Data-driven systems theory, signal processing, and control

Ivan Markovsky

The problems and methods reviewed today differ from those you've learned yesterday

	object	parametric PDEs
yesterday:	problem	given $\{\xi_i, u_i\}$, find $\xi \mapsto u$
	approach	neural network

today:

objectlinear time-invariant systemsproblemgiven u, predict, filter, controlapproachbehavioral systems theory

We are aiming at direct data-driven methods for analysis and design of dynamical systems

the classical approach is "indirect data-driven"

Data-driven does not mean model-free

data-driven methods make model assumptions

but don't use *parametric representations*

they are non-parametric using directly the data

Example: Free fall prediction

Linear time-invariant systems

Data-driven representation

Dealing with noise

The goal is to predict free fall trajectory

object with mass m, falling in gravitational field

- ► w position
- \blacktriangleright $v := \dot{w}$ velocity
- w(0), v(0) initial condition

task: given initial condition, find the trajectory w

- model-based approach:
- 1. physics \mapsto parametric model 2. model parameter estimation 3. model + ini. conditions $\mapsto w$
- data-driven approach:

data w_d^1, \dots, w_d^N + ini. cond. $\mapsto w$

Modeling from first principles yields affine time-invariant dynamical system

second law of Newton + the law of gravity

 $m\ddot{w} = m\begin{bmatrix} 0\\ -9.81\end{bmatrix} + f, \quad w(0) = w_{\text{ini}} \text{ and } \dot{w}(0) = v_{\text{ini}}$

• 9.81 — gravitational constant • $f = -\gamma \dot{w}$ — force due to friction in the air

1st order equation

$$\dot{x} = Ax$$
, $w = Cx$, $x(0) = x_{ini}$

state x := (w₁, w₁, w₂, w₂, -9.81)
 initial state x_{ini} := (w_{ini,1}, v_{ini,1}, w_{ini,2}, v_{ini,2}, -9.81)
 A, C — model parameters (depend on m and γ)

Data-driven free fall prediction method

data: N, discrete-time trajectories w_d^1, \ldots, w_d^N

rank
$$\begin{bmatrix} w_d^1 & \cdots & w_d^N \end{bmatrix} = 5$$
 "informativity" condition

algorithm for data-driven prediction:

1. solve
$$\begin{bmatrix} w_{d}^{1}(1) & \cdots & w_{d}^{N}(1) \\ w_{d}^{1}(2) & \cdots & w_{d}^{N}(2) \\ w_{d}^{1}(3) & \cdots & w_{d}^{N}(3) \end{bmatrix} g = \underbrace{\begin{bmatrix} w(1) \\ w(2) \\ w(3) \end{bmatrix}}_{\text{ini. cond.}}$$

2. define $w := \begin{bmatrix} w_d^1 & \cdots & w_d^N \end{bmatrix} g$

Summary: prediction of free fall trajectory

first principles modeling

- use Newton's 2nd law, law of gravity, and friction
- > and model parameters m, γ , gravitational constant
- lead to autonomous affine time-invariant system

data-driven approach

- bypasses the knowledge of the physical laws
- and prior knowledge or estimation of model parameters
- no hyper-parameters to tune

The exercises are linked to the lectures, they are an integral part of the course

"I hear, I forget; I see, I remember; I do, I understand."

your task

- 1. write a function for model-based free fall simulation
- 2. collect free falls data w_d^1, \ldots, w_d^N using the model
- 3. implement and try the direct data-driven method

if you have questions

- option 1: use the "raise hand" function
- option 2: post them in the chat

Signals are functions of time

 $(\mathbb{R}^q)^{\mathscr{T}}$ — signal space: functions $\mathscr{T} \mapsto (\mathbb{R}^q)$ $w \in (\mathbb{R}^q)^{\mathscr{T}}$ — real vector-valued signal $w(t) \in \mathbb{R}^q$ is the value of w at time $t \in \mathscr{T}$ Signals are classified according to # of variables q and type of time axis \mathscr{T}

q = 1 — scalar signal q > 1 — vector signal

 $\mathscr{T} = \mathbb{R}$ — continuous-time $\mathscr{T} = \mathbb{Z}$ — discrete-time

 $(\mathbb{R}^q)^{\mathbb{R}} \mapsto (\mathbb{R}^q)^{\mathbb{Z}}$ — sampling / time-discretization

