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Total Least Squares (TLS) is a method for treating an overdetermined system of linear equations Ax ≈ b,
where both the matrix A and the vector b are contaminated by noise. In practical situations, the linear
system is often ill-conditioned. For example, this happens when the system is obtained via discretization of
ill-posed problems such as integral equations of the first kind (see e.g., [7] and references therein). In these
cases the TLS solution can be physically meaningless and thus regularization is essential for stabilizing the
solution.

Regularization of the TLS solution was addressed by several approaches such as truncation methods [6, 8]
and Tikhonov regularization [1]. In this talk we will consider a third approach in which a quadratic constraint
is introduced. It is well known [7, 11] that the quadratically constrained total least squares problem can be
formulated as a problem of minimizing a ratio of two quadratic function subject to a quadratic constraint:

(RTLS) min
x∈Rn

{
‖Ax− b‖2

‖x‖2 + 1
: ‖Lx‖2 ≤ ρ

}
,

where A ∈ Rm×n, b ∈ Rm, ρ > 0 and L ∈ Rk×n(k ≤ n) is a matrix that defines a (semi)norm on the
solution. The RTLS problem was extensively studied in recent years [2, 3, 7, 10, 11]. A key difficulty with
this problem is its nonconvexity. As a result, several methods [7, 10] devised to solve it are not guaranteed
to converge to a global optimum but rather to a point satisfying first order necessary optimality conditions.

We will present three globally and efficiently convergent algorithms, based on the algorithms proposed
in [2, 3, 11], for solving the more general problem of minimizing a ratio of (possibly indefinite) quadratic
functions subject to a quadratic constraint:

(RQ) min
x

{
f(x) ≡ f1(x)

f2(x)
: ‖Lx‖2 ≤ ρ

}
,

where
fi(x) = xT Aix− 2bT

i x + ci, i = 1, 2,

A1, A2 ∈ Rn×n are symmetric matrices, b1, b2 ∈ Rn, c1, c2 ∈ R. We do not assume that A1 and A2 are
positive semidefinite (as in the case of the RTLS problem). The only assumption made is that the problem
is well defined. Surprisingly, at least with respect to the methodologies and techniques presented in the talk,
there is no real advantage in dealing with the specific instance of the RTLS problem.

The procedure devised in [2] relies on the following key observation due to [5] for fractional programs:
Observation: given α ∈ R, the following two statements are equivalent:
1. minx

{
f1(x)/f2(x) : ‖Lx‖2 ≤ ρ

} ≤ α.
2. minx

{
f1(x)− αf2(x) : ‖Lx‖2 ≤ ρ

} ≤ 0.
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Based on the latter observation, we develop an efficient algorithm for finding the global optimal solution by
converting the original problem into a sequence of simple optimization problems of the form

(GTRS) min
x

{
xT Ax + 2bT x + c : ‖Lx‖2 ≤ ρ

}

parameterized by a single parameter α. The optimal solution corresponds to a particular value of α, which
can be found by a simple one-dimensional search. Problem (GTRS) is also known in the literature as the
generalized trust region subproblem and, similarly to problem (RQ), is a nonconvex problem. Using the
hidden convexity result of [4] we are able to convert the GTRS problem into a simple convex optimization
problem that can be solved by finding the root of a one-dimensional secular equation. Overall, the algorithm
finds an ε-optimal solution after solving O(log ε−1) GTRS problems. Practically, the numerical experiments
in [2] show that a high-accuracy optimal solution is typically obtained after only few iterations.

The method devised in [11] was developed to solve the specific case of the RTLS problem. The starting
point is the observation that x∗ is an optimal solution of problem (RQ) if and only if

x∗ ∈ argminy∈Rn{f2(y)(f(y)− f(x∗)) : ‖Ly‖2 ≤ ρ},

(here f2(y) = ‖y‖2 + 1, f(y) = ‖Ay − b‖2/(‖y‖2 + 1)) which naturally leads to consider the following fixed
point iterations:

xk+1 ∈ argminy∈Rn{f2(y)(f(y)− f(xk)) : ‖Ly‖2 ≤ ρ}.
The latter scheme, similarly to the one used in [2], also involves the solution of a GTRS problem at each

iteration. A different method for solving the GTRS problem is discussed in [11]. Specifically, the GTRS is
converted into an equivalent quadratic eigenvalue problem (QEP) for which efficient solvers are known to
exist. The numerical results presented in [11] indicate that, similarly to the method proposed in [2], the
method converges at a very fast rate and requires the solution of very few (up to 5) GTRS problems. The
numerical results reported in [11] also indicate that the method produces a global solution. This fact was
also validated empirically by comparing the two procedures in [2]. However, a proof of convergence to a
global optimal solution of the RTLS was not given in [11].

The aforementioned results suggest that the problem (RQ) of minimizing a quadratically constrained
ratio of two quadratic functions seems to share some kind of hidden convexity property, namely, it can be
shown to be equivalent to some (tractable) convex optimization reformulation. In [3] we show that this is
indeed the case. We obtain a simple condition in terms of the problem’s data under which the attainment of
the minimum in problem (RQ) is warranted. This condition allows us to derive an appropriate nonconvex
reformulation of (RQ), and to apply an extension of the so-called S-Lemma for three quadratic homogeneous
forms [9]. By so doing, we prove that problem (RQ) can be recast as a semidefinite programming problem
for which efficient solution algorithms are known to exist (e.g., interior point methods). Based on the latter
formulation, we propose a third globally and efficiently convergent algorithm for solving the RQ problem.
Another byproduct of the aforementioned results is a superlinear convergence result for the iterative scheme
suggested in [11], and which is extended for the more general class of problems (RQ). Moreover, it is shown
that this algorithm produces an ε-global optimal solution in no more than O(

√
log ε−1) main loop iterations.

This result also provides a theoretical justification to the successful computational results reported in the
context of (RTLS) in [11] and [3].
The talk is partially based on joint works with Aharon Ben-Tal and Marc Teboulle.
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