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The problems and methods reviewed today
differ from those you’ve learned yesterday

yesterday:
object parametric PDEs
problem given {ξi ,ui}, find ξ 7→ u
approach neural network

today:
object linear time-invariant systems
problem given u, predict, filter, control
approach behavioral systems theory
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We are aiming at direct data-driven methods
for analysis and design of dynamical systems

given
data

model

desired
solution

model

identific
atio

n

model-based
design

direct data-driven design

the classical approach is “indirect data-driven”
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Data-driven does not mean model-free

data-driven methods make model assumptions

but don’t use parametric representations

they are non-parametric using directly the data
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Outline

Example: Free fall prediction

Linear time-invariant systems

Data-driven representation

Dealing with noise
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The goal is to predict free fall trajectory

object with mass m, falling in gravitational field
I w — position
I v := ẇ — velocity
I w(0),v(0) — initial condition

task: given initial condition, find the trajectory w

I model-based approach:
1. physics 7→ parametric model
2. model parameter estimation
3. model + ini. conditions 7→ w

I data-driven approach: data w1
d , . . . ,w

N
d + ini. cond. 7→ w
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Modeling from first principles yields
affine time-invariant dynamical system

second law of Newton + the law of gravity

mẅ = m
[ 0
−9.81

]
+ f , w(0) = wini and ẇ(0) = vini

I 9.81 — gravitational constant
I f =−γẇ — force due to friction in the air

1st order equation
ẋ = Ax , w = Cx , x(0) = xini

I state x := (w1, ẇ1,w2, ẇ2,−9.81)
I initial state xini := (wini,1,vini,1,wini,2,vini,2,−9.81)
I A,C — model parameters (depend on m and γ)
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Data-driven free fall prediction method

data: N, discrete-time trajectories w1
d , . . . ,w

N
d

rank
[
w1

d · · · wN
d

]
= 5 "informativity" condition

algorithm for data-driven prediction:

1. solve

w1
d (1) · · · wN

d (1)

w1
d (2) · · · wN

d (2)

w1
d (3) · · · wN

d (3)

g =

w(1)

w(2)

w(3)


︸ ︷︷ ︸
ini. cond.

2. define w :=
[
w1

d · · · wN
d

]
g
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Summary: prediction of free fall trajectory

first principles modeling
I use Newton’s 2nd law, law of gravity, and friction
I and model parameters m, γ, gravitational constant
I lead to autonomous affine time-invariant system

data-driven approach
I bypasses the knowledge of the physical laws
I and prior knowledge or estimation of model parameters
I no hyper-parameters to tune
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The exercises are linked to the lectures,
they are an integral part of the course

“I hear, I forget; I see, I remember; I do, I understand.”

your task
1. write a function for model-based free fall simulation
2. collect free falls data w1

d , . . . ,w
N
d using the model

3. implement and try the direct data-driven method

if you have questions
I option 1: use the “raise hand” function
I option 2: post them in the chat
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Signals are functions of time

(Rq)T — signal space: functions T 7→ (Rq)

w ∈ (Rq)T — real vector-valued signal

w(t) ∈ Rq is the value of w at time t ∈T
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Signals are classified according to
# of variables q and type of time axis T

q = 1 — scalar signal
q > 1 — vector signal

T = R — continuous-time
T = Z — discrete-time

(Rq)R 7→ (Rq)Z — sampling / time-discretization
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Signals are transformed by operators

(σw)(t) := w(t + 1) — unit-shift operator

R0 + R1σ + . . .+ R`σ
`︸ ︷︷ ︸

R(σ)

— polynomial operator

w |[t1,t2] and w |T — restriction to interval
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The classical view of dynamical system is
a “signal processor”: an input/output map

systeminput output

accepts input signal and produces output signal

intuition: the input causes the output
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In the behavioral approach to systems theory,
dynamical system is a set of signals

