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1 Welcome and general information

Dear participants,

it is our great pleasure to welcome all of you in the Arenberg castle, Leuven, Belgium, for the 4th edition of the
workshop on Total Least Squares and Errors-In-Variables Modeling. Just like the three previous workshops, organized
at the same place in August 1991, 1996 and 2001, this workshop attracts ahighly interdisciplinary audience and
therefore covers a broad scope of fields such as statistics, numerical analysis, system identification, signal processing,
chemistry, computer vision, environmental sciences, etc., and subjects ranging from theory to practice. All lectures and
poster presentations focus on the central question: “How to deal with measurement error?”. The invited lectures form
the backbone of the workshop and aim to present a general overview of obtained results in a certain field over the past
5 years. Significant progress has been made in nonlinear measurement error and behavioral modeling, regularized and
structured total least squares, numerical TLS algorithms, errors-in-variables system identification, geometric fitting,
and applied fields such as signal processing, chemistry and environmental sciences. I strongly believe that bridging
the gap between disciplines is a conditio sine qua non for tackling the scientific challenges in this area. It is our hope
that this workshop will enhance this crossfertilization!

Enjoy your stay, the workshop, and the city of Leuven and its environments!

Sabine Van Huffel and Ivan Markovsky

Lunches

August 21, 12h00–13h30: ESAT (00.62 or 00.57)

August 22, 12h00–13h30: ESAT (00.62 or 00.57)

August 23, 12h00–13h30: ESAT (00.62 or 00.57)

Breakfast (for those staying in a dormitory room)

Every morning at ESAT (00.62 or 00.57).

Coffee breaks

In the Salons Arenberg Castle.

August 21, 10h30–11h00 and 15h00–15h30

August 22, 10h00–10h30 and 16h00–16h30

August 23, 10h15–10h30

Welcome drink and dinner on Monday

In the ”oude Kantien” at 19h00.
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Banquet on Tuesday

In the faculty Club at 20h00.

Transportation

The Arenberg Castle is located approximately 3km. (30 minutes walking) from the center of Leuven. It is accessible
by public transportation—bus number 2 direction Campus, stop De Oude Kantien. (In the opposite direction, bus
number 2 goes to the station of Leuven.)

Computer facilities

Participants in the workshop will have an access to a computer lab in the buildingof the electrical engineering de-
partment (ESAT), see the map on page 77. Those who have laptops will be able to access Internet via a wireless
connection within the ESAT building. Room 00.62 is reserved for the participants of the workshop.

Workshop address

Ida Tassens
Dept. of Electrical Engineering, ESAT-SCD (SISTA)
Katholieke Universiteit Leuven,
Kasteelpark Arenberg 10
B–3001 Leuven-Heverlee, Belgium

tel: 32/16/32.17.09, fax: 32/16/32.19.70
email:ida.tassens@esat.kuleuven.be
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2 Proceedings

One special issue ofSignal Processingand one special issue ofComputational Statistics and Data Analysiswill be
published as proceedings of the workshop. However, the call for papers is also open to papers that are not presented
during the workshop. We encourage authors, whose work is more statistically oriented to submit their manuscripts
to Computational Statistics and Data Analysis and authors whose work is more applications oriented to submit their
manuscripts for Signal Processing.

The scope of topics for the special issues overlaps with this of the workshop. The deadline for submissions for both
special issues is October 1, 2006. Submissions for Computational Statistics and Data Analysis should be sent by e-mail
to the workshop secretariat (ida.tassens@esat.kuleuven.be). Submissions for Signal Processing should be
entered athttp://ees.elsevier.com/sigpro selecting “TLS and EIV modeling” as the Article Type.

Guest editors for special issue of Signal Processing

• S. Van Huffel, K.U.Leuven, Dept. Elektrotechniek (ESAT), KasteelparkArenberg 10, B-3001 Leuven, Belgium

• I. Markovsky, K.U.Leuven, Dept. Elektrotechniek (ESAT), Kasteelpark Arenberg 10, B-3001 Leuven, Belgium

• R. Vaccaro, Department of Electrical & Computer Engineering, University of Rhode Island, 4 East Alumni Ave.
Kingston, RI 02881, USA

• T. Söderstr̈om, Information Technology, Department of Systems and Control, Uppsala University, P O Box 337,
SE-751 05, Uppsala, Sweden

Guest editors for special issue of Computational Statistics and Data Analysis

• S. Van Huffel, K.U.Leuven, Dept. Elektrotechniek (ESAT), KasteelparkArenberg 10, B-3001 Leuven, Belgium