Signals are transformed by operators

$$(\sigma w)(t) := w(t+1)$$
 — unit-shift operator
 $\underbrace{R_0 + R_1 \sigma + \ldots + R_\ell \sigma^\ell}_{R(\sigma)}$ — polynomial operator

 $w|_{[t_1,t_2]}$ and $w|_T$ — restriction to interval

The classical view of dynamical system is a "signal processor": an input/output map

accepts input signal and produces output signal

intuition: the input causes the output

In the behavioral approach to systems theory, dynamical system is a set of signals

 $\mathscr{B} \subset (\mathbb{R}^q)^{\mathbb{Z}}$ — *q*-variate discrete-time system

- ▶ q = 1 scalar system
- q > 1 multivariable system

$w \in \mathscr{B}$ — w is a trajectory of \mathscr{B}

- w is allowed/predicted by B
- ▶ ℬ is unfalsified by w

 $\mathscr{B}|_T$ — restriction of \mathscr{B} to the interval $1, \ldots, T$

 $\mathscr{B} = \{ w \mid f(w) = 0 \}$ is a representation of \mathscr{B}

a given ${\mathscr B}$ allows different representations

- parametric vs non-parametric representations
- uniqueness of the parameters
- how to switch from one representation to another?

different representations ~> different methods

problems related to a system \mathscr{B} :

- $\blacktriangleright \mathscr{B} \mapsto w simulation$
- $w_d \mapsto \mathscr{B}$ identification
- noise filtering, prediction, control, ...

Example: free fall in gravitational field

 $w \in (\mathbb{R}^2)^{\mathbb{R}_+}$ — object's position ($q = 2, \ \mathscr{T} = \mathbb{R}_+$)

 $\mathscr{B} \subset (\mathbb{R}^2)^{\mathbb{R}_+}$ — all possible free-fall trajectories the object may have

representations

$$\begin{split} \mathscr{B} &= \left\{ \ w \in (\mathbb{R}^2)^{\mathbb{R}_+} \mid m \ddot{w} = m \begin{bmatrix} 0\\ -9.81 \end{bmatrix} - \gamma \dot{w}, \ \begin{bmatrix} w(0)\\ \dot{w}(0) \end{bmatrix} \in \mathbb{R}^4 \right\} \\ &= \left\{ \ w \in (\mathbb{R}^2)^{\mathbb{R}_+} \mid \text{there is } x \in (\mathbb{R}^5)^{\mathbb{R}_+}, \text{ such that} \\ &\dot{x} = Ax, \ w = Cx, \ x_5(0) = -9.81 \right\} \end{split}$$

Linearity, time-invariance, and complexity are defined in terms of the set \mathscr{B}

 \mathscr{B} is linear system : $\iff \mathscr{B}$ is linear subspace

 \mathscr{B} is time-invariant : $\iff \sigma \mathscr{B} = \mathscr{B}$

 \mathcal{L}^q linear time-invariant (LTI) model class

 $\mathscr{B} \in \mathscr{L}^q \implies \dim \mathscr{B}|_L = \mathbf{m}(\mathscr{B})L + \mathbf{n}(\mathscr{B}), \text{ for all } L \ge \boldsymbol{\ell}(\mathscr{B})$

Kernel representation $\mathscr{B} = \ker R(\sigma)$ is ℓ -th order vector difference equation

the parameter is a polynomial matrix $R(z) \in \mathbb{R}^{g \times q}[z]$

Input/state/output representation is 1-st order vector difference equation

$$\left\{ egin{array}{ll} w = \Pi \left[egin{array}{c} y \\ y \end{array}
ight]
ight| ext{ there is } x \in (\mathbb{R}^n)^{\mathbb{N}}, ext{ such that} \ \sigma x = Ax + Bu, ext{ } y = Cx + Du
ight\} \ \ (I/S/O)$$

Χ	—	state	,	n	:=	dim x	—	order
и		input	,	т	:=	dim u	—	# of inputs
y		output	,	р	:=	dim y	—	# of outputs

the parameters are:

- permutation matrix $\Pi \in \mathbb{R}^{q \times q}$ and
- ▶ matrices $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$, $C \in \mathbb{R}^{p \times n}$, $D \in \mathbb{R}^{p \times m}$

Summary: linear time-invariant systems

$w \in (\mathbb{R}^q)^{\mathscr{T}}$ signals are functions of time

 $\mathscr{B} \subset (\mathbb{R}^q)^{\mathbb{Z}}$ systems are sets of signals \mathscr{B} can be represented by different equations