B ⊂ (Rq)Z — q-variate discrete-time system
I q = 1 — scalar system
I q > 1 — multivariable system

w ∈B — w is a trajectory of B

I w is allowed/predicted by B
I B is unfalsified by w

B|T — restriction of B to the interval 1, . . . ,T
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B = {w | f (w) = 0} is a representation of B

a given B allows different representations
I parametric vs non-parametric representations
I uniqueness of the parameters
I how to switch from one representation to another?

different representations different methods

problems related to a system B:
I B 7→ w — simulation
I wd 7→B — identification
I noise filtering, prediction, control, . . .
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Example: free fall in gravitational field

w ∈ (R2)R+ — object’s position (q = 2, T = R+)

B ⊂ (R2)R+ — all possible free-fall trajectories
the object may have

representations

B =
{

w ∈ (R2)R+ | mẅ = m
[ 0
−9.81

]
− γẇ ,

[
w(0)
ẇ(0)

]
∈ R4

}
=
{

w ∈ (R2)R+ | there is x ∈ (R5)R+, such that

ẋ = Ax , w = Cx , x5(0) =−9.81
}
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Linearity, time-invariance, and complexity
are defined in terms of the set B

B is linear system :⇐⇒ B is linear subspace

B is time-invariant :⇐⇒ σB = B

L q linear time-invariant (LTI) model class
I m(B) — number of inputs
I `̀̀(B) — lag
I n(B) — order

B ∈L q =⇒ dimB|L = m(B)L + n(B), for all L≥ `̀̀(B)
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Kernel representation B = kerR(σ)

is `-th order vector difference equation

{
w
∣∣R0w(t)+R1w(t +1)+ · · ·+R`w(t +`) = 0, for all t ∈T

}
m{

w
∣∣ R0w + R1σw + · · ·+ R`σ

`︸ ︷︷ ︸
R(σ)

w = 0
}

m

kerR(σ) (KER)

the parameter is a polynomial matrix R(z) ∈ Rg×q[z]
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Input/state/output representation
is 1-st order vector difference equation

{
w = Π

[u
y
] ∣∣ there is x ∈ (Rn)N, such that

σx = Ax + Bu, y = Cx + Du
}

(I/S/O)

x — state , n := dimx — order
u — input , m := dimu — # of inputs
y — output , p := dimy — # of outputs

the parameters are:

I permutation matrix Π ∈ Rq×q and
I matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m
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Summary: linear time-invariant systems

w ∈ (Rq)T signals are functions of time

B ⊂ (Rq)Z systems are sets of signals
B can be represented by different equations

L q LTI model class: shift-invariant subspaces
I complexity: (# of inputs, lag, order)
I B = kerR(σ) kernel representation
I input/state/output representation
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The finite-horizon behavior B|L is used
for both analysis and computations

restriction of w to finite interval [1,L]

w |L :=
(
w(1), . . . ,w(L)

)
∈ (Rq)L

restriction of B to [1,L]

B|L := {w |L | w ∈B } ⊂ (Rq)L

if B is linear, B|L is a linear subspace of (Rq)L
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B|L can be obtained experimentally
by collecting “informative” data

collect N ≥ qL random trajectories

w1
d , . . . ,w

N
d ∈B|L

by the linearity of B, we have

span
{

w1
d , . . . ,w

N
d
}
⊆B|L

with probability one equality holds
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Discrete-time LTI systems over finite horizon
can be studied using linear algebra only[

w1
d · · · wN

d

]
︸ ︷︷ ︸

W

∈ RqL×N — “trajectory matrix”

B̂|L = imageW — data-driven representation

now, we can do explorations, in particular check

dimB|L = m(B)L + n(B)≥ rankW , for L≥ `̀̀(B)
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dimB|L is a piecewise affine function of L

L

dimB|L

`0 `1 `2 `p−1 `p = `

qL

(q
−1)L

. . .
(q−p + 1)L mL

n

irregular increase regular increase

dimB|L = mL + n, for all L≥ `
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Data-driven representation (infinite horizon)

data: exact infinite trajectory wd of B ∈L

B̂ = Bmpum(wd) = span
{

wd,σwd,σ
2wd, . . .