• C.-L. Cheng, Institute of Statistical Science, Academia Sinica, Taipei, Taiwan, R.O.C

• N. Mastronardi, Istituto per le Applicazioni, del Calcolo ”M.Picone” sez. Bari, National Council of Italy, via G.
Amendola 122/D, I-70126 Bari, Italy

• C. Paige, McGill University, School of Computer Science, 3480 University Street, Montreal, PQ, Canada H3A
2A7

• A. Kukush, Kiev National Taras Shevchenko University, Volodymyrska st. 60, 01033, Kiev, Ukraine
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3 Program

Monday, August 21

08h00–08h45 Registration in Arenberg Castle
08h45–09h00 Opening and welcome by Sabine Van Huffel

Session I: Regularized total least squares

Chair: S. Van Huffel

09h00–09h45 G. Golub, Matrices and moments: perturbation for least squares 11
09h45–10h30 A. Beck, The regularized total least squares problem: Theoretical properties and three glob-

ally convergent algorithms
11

10h30–11h00 Break
11h00–11h30 D. Sima, Level choice in truncated total least squares 14
11h30–12h00 A. Watson, Robust counterparts of errors-in-variables problems 15
12h00–13h30 Lunch

Session II: Nonlinear measurement error models

Chair: K. Kanatani

13h30–14h15 C.-L. Cheng, On the conditional score and corrected score estimation in nonlinear measure-
ment error models

17

14h15–15h00 A. Kukush and H. Schneeweiss,Comparing the efficiency of structural and functional meth-
ods in measurement error models

18

15h00–15h30 Break
15h30–16h00 ShalabhOn the estimation of linear ultrastructural model when error variances are known 18
16h00–16h30 G. Garg, Shalabh, N. Misra,Consistent estimation of regression coefficients in measure-

ment error model under exact linear restrictions
19

Poster Session (room 00.62 at ESAT)

17h00–18h30 Poster Session(for a list of posters see page 10)
19h00–22h00 Welcome drink and dinner in “De Oude Kantien”
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Tuesday, August 22

Session III: Numerical methods for total least squares

Chair: G. Golub

08h30–09h15 C. Paige and Z. Strakoš,Bidiagonalization as a fundamental decomposition of data in linear
approximation problems

21

09h15–10h00 Å. Björck, A band Lanczos algorithm for least squares and total least squares problems 22
10h00–10h30 Break
10h30–11h00 X.-W. Chang, G. Golub, C. Paige,Minimal backward perturbations for data least squares

problems
24

11h00–11h30 D. Titley-Peloquin, X.-W. Chang, C. Paige,Characterizing matrices consistent with given
approximate solutions to LS, DLS, TLS and Scaled TLS problems

26

11h30–12h00 M. Schuermans, On the equivalence between total least squares and maximum likelihood
principal component analysis with applications in chemometrics

27

12h00–13h30 Lunch

Session IV: Geometric fitting

Chair: C.-L. Cheng

13h30–14h30 K. Kanatani, Hyperaccuracy for geometric fitting 29
14h30–15h15 I. Markovsky, Low-rank approximation and its applications for data fitting 31
15h15–16h00 A. Kukush, Estimation in a multivariate errors-in-variables model with unknown noise vari-

ance ratio
68

16h00–16h30 Break

Session V: Total least squares applications in computer algebra

Chair: N. Mastronardi

16h30–17h00 E. Kaltofen, Z. Yang, L. Zhi,A structured total least squares algorithm for approximate
greatest common divisors of multivariate polynomials

33

17h00–17h30 J. Winkler and J. Allan,Structured matrix methods for the computation of rank reduced
Sylvester matrix

35

Guided visit through Leuven

18h00–20h00 Guided visit through Leuven
20h00–22h00 Banquetin “The Faculty Club”
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Wednesday, August 23

Session VI: Errors-in-variables system identification

Chair: I. Markovsky

08h30–09h30 T. S̈oderstr̈om, Errors-in-variables methods in system identification 36
09h30–10h15 R. Guidorzi, R. Diversi and U. Soverini,Some issues on errors-in-variables identification 37
10h15–10h30 Break
10h30–11h00 J. Linden, B. Vinsonneau, K. Burnham,Model-based control in the errors-in-variables

framework
40

11h00–11h30 R. Pintelon and J. Schoukens,Frequency domain maximum likelihood estimation of linear
dynamic errors-in-variables models