\mathcal{L}^q LTI model class: shift-invariant subspaces

- complexity: (# of inputs, lag, order)
- $\mathscr{B} = \ker R(\sigma)$ kernel representation
- input/state/output representation

The finite-horizon behavior $\mathscr{B}|_L$ is used for both analysis and computations restriction of *w* to finite interval [1, *L*]

$$w|_L := (w(1), \ldots, w(L)) \in (\mathbb{R}^q)^L$$

restriction of \mathscr{B} to [1, L]

$$\mathscr{B}|_L := \{ w|_L \mid w \in \mathscr{B} \} \subset (\mathbb{R}^q)^L$$

if \mathscr{B} is linear, $\mathscr{B}|_L$ is a linear subspace of $(\mathbb{R}^q)^L$

 $\mathscr{B}|_L$ can be obtained experimentally by collecting "informative" data collect $N \ge qL$ random trajectories

$$w_d^1, \ldots, w_d^N \in \mathscr{B}|_L$$

by the linearity of \mathcal{B} , we have

span
$$\{ w_d^1, \ldots, w_d^N \} \subseteq \mathscr{B}|_L$$

with probability one equality holds

Discrete-time LTI systems over finite horizon can be studied using linear algebra only

$$\underbrace{\begin{bmatrix} w_d^1 & \cdots & w_d^N \end{bmatrix}}_{W} \in \mathbb{R}^{qL \times N} - \text{"trajectory matrix"}$$

 $\widehat{\mathscr{B}}|_L = \text{image } W - \text{data-driven representation}$

now, we can do explorations, in particular check

 $\dim \mathscr{B}|_{L} = \mathbf{m}(\mathscr{B})L + \mathbf{n}(\mathscr{B}) \geq \operatorname{rank} W, \quad \text{for } L \geq \boldsymbol{\ell}(\mathscr{B})$

dim $\mathscr{B}|_L$ is a piecewise affine function of L

Data-driven representation (infinite horizon)

data: exact infinite trajectory w_d of $\mathscr{B} \in \mathscr{L}$

$$\widehat{\mathscr{B}} = \mathscr{B}_{mpum}(w_d) = span \{ w_d, \sigma w_d, \sigma^2 w_d, \dots \}$$

identifiability condition: $\mathscr{B} = \widehat{\mathscr{B}}$

Consecutive application of σ on finite w_d results in Hankel matrix with missing values

for
$$w_d = (w_d(1), \dots, w_d(T_d))$$
 and $1 \le L \le T_d$
 $\mathscr{H}_L(w_d) := \left[(\sigma^0 w_d) |_L (\sigma^1 w_d) |_L \cdots (\sigma^{T_d - L} w_d) |_L \right]$

Data-driven representation (finite horizon)

the finite horizon data-driven representation

$$\mathscr{B}|_L = \widehat{\mathscr{B}}|_L := \text{image } \mathscr{H}_L(w_d)$$
 (DD-REPR)

holds if and only if

$$\operatorname{rank} \mathscr{H}_L(w_d) = L\mathbf{m}(\mathscr{B}) + \mathbf{n}(\mathscr{B})$$
 (GPE)

GPE — generalized persistency of excitation

Identifiability condition verifiable from $w_{d} \in \mathscr{B}|_{T_{d}}$ and (m, ℓ, n) fact: $\mathscr{B} = \mathscr{B}' \iff \mathscr{B}|_{\ell+1} = \mathscr{B}'|_{\ell+1}$ then $\widehat{\mathscr{B}} = \mathscr{B} \iff \widehat{\mathscr{B}}|_{\ell+1} = \mathscr{B}|_{\ell+1}$ $\iff \dim \widehat{\mathscr{B}}|_{\ell+1} = \dim \mathscr{B}|_{\ell+1}$

 \mathscr{B} is identifiable from $w_d \in \mathscr{B}|_{\mathcal{T}_d}$ if and only if

$$\operatorname{rank} \mathscr{H}_{\ell+1}(w_d) = (\ell+1)m + n$$

$$w_{d} \mapsto \mathscr{B}$$
 — system identification

Generic data-driven problem: trajectory interpolation/approximation

"data trajectory" given: and elements of a trajectory

 $W_{d} \in \mathscr{B}|_{\mathcal{T}_{d}}$ $W|_{I_{given}}$ $W \in \mathscr{B}|_{\mathcal{T}}$