}
identifiability condition: B = B̂
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Consecutive application of σ on finite wd

results in Hankel matrix with missing values

σ0wd σ1wd · · · σTd−1wd

wd(1) wd(2) · · · wd(Td)

wd(2)
... . .

.
?

... wd(Td) . .
. ...

wd(Td) ? · · · ?

for wd =
(
wd(1), . . . ,wd(Td)

)
and 1≤ L≤ Td

HL(wd) :=
[

(σ0wd)|L (σ1wd)|L · · · (σTd−Lwd)|L
]
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Data-driven representation (finite horizon)

the finite horizon data-driven representation

B|L = B̂|L := imageHL(wd) (DD-REPR)

holds if and only if

rankHL(wd) = Lm(B) + n(B) (GPE)

GPE — generalized persistency of excitation
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Identifiability condition
verifiable from wd ∈B|Td and

(
m, `,n

)
fact: B = B′ ⇐⇒ B|`+1 = B′|`+1 then

B̂ = B ⇐⇒ B̂|`+1 = B|`+1

⇐⇒ dimB̂|`+1 = dimB|`+1

B is identifiable from wd ∈B|Td if and only if

rankH`+1(wd) =
(
`+ 1

)
m + n

wd 7→B — system identification
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Generic data-driven problem:
trajectory interpolation/approximation

given:
“data trajectory” wd ∈B|Td

and elements w |Igiven

of a trajectory w ∈B|T

(w |Igiven selects the elements of w , specified by Igiven)

aim: minimize over ŵ ‖w |Igiven− ŵ |Igiven‖
subject to ŵ ∈B|T

ŵ = HT (wd)
(
HT (wd)|Igiven

)+w |Igiven (SOL)
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Special cases

simulation
I given data: initial condition and input
I to-be-found: output (exact interpolation)

smoothing
I given data: noisy trajectory
I to-be-found: `2-optimal approximation

tracking control
I given data: to-be-tracked trajectory
I to-be-found: `2-optimal approximation
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Generalizations
multiple data trajectories w1

d , . . . ,w
N
d

B̂|L = image
[
HL(w1

d ) · · · HL(wN
d )
]

︸ ︷︷ ︸
mosaic-Hankel matrix

wd not exact / noisy
maximum-likelihood estimation
 Hankel structured low-rank approximation/completion
nuclear norm and `1-norm relaxations
 nonparametric, convex optimization problems

nonlinear systems
results for special classes of nonlinear systems:
Volterra, Wiener-Hammerstein, bilinear, . . .
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Summary: data-driven representation

assuming rankHL(wd) = m(B)L + n(B)

B|L = imageHL(wd) holds

replaces parametric representations
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The data wd being exact vs inexact / “noisy”

wd exact and satisfying (GPE)
I “systems theory” problems
I imageHL(wd) is nonparametric finite-horizon model
I data-driven solution = model-based solution

wd inexact, due to noise and/or nonlinearities
I naive approach: apply the solution (SOL) for exact data
I rigorous: assume noise model ML estimation problem
I heuristics: convex relaxations of the ML estimator
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The maximum-likelihood estimation problem
in the errors-in-variables setup is nonconvex

errors-in-variables setup: wd = wd + w̃d

I wd — true data, wd ∈B|Td , B ∈L q
c

I w̃d — zero mean, white, Gaussian measurement noise

ML problem: given wd, c, and w |Igiven

minimize
g

‖w |Igiven−HT (ŵ∗d)|Igiveng‖

subject to ŵ∗d = arg minŵd,B̂
‖wd− ŵd‖

subject to ŵd ∈ B̂|Td and B̂ ∈L q
c
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The ML estimation problem is equivalent to
Hankel structured low-rank approximation

minimize
g

‖w |Igiven−HT (ŵ∗d)|Igiveng‖

subject to ŵ∗d = arg minŵd,B̂
‖wd− ŵd‖

subject to ŵd ∈ B̂|Td and B̂ ∈L q
c

m

minimize
g

‖w |Igiven−HT (ŵ∗d)|Igiveng‖

subject to ŵ∗d = arg minŵd
‖wd− ŵd‖

subject to rankH`+1(ŵd)≤ (`+ 1)m + n
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Solution methods

local optimization
I choose a parametric representation of B̂(θ)
I optimize over ŵ , ŵd, and θ

