = %
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Consecutive application of ¢ on finite wy
results in Hankel matrix with missing values

Owy olwy - ololuy
wg(1)  wy(2) -+ wy(Tq)
we2 1 .2

: Wd(Td) . .
wy(Tq) ? ?

for wy = (Wd(1),...,Wd(Td)) and 1 <L < Ty

Hi(wa):=(0®we)lL (oM we)lL -+ (0T Lwg)]
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Data-driven representation (finite horizon)

the finite horizon data-driven representation

Bl = B|, :=image #(wq) (DD-REPR)
holds if and only if
rank 771 (wy) = Lm(%A) + n(A) (GPE)

GPE — generalized persistency of excitation
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|dentifiability condition
verifiable from wy € |1, and (m, ¢, n)

fact: =% <+ ,@’@_1 = %l‘f—H then

B=B =  Blo =Bl
= dim%|.q =dimB|,

% is identifiable from wy € #| 1, if and only if

rank 741 (Wy) = ((+1)m+n

Wy — # — system identification
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Generic data-driven problem:
trajectory interpolation/approximation

“data trajectory” wy € 4|7,
given: and elements  w|,

given

of a trajectory we Bt

(W]

given

selects the elements of w, specified by /yven)

minimize over w ||w|,,

i - iven Wl/ iven ||
aim: ] . 9 9
subjectto we A|r

W = A7 (Wa) (A7 (W)l jen)  Wligen  (SOL)
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Special cases

simulation

» given data: initial condition and input
» to-be-found: output (exact interpolation)

smoothing

> given data: noisy trajectory
» to-be-found: />-optimal approximation

tracking control

> given data: to-be-tracked trajectory
> to-be-found: />-optimal approximation
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Generalizations

multiple data trajectories w,..., w}

-

Bl ~image | A (w)) - A(w)

~
mosaic-Hankel matrix

Wy not exact / noisy

maximume-likelihood estimation

~ Hankel structured low-rank approximation/completion
nuclear norm and ¢{-norm relaxations

~» nonparametric, convex optimization problems

nonlinear systems

results for special classes of nonlinear systems:
Volterra, Wiener-Hammerstein, bilinear, . ..
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Summary: data-driven representation

assuming rank. 7 (wy) = m(AB)L+n(AH)
A\ =image #i(wgy) holds

replaces parametric representations
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The data wy being exact vs inexact / “noisy”

wy exact and satisfying (GPE)

> “systems theory” problems
> image ./ (wy) is nonparametric finite-horizon model
» data-driven solution = model-based solution

Wy inexact, due to noise and/or nonlinearities

» naive approach: apply the solution (SOL) for exact data
» rigorous: assume noise model ~ ML estimation problem
» heuristics: convex relaxations of the ML estimator
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The maximum-likelihood estimation problem
in the errors-in-variables setup is nonconvex

errors-in-variables setup: wy = wgq + Wy
> Wy — true data, Wy € %|71,, B <€ L5
» wy — zero mean, white, Gaussian measurement noise

ML problem: given wy, ¢, and w|

/given
minigniZe “W|/g|ven %T(A*)llgweng”

subjectto  wj = argmin |wy — wyl|

Wy ,%’
subjectto Wy € |7, and B € ZJ

39/48



The ML estimation problem is equivalent to
Hankel structured low-rank approximation

given %T( )l gweng”

subjectto  wj =argmin_,

minignize W,
a5 |IWa— Wl
subjectto Wy € #|r, and % € ¢

)
miniénize HW|Ig|ven _']afT(/\(;]k)llgivengH

subjectto wg=argming  [lwy— Wyl
subject to rankyﬁﬂ(wd) ({+1)ym+n
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Solution methods

local optimization

» choose a parametric representation of @(9)
» optimize over w, wg, and 6
» depends on the initial guess

convex relaxation based on the nuclear norm

minimize over Wy and w ||w|_ | + || wg — wy|

given

|t @]

W‘/

given

convex relaxation based on /4-norm (LASSO)

minimize over g [[W|,., — T (Wa)| 56, 91l + 21191l
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Empirical validation on real-life datasets

data set name Tq¢ m p
1 Airpassengersdata| 144 0 1
2 Distillation column 90 5 38
3 pH process 2001 2 1
4 Hair dryer 1000 1 1
5 Heat flow density 1680 2 1
6 Heating system 801 1 1

G. Box, and G. Jenkins. Time Series Analysis: Forecasting and Control, Holden-Day, 1976

B. De Moor, et al.DAISY: A database for identification of systems. Journal A, 38:4-5, 1997
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¢1-norm regularization with optimized A
achieves the best performance

H W| Imissing - W| Imissing H 0
100%

missing - = ||W|/missing||

data set name naive ML LASSO
1 Air passengers data 3.9 fail 3.3
2 Distillation column 19.24 17.44 9.30
3 pH process 38.38 85.71 12.19
4 Hair dryer 12.35 8.96 7.06
5 Heat flow density 7.16 4410 3.98
6 Heating system 092 1.35 0.36
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Tuning of A and sparsity of g (datasets 1, 2)
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Tuning of A and sparsity of g (datasets 3, 4)
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Tuning of A and sparsity of g (datasets 5, 6)
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Summary: convex relaxations
wy exact ~» systems theory