 $(w|_{I_{given}}$ selects the elements of w, specified by I_{given})

aim: minimize over $\widehat{w} \| w |_{I_{given}} - \widehat{w} |_{I_{given}} \|$ subject to $\widehat{w} \in \mathscr{B}|_{T}$

$$\widehat{\boldsymbol{w}} = \mathscr{H}_{T}(\boldsymbol{w}_{d}) \big(\mathscr{H}_{T}(\boldsymbol{w}_{d}) |_{I_{given}} \big)^{+} \boldsymbol{w} |_{I_{given}} \quad (SOL$$

Special cases

simulation

- given data: initial condition and input
- to-be-found: output (exact interpolation)

smoothing

- given data: noisy trajectory
- to-be-found: l2-optimal approximation

tracking control

- given data: to-be-tracked trajectory
- to-be-found: l2-optimal approximation

Generalizations

multiple data trajectories w_d^1, \ldots, w_d^N

$$\widehat{\mathscr{B}}|_{L} = \text{image} \underbrace{ \left[\mathscr{H}_{L}(w_{d}^{1}) \cdots \mathscr{H}_{L}(w_{d}^{N}) \right] }_{\mathcal{H}_{L}(w_{d}^{N})}$$

mosaic-Hankel matrix

w_d not exact / noisy

maximum-likelihood estimation → Hankel structured low-rank approximation/completion nuclear norm and ℓ₁-norm relaxations → nonparametric, convex optimization problems

nonlinear systems

results for special classes of nonlinear systems: Volterra, Wiener-Hammerstein, bilinear, ... Summary: data-driven representation

assuming rank $\mathscr{H}_L(w_d) = \mathbf{m}(\mathscr{B})L + \mathbf{n}(\mathscr{B})$

 $\mathscr{B}|_L = \operatorname{image} \mathscr{H}_L(w_d)$ holds

replaces parametric representations

The data w_d being exact vs inexact / "noisy"

w_d exact and satisfying (GPE)

- "systems theory" problems
- image $\mathcal{H}_L(w_d)$ is nonparametric finite-horizon model
- data-driven solution = model-based solution

w_d inexact, due to noise and/or nonlinearities

- naive approach: apply the solution (SOL) for exact data
- ▶ rigorous: assume noise model ~→ ML estimation problem
- heuristics: convex relaxations of the ML estimator

The maximum-likelihood estimation problem in the errors-in-variables setup is nonconvex

errors-in-variables setup: $w_d = \overline{w}_d + \widetilde{w}_d$

ML problem: given w_d , c, and $w|_{I_{given}}$

$$\begin{array}{ll} \underset{g}{\text{minimize}} & \|w\|_{l_{\text{given}}} - \mathscr{H}_{T}(\widehat{w}_{d}^{*})\|_{l_{\text{given}}}g\| \\ \text{subject to} & \widehat{w}_{d}^{*} = \arg\min_{\widehat{w}_{d},\widehat{\mathscr{B}}} & \|w_{d} - \widehat{w}_{d}\| \\ & \text{subject to} & \widehat{w}_{d} \in \widehat{\mathscr{B}}|_{\mathcal{T}_{d}} \text{ and } \widehat{\mathscr{B}} \in \mathscr{L}_{c}^{q} \end{array}$$

The ML estimation problem is equivalent to Hankel structured low-rank approximation

$$\begin{array}{ll} \underset{g}{\text{minimize}} & \|w\|_{I_{\text{given}}} - \mathscr{H}_{T}(\widehat{w}_{d}^{*})\|_{I_{\text{given}}}g\|\\ \text{subject to} & \widehat{w}_{d}^{*} = \arg\min_{\widehat{w}_{d},\widehat{\mathscr{B}}} & \|w_{d} - \widehat{w}_{d}\|\\ & \text{subject to} & \widehat{w}_{d} \in \widehat{\mathscr{B}}|_{T_{d}} \text{ and } \widehat{\mathscr{B}} \in \mathscr{L}_{c}^{q}\\ & \uparrow \end{array}$$