I depends on the initial guess

convex relaxation based on the nuclear norm

minimize over ŵd and ŵ ‖w |Igiven− ŵ |Igiven‖+‖wd− ŵd‖

+ γ ·
∥∥∥[H∆(ŵd) H∆(ŵ)

]∥∥∥
∗

convex relaxation based on `1-norm (LASSO)

minimize over g ‖w |Igiven−HT (wd)|Igiveng‖+ λ‖g‖1
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Empirical validation on real-life datasets

data set name Td m p
1 Air passengers data 144 0 1
2 Distillation column 90 5 3
3 pH process 2001 2 1
4 Hair dryer 1000 1 1
5 Heat flow density 1680 2 1
6 Heating system 801 1 1

G. Box, and G. Jenkins. Time Series Analysis: Forecasting and Control, Holden-Day, 1976

B. De Moor, et al.DAISY: A database for identification of systems. Journal A, 38:4–5, 1997
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`1-norm regularization with optimized λ

achieves the best performance

emissing :=
‖w |Imissing− ŵ |Imissing‖

‖w |Imissing‖
100%

data set name naive ML LASSO
1 Air passengers data 3.9 fail 3.3
2 Distillation column 19.24 17.44 9.30
3 pH process 38.38 85.71 12.19
4 Hair dryer 12.35 8.96 7.06
5 Heat flow density 7.16 44.10 3.98
6 Heating system 0.92 1.35 0.36
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Tuning of λ and sparsity of g (datasets 1, 2)
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Tuning of λ and sparsity of g (datasets 3, 4)
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Tuning of λ and sparsity of g (datasets 5, 6)
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Summary: convex relaxations
wd exact systems theory
I exact analytical solution
I current work: efficient real-time algorithms

wd inexact nonconvex optimization
I subspace methods
I local optimization
I convex relaxations

empirical validation
I the naive approach works (surprisingly) well
I parametric local optimization is not robust
I `1-norm regularization gives the best results
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A textbook problem
D. G. Luenberger, Introduction to Dynamical Systems:
Theory, Models and Applications. John Wiley, 1979.

“A thermometer reading 21◦C, which has been
inside a house for a long time, is taken outside.
After one minute the thermometer reads 15◦C;
after two minutes it reads 11◦C. What is the out-
side temperature?”

According to Newton’s law of cooling, an object of higher
temperature than its environment cools at a rate that is
proportional to the difference in temperature.
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Main idea: predict the steady-state value
from the first few samples of the transient

textbook problem:
I 1st order dynamics
I 3 noise-free samples
I batch solution

generalizations:
I n ≥ 1 order dynamics
I T ≥ 3 noisy (vector) samples
I recursive computation

implementation and practical validation
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Thermometer: first order dynamical system

environmental
temperature ū

heat transfer−−−−−−−−−→ thermometer’s
reading y

measurement process: Newton’s law of cooling

y = a
(
ū−y

)
heat transfer coefficient a > 0
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Scale: second order dynamical system

ū = M
m

kd

|
|

|
|

|

y(t)

| | | | | | | | | | | | | | | |

(M + m)
d
d t

y + dy + ky = gū
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The measurement process dynamics
depends on the to-be-measured mass
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Dynamic measurement: take into account
the dynamical properties of the sensor

to-be-measured
variable u

measurement process−−−−−−−−−−−−−−−→ measured
variable y

assumption 1: measured variable is constant u(t) = ū

assumption 2: the sensor is stable LTI system

assumption 3: sensor’s DC-gain = 1 (calibrated sensor)
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The data is generated from LTI system
with output noise and constant input

yd︸︷︷︸
measured

data

= y︸︷︷︸
true

value

+ e︸︷︷︸
measurement

noise

y︸︷︷︸
true

value

= ū︸︷︷︸
steady-state

value

+ y0︸︷︷︸
transient
response

assumption 4: e is a zero mean, white, Gaussian noise
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using a state space representation of the sensor

x(t + 1) = Ax(t), x(0) = x0

y0(t) = cx(t)

we obtain
yd(1)

yd(2)
...

yd(T )


︸ ︷︷ ︸

yd

=


1
1
...