> exact analytical solution
» current work: efficient real-time algorithms
Wy inexact ~» nonconvex optimization

» subspace methods
> local optimization
» convex relaxations

empirical validation

> the naive approach works (surprisingly) well
» parametric local optimization is not robust
> /i-norm regularization gives the best results
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A textbook problem

D. G. Luenberger, Introduction to Dynamical Systems:
Theory, Models and Applications. John Wiley, 1979.

“A thermometer reading 21°C, which has been
inside a house for a long time, is taken outside.
After one minute the thermometer reads 15°C;
after two minutes it reads 11°C. What is the out-
side temperature?”

According to Newton’s law of cooling, an object of higher
temperature than its environment cools at a rate that is
proportional to the difference in temperature.
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Main idea: predict the steady-state value
from the first few samples of the transient

textbook problem:

> 1st order dynamics
» 3 noise-free samples
> batch solution

generalizations:

> n>1 order dynamics
» T > 3 noisy (vector) samples
> recursive computation

implementation and practical validation
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Thermometer: first order dynamical system

environmental heat transfer thermometer’s
_ —_— :
temperature u reading y

measurement process: Newton’s law of cooling
y=a(i-y)

heat transfer coefficient a> 0
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Scale: second order dynamical system

=M
1]

iy(t)

d k

Va4

d _
(M+m)ay+ dy+ky =gu
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The measurement process dynamics
depends on the to-be-measured mass

measured mass

time
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Dynamic measurement: take into account
the dynamical properties of the sensor

to-be-measured measurement process measured
variable u variable y

assumption 1: measured variable is constant u(t) = u
assumption 2: the sensor is stable LTI system

assumption 3: sensor’'s DC-gain =1 (calibrated sensor)
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The data is generated from LTI system
with output noise and constant input