 $\begin{array}{ll} \underset{g}{\text{minimize}} & \|w\|_{l_{\text{given}}} - \mathscr{H}_{T}(\widehat{w}_{d}^{*})\|_{l_{\text{given}}}g\| \\ \text{subject to} & \widehat{w}_{d}^{*} = \arg\min_{\widehat{w}_{d}} & \|w_{d} - \widehat{w}_{d}\| \\ & \text{subject to} & \operatorname{rank}\mathscr{H}_{\ell+1}(\widehat{w}_{d}) \leq (\ell+1)m + n \end{array}$
Solution methods

local optimization

- choose a parametric representation of $\widehat{\mathscr{B}}(\theta)$
- optimize over \widehat{w} , $\widehat{w_{d}}$, and θ
- depends on the initial guess

convex relaxation based on the nuclear norm

$$\begin{array}{ll} \text{minimize} \quad \text{over } \widehat{w}_{\mathsf{d}} \text{ and } \widehat{w} & \|w|_{l_{\mathsf{given}}} - \widehat{w}|_{l_{\mathsf{given}}}\| + \|w_{\mathsf{d}} - \widehat{w}_{\mathsf{d}}\| \\ & + \gamma \cdot \left\| \begin{bmatrix} \mathscr{H}_{\Delta}(\widehat{w}_{\mathsf{d}}) & \mathscr{H}_{\Delta}(\widehat{w}) \end{bmatrix} \right\|_{*} \end{array}$$

convex relaxation based on ℓ_1 -norm (LASSO) minimize over $g ||w|_{I_{given}} - \mathscr{H}_T(w_d)|_{I_{given}}g|| + \lambda ||g||_1$

Empirical validation on real-life datasets

	data set name	T_{d}	т	р
1	Air passengers data	144	0	1
2	Distillation column	90	5	3
3	pH process	2001	2	1
4	Hair dryer	1000	1	1
5	Heat flow density	1680	2	1
6	Heating system	801	1	1

G. Box, and G. Jenkins. Time Series Analysis: Forecasting and Control, Holden-Day, 1976

B. De Moor, et al.DAISY: A database for identification of systems. Journal A, 38:4–5, 1997

 ℓ_1 -norm regularization with optimized λ achieves the best performance

$$e_{\mathsf{missing}} \coloneqq rac{\|w|_{I_{\mathsf{missing}}} - \widehat{w}|_{I_{\mathsf{missing}}}\|}{\|w|_{I_{\mathsf{missing}}}\|} \ 100\%$$

	data set name	naive	ML	LASSO
1	Air passengers data	3.9	fail	3.3
2	Distillation column	19.24	17.44	9.30
3	pH process	38.38	85.71	12.19
4	Hair dryer	12.35	8.96	7.06
5	Heat flow density	7.16	44.10	3.98
6	Heating system	0.92	1.35	0.36

Tuning of λ and sparsity of *g* (datasets 1, 2)

Tuning of λ and sparsity of *g* (datasets 3, 4)

Tuning of λ and sparsity of *g* (datasets 5, 6)

Summary: convex relaxations

w_d exact ~> systems theory

- exact analytical solution
- current work: efficient real-time algorithms

w_d inexact ~> nonconvex optimization

- subspace methods
- Iocal optimization
- convex relaxations

empirical validation

- the naive approach works (surprisingly) well
- parametric local optimization is not robust
- ℓ₁-norm regularization gives the best results

References

Data-Driven Control Based on the Behavioral Approach

FROM THEORY TO APPLICATIONS IN POWER SYSTEMS

IVAN MARKOVSKY[®], LINBIN HUANG[®], and FLORIAN DÖRFLER[®]

A textbook problem

D. G. Luenberger, Introduction to Dynamical Systems: Theory, Models and Applications. John Wiley, 1979.

"A thermometer reading 21°C, which has been inside a house for a long time, is taken outside. After one minute the thermometer reads 15°C; after two minutes it reads 11°C. What is the outside temperature?"

According to Newton's law of cooling, an object of higher temperature than its environment cools at a rate that is proportional to the difference in temperature. Main idea: predict the steady-state value from the first few samples of the transient

textbook problem:

- 1st order dynamics
- 3 noise-free samples
- batch solution

generalizations:

- $n \ge 1$ order dynamics
- $T \ge 3$ noisy (vector) samples
- recursive computation

implementation and practical validation

Thermometer: first order dynamical system

measurement process: Newton's law of cooling

$$y = a(\bar{u} - y)$$

heat transfer coefficient a > 0

Scale: second order dynamical system

$$(M+m)\frac{\mathrm{d}}{\mathrm{d}\,t}y+dy+ky=g\bar{u}$$

The measurement process dynamics depends on the to-be-measured mass

Dynamic measurement: take into account the dynamical properties of the sensor

to-be-measured variable *u*

measurement process

measured variable *y*

assumption 1: measured variable is constant $u(t) = \bar{u}$

assumption 2: the sensor is stable LTI system

assumption 3: sensor's DC-gain = 1 (calibrated sensor)