1


︸︷︷︸

1T

ū +


c

cA
...

cAT−1


︸ ︷︷ ︸

OT

x0 +


e(1)

e(2)
...

e(T )


︸ ︷︷ ︸

e
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Maximum-likelihood model-based estimator

solve approximately

[
1T OT

][ û
x̂0

]
≈ yd

standard least-squares problem

minimize over ŷ , û, x̂0 ‖yd− ŷ‖

subject to
[
1T OT

][ û
x̂0

]
= ŷ

recursive implementation  Kalman filter
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Subspace model-free method

goal: avoid using the model parameters (A, C, OT )

in the noise-free case, due to the LTI assumption,

∆y(t) := y(t)−y(t−1) = y0(t)−y0(t−1)

satisfies the same dynamics as y0, i.e.,

x(t + 1) = Ax(t), x(0) = ∆x
∆y(t) = cx(t)
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Hankel matrix—construction of multiple
“short” trajectories from one “long” trajectory

H (∆y) :=


∆y(1) ∆y(2) · · · ∆y(n)

∆y(2) ∆y(3) · · · ∆y(n+ 1)

∆y(3) ∆y(4) · · · ∆y(n+ 2)
...

...
...

∆y(T −n) ∆y(T −n) · · · ∆y(T −1)



fact: if rankH (∆y) = n, then

imageOT−n = imageH (∆y)
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model-based equation

[
1T OT

][ ū
x̂0

]
= y

data-driven equation

[
1T−n H (∆y)

][ū
`

]
= y |T−n (∗)

subspace method

solve (∗) by (recursive) least squares
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Empirical validation

dashed — true parameter value ū
solid — true output trajectory y0

dotted — naive estimate û = G+y
dashed — model-based Kalman filter
bashed-dotted — data-driven method

estimation error: e := 1
N ∑

N
i=1‖ū− û(i)‖

(for N = 100 Monte-Carlo repetitions)
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Simulated data of dynamic cooling process
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e(t)→ 0 as t → ∞ at different rates

best is the Kalman filter (maximum likelihood estimator)
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Simulation with time-varying parameter

10 20 30 40 50
0

0.5

1

1.5

2

2.5

t

y
(t
)

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

t
e(

t)

16 / 35



Proof of concept prototype
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Results in real-life experiment
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Summary

dynamic measurement

steady-state value prediction

the subspace method is applicable for
I high order dynamics
I noisy vector observations
I online computation

future work / open problems
I numerical efficiency
I real-time uncertainty quantification
I generalization to nonlinear systems
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Problem formulation

given: “data” trajectory (ud,yd) ∈B|Td and z ∈ C

find: H(z), where H is the transfer function of B
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Direct data-driven solution
we are interested in trajectory

w =
[

u
y

]
=
[

expz
Ĥ expz

]
∈B, where expz(t) := z t

using the data-driven representation, we have[
HL(ud)

HL(yd)

]
g =

[
z

Ĥz

]
, where z :=

[
z1

...
zL

]

which leads to the system[
0 HL(ud)

−z HL(yd)

][
Ĥ
g

]
=

[
z
0

]
(SYS)
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Solution method: solve (SYS) for Ĥ

under (GPE) with L≥ `+ 1, Ĥ = H(z)

without prior knowledge of `

L = Lmax := b(Td + 1)/3c

trivial generalization to
I multivariable systems
I multiple data trajectories {w1

d , . . . ,w
N
d }

I evaluation of H(z) at multiple points in {z1, . . . ,zK } ∈ CK
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Comparison with classical nonparametric
frequency response estimation methods

ignored initial/terminal conditions  leakage

DFT grid  limited frequency resolution

improvements by windowing and interpolation
I the leakage is not eliminated
I the methods involve hyper-parameters
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Generalization of (SYS) to noisy data

preprocessing: rank-mL + n approx. of HL(wd)