Ya. =y + €
~~

v \,—/
measured true measurement
data value noise
y = u + Yo
~~~ ~ <~
true steady-state transient
value value response

assumption 4: e is a zero mean, white, Gaussian noise
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using a state space representation of the sensor

x(t+1)=Ax(t), x(0) = Xo
Yo(t) = cx(t)

we obtain
Ya(1) 1 c e(1)
yd(2) 1 N CA 6(2)
. - . U+ . X0 T .
ya(T) 1 cAT-1 e(T)

N—— N N—— ——
Yd 17 % e
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Maximume-likelihood model-based estimator

]%}’d

minimize overy, U, Xo |lyq— Yl

|-s

recursive implementation ~» Kalman filter

solve approximately

X))

o

standard least-squares problem

u

subject to [17 ﬁr] <

o
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Subspace model-free method

goal: avoid using the model parameters (A, C, 0'1)

in the noise-free case, due to the LTI assumption,

Ay(t) = y(t)—y(t=1) = yo(t) = yo(t—1)
satisfies the same dynamics as yy, i.e.,

x(t+1)=Ax(1), x(0) = Ax
Ay(t) = cx(t)
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Hankel matrix—construction of multiple
“short” trajectories from one “long” trajectory

[ Ay(1) Ay(2) - Ay(n) ]
Ay(2) Ay(3) -+ Ay(n+1)
A(Dy) = | Ay(@3) Ay(4) -+ Ay(n+2)

AY(T—2) Ay(T—n) - AY(T-1)
fact: if rank.7Z(Ay) = n, then

image or_, =image 7 (Ay)
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model-based equation

[1T ﬁr] ;;] =Yy
data-driven equation
u
[1 T-n %”(Ay)] 4 =YI7-n (%)

subspace method

solve (x) by (recursive) least squares

13/35



Empirical validation

dashed — true parameter value u
solid — true output trajectory y
dotted — naive estimate U= Gty
dashed — model-based Kalman filter
bashed-dotted — data-driven method

estimation error: e:= L YN |o— U]

(for N = 100 Monte-Carlo repetitions)
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Simulated data of dynamic cooling process

06 -
—~
0.4}
o

0.2t

0.8f

0~.

e LT s s A e

e(t) — 0 as t — « at different rates

best is the Kalman filter (maximum likelihood estimator)
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Simulation with time-varying parameter
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Proof of concept prototype
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Results in real-life experiment

10 20 30 40
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Summary

dynamic measurement

steady-state value prediction

the subspace method is applicable for

» high order dynamics
> noisy vector observations
» online computation

future work / open problems

» numerical efficiency
» real-time uncertainty quantification
» generalization to nonlinear systems
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Problem formulation

given: “data” trajectory (ug, yq) € #|1,and z€ C

find: H(z), where H is the transfer function of %
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Direct data-driven solution
we are interested in trajectory

u exp,
W= |:}’:| - [I:Iexpz] €%, Wwhere esz(t) —

using the data-driven representation, we have

Hi(ug)| _ |7
[%i(yd)] =gl where z .= LL]
which leads to the system
0 H(uw)| |H| _ |2
= SYS
[—z Hi(ya)| |9 0] (SYS)
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Solution method: solve (SYS) for H

under (GPE) with L > ¢+ 1, H= H(z2)

without prior knowledge of ¢
L=Lna:=[(Tg+1)/3]

trivial generalization to

> multivariable systems
> multiple data trajectories { w],...,w}'}
> evaluation of H(z) at multiple points in { z;,...,zx } € CK
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Comparison with classical nonparametric
frequency response estimation methods

ignored initial/terminal conditions ~- leakage
DFT grid ~-» limited frequency resolution

improvements by windowing and interpolation

» the leakage is not eliminated
> the methods involve hyper-parameters
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Generalization of (SYS) to noisy data

preprocessing: rank-mL + n approx. of 77 (wy)

» hyper-parameters L>/¢+1 and n
» if the approximation preserves the Hankel structure,
the method is maximum-likelihood in the EIV setting

regularization with || g||4

> hyper-parameter: the 1-norm regularization parameter

regularization with the nuclear norm of 7 (wy)

» hyper-parameters: L and the regularization parameter
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Matlab implementation
function Hh = dd_frest (ud, yd, z, n)
L=n+1; t = (1:L)";
m = size(ud, 2); p = size(yd, 2);

%% preprocessing by low-rank approximation
H = [moshank (ud, L); moshank (yd, L)];
(U, ~, ~] = svd(H); P =10U(:, 1l:m » L + n);

%% form and solve the system of equations
for k = 1:1length(z)

A = [[zeros(mxL, p); —-kron(z(k)."t, eye(p))] PI;
hg = A \ [kron(z(k)."t, eye(m)); zeros(p*L, m)];
Hh(:, :, k) = hg(l:p, :);

end

> effectively 5 lines of code
» MIMO case, multiple evaluation points

> L =n+1in order to have a single hyper-parameter
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Example: EIV setup with 4th order system

dd_frest is compared with

» ident — parametric maximum-likelihood estimator
> spa — nonparameteric estimator with Welch filter

4
20
—exact
- - -proposed
o | N - ident
= ~
=N =Y —exact
% - - -proposed
----- ident
---------- spa
-4
3.1416 0 3.1416
frequency frequency

27/35



Monte-Carlo simulation over different
noise levels and number of samples

14 14
- - -proposed & - - -proposed
""" ident $ --—-—ident
Spa
xe P 2 spa
$ I O
- -
& 2
) 3
s (s
0 10 100 1000
noise level, % number of samples Ty

ez:=100% - ’(|Hz’_|i'\lzm / ‘nz‘
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Kernel representation
LTIl systems

B =kerR(c):={w|R(c)w=0}
={w|Ryw+Rijow+---+Roc‘w=0}

nonlinear time-invariant system
%’:{W | Ff(\w,cw,...,ofvg) :0}

X

linearly parameterized R

x) =Y 6i9i(x) =07 ¢(x),

¢ — model structure
® — parameter vector
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Polynomial SISO NARX system

%(9):{W: (V] ]y:f(u,ow,...,olw)}

split f into 1st order (linear) and other (nonlinear) terms
F(x) = 6 X+ 6 9ni(X)

¢n — vector of monomials
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Special cases

Hammerstein .
0uX) = [9u(t) 9u(ou) - 9u(c'v)|

FIR Volterra

Oni(X) = 0ni(xy), where x, :=vec(u,ou,...,c"

u).
bilinear

-1

oni(X) =Xy ®xy, wWhere x, :=vec(y,cy,...,c 'y)

generalized bilinear
Oni(X) = ‘Pu,nl(xu) & Xy
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LTI embedding of polynomial NARX system

Fox(0) = { We = [dn] | o'y = O] x+ 6t |
define:  TMyWext:=w and [y Wext 1= Up|
fact:  A(0) C Ny PBext(6), moreover

4%(9) — nw{Wext i~ %ext(e) | rIUn| Wext — ¢n|(x)}
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FIR Volterra data-driven simulation

given
data wy = (ug, yq) of lag-¢ FIR Volterra system £
¢ — system’s model structure

assume |ID conditions for Zey hold

then, |, = image M, where

Hiwg) 1 W
(0" ug) u

M(Wini, u) := c%ﬂL(GZYd) \‘ «%(‘Pnl(xud)) J {¢n|(XUini)J
%(Ggq)nl(xud)) Oni(Xu)

N

-~

9
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proof

H(wg)
A (0'ug)

%(‘Pnl(xud))
%_(G%m(xud))

H(0'yq)

}B1
ez

}B3

B1 constraint on g, such that win A (U, 71 (0°Yq)g) € Bext

B2 constraint un = ¢ni(X) <= Pext = #4(0)

B3 defines the to-be-computed output y

generalized bilinear models

also tractable because B2: u, = ¢ (x) is still linear in y
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