The data is generated from LTI system with output noise and constant input

assumption 4: e is a zero mean, white, Gaussian noise

using a state space representation of the sensor

$$x(t+1) = Ax(t),$$
 $x(0) = x_0$
 $y_0(t) = cx(t)$

we obtain

Maximum-likelihood model-based estimator

solve approximately

$$\begin{bmatrix} \mathbf{1}_T & \mathscr{O}_T \end{bmatrix} \begin{bmatrix} \widehat{u} \\ \widehat{x}_0 \end{bmatrix} \approx y_d$$

standard least-squares problem

minimize over
$$\widehat{y}$$
, \widehat{u} , $\widehat{x}_0 ||y_d - \widehat{y}||$
subject to $\begin{bmatrix} \mathbf{1}_T & \mathcal{O}_T \end{bmatrix} \begin{bmatrix} \widehat{u} \\ \widehat{x}_0 \end{bmatrix} = \widehat{y}$

recursive implementation ~~ Kalman filter

Subspace model-free method

goal: avoid using the model parameters (A, C, \mathcal{O}_T)

in the noise-free case, due to the LTI assumption,

$$\Delta y(t) := y(t) - y(t-1) = y_0(t) - y_0(t-1)$$

satisfies the same dynamics as y₀, *i.e.*,

$$egin{aligned} & x(t+1) = Ax(t), \qquad x(0) = \Delta x \ & \Delta y(t) = cx(t) \end{aligned}$$

Hankel matrix—construction of multiple "short" trajectories from one "long" trajectory

$$\mathscr{H}(\Delta y) := \begin{bmatrix} \Delta y(1) & \Delta y(2) & \cdots & \Delta y(n) \\ \Delta y(2) & \Delta y(3) & \cdots & \Delta y(n+1) \\ \Delta y(3) & \Delta y(4) & \cdots & \Delta y(n+2) \\ \vdots & \vdots & \vdots \\ \Delta y(T-n) & \Delta y(T-n) & \cdots & \Delta y(T-1) \end{bmatrix}$$

fact: if rank $\mathscr{H}(\Delta y) = n$, then

image
$$\mathscr{O}_{T-n} = \operatorname{image} \mathscr{H}(\Delta y)$$

model-based equation

$$\begin{bmatrix} \mathbf{1}_T & \mathscr{O}_T \end{bmatrix} \begin{bmatrix} \bar{u} \\ \widehat{x}_0 \end{bmatrix} = \mathbf{y}$$

data-driven equation

$$\begin{bmatrix} \mathbf{1}_{\mathcal{T}-n} \quad \mathscr{H}(\Delta \mathbf{y}) \end{bmatrix} \begin{bmatrix} \bar{\mathbf{u}} \\ \ell \end{bmatrix} = \mathbf{y}|_{\mathcal{T}-n} \qquad (*)$$

subspace method

solve (*) by (recursive) least squares

Empirical validation

dashed	—	true parameter value \bar{u}
solid		true output trajectory y0
dotted		naive estimate $\hat{u} = G^+ y$
dashed	—	model-based Kalman filter
bashed-dotted		data-driven method

estimation error: $e := \frac{1}{N} \sum_{i=1}^{N} \| \bar{u} - \hat{u}^{(i)} \|$

(for N = 100 Monte-Carlo repetitions)

Simulated data of dynamic cooling process

best is the Kalman filter (maximum likelihood estimator)

Simulation with time-varying parameter

Proof of concept prototype

Results in real-life experiment

Summary

dynamic measurement

steady-state value prediction

the subspace method is applicable for

- high order dynamics
- noisy vector observations
- online computation

future work / open problems

- numerical efficiency
- real-time uncertainty quantification
- generalization to nonlinear systems

Problem formulation

given: "data" trajectory $(u_d, y_d) \in \mathscr{B}|_{T_d}$ and $z \in \mathbb{C}$

find: H(z), where H is the transfer function of \mathscr{B}

Direct data-driven solution we are interested in trajectory

$$w = \begin{bmatrix} u \\ y \end{bmatrix} = \begin{bmatrix} \exp_z \\ \widehat{H} \exp_z \end{bmatrix} \in \mathscr{B}, \text{ where } \exp_z(t) := z^t$$