I hyper-parameters L≥ `+ 1 and n
I if the approximation preserves the Hankel structure,

the method is maximum-likelihood in the EIV setting

regularization with ‖g‖1
I hyper-parameter: the 1-norm regularization parameter

regularization with the nuclear norm of HL(ŵd)

I hyper-parameters: L and the regularization parameter
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Matlab implementation
function Hh = dd_frest(ud, yd, z, n)
L = n + 1; t = (1:L)';
m = size(ud, 2); p = size(yd, 2);

%% preprocessing by low-rank approximation
H = [moshank(ud, L); moshank(yd, L)];
[U, ~, ~] = svd(H); P = U(:, 1:m * L + n);

%% form and solve the system of equations
for k = 1:length(z)
A = [[zeros(m*L, p); -kron(z(k).^t, eye(p))] P];
hg = A \ [kron(z(k).^t, eye(m)); zeros(p*L, m)];
Hh(:, :, k) = hg(1:p, :);

end
I effectively 5 lines of code
I MIMO case, multiple evaluation points
I L = n + 1 in order to have a single hyper-parameter
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Example: EIV setup with 4th order system

dd_frest is compared with
I ident — parametric maximum-likelihood estimator
I spa — nonparameteric estimator with Welch filter
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Monte-Carlo simulation over different
noise levels and number of samples

ea := 100% · |(|Hz |− |Ĥz |)| / |Hz |
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Kernel representation
LTI systems

B = kerR(σ) :=
{

w | R(σ)w = 0
}

=
{

w | R0w + R1σw + · · ·+ R`σ
`w = 0

}
nonlinear time-invariant system

B =
{

w | R
(

w ,σw , . . . ,σ `w︸ ︷︷ ︸
x

)
= 0

}
linearly parameterized R

R(x) = ∑θiφi(x) = θ
>

φ(x),
φ — model structure
θ — parameter vector
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Polynomial SISO NARX system

B(θ ) =
{

w =
[u

y
]
| y = f

(
u,σw , . . . ,σ `w

)}
split f into 1st order (linear) and other (nonlinear) terms

f (x) = θ
>
li x + θ

>
nl φnl(x)

φnl — vector of monomials
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Special cases
Hammerstein

φnl(x) =
[
φu(u) φu(σu) · · · φu(σ `u)

]>
FIR Volterra

φnl(x) = φnl(xu), where xu := vec(u,σu, . . . ,σ `u).

bilinear

φnl(x) = xu⊗xy , where xy := vec(y ,σy , . . . ,σ `−1y)

generalized bilinear
φnl(x) = φu,nl(xu)⊗xy
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LTI embedding of polynomial NARX system

Bext(θ ) :=
{

wext =
[ u

unl
y

] ∣∣∣ σ
`y = θ

>
li x + θ

>
nl unl

}
define: Πwwext := w and Πunlwext := unl

fact: B(θ )⊆ ΠwBext(θ ), moreover

B(θ ) = Πw
{

wext ∈Bext(θ ) | Πunlwext = φnl(x)
}
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FIR Volterra data-driven simulation
given

data wd = (ud,yd) of lag-` FIR Volterra system B
φnl — system’s model structure

assume ID conditions for Bext hold

then, B|L = imageM, where

M(wini,u) := HL(σ
`yd)


H`(wd)

HL(σ `ud)

H`

(
φnl(xud)

)
HL
(
σ `φnl(xud)

)


†
wini

u
φnl(xuini)

φnl(xu)


︸ ︷︷ ︸

g
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proof 
H`(wd)

HL(σ `ud)

H`

(
φnl(xud)

)
HL
(
σ `φnl(xud)

)
HL(σ `yd)

g =


wini

u
φnl(xuini)

φnl(xu)

y



}
B1}
B2}
B3

B1 constraint on g, such that wini∧
(
u,HL(σ `yd)g

)
∈Bext

B2 constraint unl = φnl(x) ⇐⇒ Bext = B(θ)
B3 defines the to-be-computed output y

generalized bilinear models
also tractable because B2: unl = φnl(x) is still linear in y
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