using the data-driven representation, we have

$$\begin{bmatrix} \mathscr{H}_{\mathsf{L}}(u_{\mathsf{d}}) \\ \mathscr{H}_{\mathsf{L}}(y_{\mathsf{d}}) \end{bmatrix} g = \begin{bmatrix} \mathsf{z} \\ \widehat{H} \mathsf{z} \end{bmatrix}, \quad \text{where } \mathsf{z} := \begin{bmatrix} z^1 \\ \vdots \\ z^{\mathsf{L}} \end{bmatrix}$$

which leads to the system

$$\begin{bmatrix} 0 & \mathscr{H}_{L}(u_{d}) \\ -\mathbf{z} & \mathscr{H}_{L}(y_{d}) \end{bmatrix} \begin{bmatrix} \widehat{H} \\ g \end{bmatrix} = \begin{bmatrix} \mathbf{z} \\ 0 \end{bmatrix}$$
(SYS)

Solution method: solve (SYS) for \widehat{H}

under (GPE) with $L \ge \ell + 1$, $\widehat{H} = H(z)$

without prior knowledge of ℓ

$$\textit{L} = \textit{L}_{max} := \lfloor (\textit{T}_d + 1)/3 \rfloor$$

trivial generalization to

- multivariable systems
- multiple data trajectories { w_d^1, \ldots, w_d^N }
- evaluation of H(z) at multiple points in $\{z_1, \ldots, z_K\} \in \mathbb{C}^K$

Comparison with classical nonparametric frequency response estimation methods

ignored initial/terminal conditions ~~ leakage

DFT grid ~~ limited frequency resolution

improvements by windowing and interpolation

- the leakage is not eliminated
- the methods involve hyper-parameters

Generalization of (SYS) to noisy data

preprocessing: rank-mL + n approx. of $\mathcal{H}_L(w_d)$

- hyper-parameters $L \ge \ell + 1$ and *n*
- if the approximation preserves the Hankel structure, the method is maximum-likelihood in the EIV setting

regularization with $||g||_1$

hyper-parameter: the 1-norm regularization parameter

regularization with the nuclear norm of $\mathscr{H}_{L}(\widehat{w_{d}})$

hyper-parameters: L and the regularization parameter

Matlab implementation

function Hh = dd_frest(ud, yd, z, n)
L = n + 1; t = (1:L)';
m = size(ud, 2); p = size(yd, 2);

%% preprocessing by low-rank approximation
H = [moshank(ud, L); moshank(yd, L)];
[U, ~, ~] = svd(H); P = U(:, 1:m * L + n);

%% form and solve the system of equations
for k = 1:length(z)
A = [[zeros(m*L, p); -kron(z(k).^t, eye(p))] P];
hg = A \ [kron(z(k).^t, eye(m)); zeros(p*L, m)];
Hh(:, :, k) = hg(1:p, :);
end

- effectively 5 lines of code
- MIMO case, multiple evaluation points
- L = n + 1 in order to have a single hyper-parameter

Example: EIV setup with 4th order system

dd_frest is compared with

- ident parametric maximum-likelihood estimator
- spa nonparameteric estimator with Welch filter

Monte-Carlo simulation over different noise levels and number of samples

 $e_a := 100\% \cdot |(|\overline{H}_z| - |\widehat{H}_z|)| / |\overline{H}_z|$

Kernel representation LTI systems

$$\mathscr{B} = \ker R(\sigma) := \left\{ w \mid R(\sigma)w = 0 \right\}$$
$$= \left\{ w \mid R_0w + R_1\sigma w + \dots + R_\ell \sigma^\ell w = 0 \right\}$$

nonlinear time-invariant system

$$\mathscr{B} = \left\{ w \mid R(\underbrace{w, \sigma w, \ldots, \sigma^{\ell} w}_{x}) = 0 \right\}$$

linearly parameterized R

$$R(x) = \sum \theta_i \phi_i(x) = \theta^\top \phi(x), \quad \begin{array}{cc} \phi & -- & \text{model structure} \\ \theta & -- & \text{parameter vector} \end{array}$$

Polynomial SISO NARX system

$$\mathscr{B}(\boldsymbol{\theta}) = \left\{ \boldsymbol{w} = \begin{bmatrix} \boldsymbol{u} \\ \boldsymbol{y} \end{bmatrix} \mid \boldsymbol{y} = f(\boldsymbol{u}, \boldsymbol{\sigma} \boldsymbol{w}, \dots, \boldsymbol{\sigma}^{\ell} \boldsymbol{w}) \right\}$$

split f into 1st order (linear) and other (nonlinear) terms

$$f(x) = heta_{\mathsf{li}}^{\top} x + heta_{\mathsf{nl}}^{\top} \phi_{\mathsf{nl}}(x)$$

 ϕ_{nl} — vector of monomials
Special cases

Hammerstein $\phi_{nl}(x) = \begin{bmatrix} \phi_u(u) & \phi_u(\sigma u) & \cdots & \phi_u(\sigma^\ell u) \end{bmatrix}^\top$

FIR Volterra

$$\phi_{\mathsf{nl}}(x) = \phi_{\mathsf{nl}}(x_u), \text{ where } x_u := \mathsf{vec}(u, \sigma u, \dots, \sigma^\ell u).$$

bilinear

$$\phi_{\mathsf{nl}}(x) = x_u \otimes x_y, \quad ext{where } x_y := \mathsf{vec}(y, \sigma y, \dots, \sigma^{\ell-1}y)$$

generalized bilinear

$$\phi_{\mathsf{nl}}(x) = \phi_{u,\mathsf{nl}}(x_u) \otimes x_y$$

LTI embedding of polynomial NARX system

$$\mathscr{B}_{\mathsf{ext}}(\theta) := \left\{ \mathsf{w}_{\mathsf{ext}} = \begin{bmatrix} u \\ u_{\mathsf{nl}} \\ y \end{bmatrix} \mid \sigma^{\ell} \mathsf{y} = \theta_{\mathsf{li}}^{\top} \mathsf{x} + \theta_{\mathsf{nl}}^{\top} u_{\mathsf{nl}} \right\}$$

define: $\Pi_{w} w_{ext} := w$ and $\Pi_{u_{nl}} w_{ext} := u_{nl}$ fact: $\mathscr{B}(\theta) \subseteq \Pi_{w} \mathscr{B}_{ext}(\theta)$, moreover

 $\mathscr{B}(\theta) = \Pi_{w} \big\{ w_{\mathsf{ext}} \in \mathscr{B}_{\mathsf{ext}}(\theta) \mid \Pi_{u_{\mathsf{nl}}} w_{\mathsf{ext}} = \phi_{\mathsf{nl}}(x) \big\}$

FIR Volterra data-driven simulation given

data $w_d = (u_d, y_d)$ of lag- ℓ FIR Volterra system \mathscr{B} ϕ_{nl} — system's model structure

assume ID conditions for \mathscr{B}_{ext} hold

then, $\mathscr{B}|_L = \operatorname{image} M$, where

$$M(w_{\text{ini}}, u) := \mathscr{H}_{L}(\sigma^{\ell} y_{d}) \underbrace{ \begin{bmatrix} \mathscr{H}_{\ell}(w_{d}) \\ \mathscr{H}_{L}(\sigma^{\ell} u_{d}) \\ \mathscr{H}_{\ell}(\phi_{\text{nl}}(x_{u_{d}})) \\ \mathscr{H}_{L}(\sigma^{\ell} \phi_{\text{nl}}(x_{u_{d}})) \end{bmatrix}^{\dagger} \begin{bmatrix} w_{\text{ini}} \\ u \\ \varphi_{\text{nl}}(x_{u_{\text{ini}}}) \\ \varphi_{\text{nl}}(x_{u}) \end{bmatrix}}_{g}$$

proof

$$\begin{bmatrix} \mathcal{H}_{\ell}(w_{d}) \\ \mathcal{H}_{L}(\sigma^{\ell}u_{d}) \\ \mathcal{H}_{\ell}(\phi_{nl}(x_{u_{d}})) \\ \mathcal{H}_{L}(\sigma^{\ell}\phi_{nl}(x_{u_{d}})) \\ \mathcal{H}_{L}(\sigma^{\ell}y_{d}) \end{bmatrix} g = \begin{bmatrix} w_{ini} \\ u \\ \phi_{nl}(x_{u_{ini}}) \\ \phi_{nl}(x_{u_{ini}}) \\ \phi_{nl}(x_{u}) \\ y \end{bmatrix} B2$$

- B1 constraint on *g*, such that $w_{ini} \land (u, \mathscr{H}_L(\sigma^{\ell} y_d)g) \in \mathscr{B}_{ext}$ B2 constraint $u_{nl} = \phi_{nl}(x) \iff \mathscr{B}_{ext} = \mathscr{B}(\theta)$
- B3 defines the to-be-computed output y

generalized bilinear models

also tractable because B2: $u_{nl} = \phi_{nl}(x)$ is still linear in y