42

11h30–12h00 J. Schoukens and R. Pintelon,Identifiability analysis for errors-in-variables problems 44
12h00–13h30 Lunch

Session VII: Total least squares applications in signal processing

Chair: R. Pintelon

13h30–14h15 A. Yeredor, On the role of constraints in system identification 46
14h15–15h00 R. Vaccaro, Optimal parameter estimation from shift-invariant subspaces 45
15h00–15h45 L. De Lathauwer, Principal component, independent component and parallel factor analysis 49
15h45–16h30 J. Ramos, Applications of TLS and related methods in the environmental sciences 49
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4 Abstracts

4.1 Matrices and moments: Perturbation for least squares

Gene H. Golub, Stanford University,golub@sccm.stanford.edu

Given a matrixA, (m× n) a vectorb, and an approximate solution vector, we are interested in determining ap-
proximate error bounds induced by the approximate solution. We are able to obtain bounds for the perturbation using
the Theory of Momnents. For an nxn symmetric, positive definite matrixA and a real vectoru, we study a method to
estimate and bound the quadratic formu′F(A)u/u′u whereF is a differentiable function. This problem arises in many
applications in least squares theory eg computing a parameter in a least squares problem with a quadratic constraint,
regularization and estimating backward perturbations of linear least squares problems. We describe a method based
on the theory of moments and numerical quadrature for estimating the quadraticform. A basic tool is the Lanczos
algorithm which can be used for computing the recursive relationship for orthogonal polynomials. We will present
some numerical results showing the efficacy of our methods and will discussvarious extensions of the method.

(Joint work with Zheng Su)

4.2 The regularized total least squares problem:
Theoretical properties and three globally convergent algorithms

Amir Beck , Faculty of Industrial Engineering and Management, Technion - IsraelInstitute of Technology, Haifa,
Israel,email: becka@ie.technion.ac.il

Total Least Squares(TLS) is a method for treating an overdetermined system of linear equationsAx≈ b, where
both the matrixA and the vectorb are contaminated by noise. In practical situations, the linear system is often ill-
conditioned. For example, this happens when the system is obtained via discretization of ill-posed problems such
as integral equations of the first kind (see e.g., [7] and references therein). In these cases the TLS solution can be
physically meaningless and thus regularization is essential for stabilizing the solution.

Regularization of the TLS solution was addressed by several approaches such as truncation methods [6, 8] and
Tikhonov regularization [1]. In this talk we will consider a third approach inwhich a quadratic constraint is introduced.
It is well known [7, 11] that the quadratically constrained total least squares problem can be formulated as a problem
of minimizing a ratio of two quadratic function subject to a quadratic constraint:

(RTLS) min
x∈Rn

{
‖Ax−b‖2

‖x‖2 +1
: ‖Lx‖2 ≤ ρ

}
,

whereA∈ Rm×n,b∈ Rm,ρ > 0 andL ∈ Rk×n(k≤ n) is a matrix that defines a (semi)norm on the solution. The RTLS
problem was extensively studied in recent years [2, 3, 7, 10, 11]. A key difficulty with this problem is its nonconvexity.
As a result, several methods [7, 10] devised to solve it are not guaranteed to converge to a global optimum but rather
to a point satisfying first order necessary optimality conditions.

We will present three globally and efficiently convergent algorithms, based on the algorithms proposed in [2, 3, 11],
for solving the more general problem of minimizing a ratio of (possibly indefinite) quadratic functions subject to a
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quadratic constraint:

(RQ) min
x

{
f (x) ≡

f1(x)
f2(x)

: ‖Lx‖2 ≤ ρ
}

,

where
fi(x) = xTAix−2bT

i x+ci , i = 1,2,

A1,A2∈Rn×n are symmetric matrices,b1,b2∈Rn, c1,c2∈R. We do not assume thatA1 andA2 are positive semidefinite
(as in the case of the RTLS problem). The only assumption made is that the problem is well defined. Surprisingly, at
least with respect to the methodologies and techniques presented in the talk, there is no real advantage in dealing with
the specific instance of the RTLS problem.

The procedure devised in [2] relies on the following key observation dueto [5] for fractional programs:

Observation: givenα ∈ R, the following two statements are equivalent:
1. minx

{
f1(x)/ f2(x) : ‖Lx‖2 ≤ ρ

}
≤ α .

2. minx
{

f1(x)−α f2(x) : ‖Lx‖2 ≤ ρ
}
≤ 0.

Based on the latter observation, we develop an efficient algorithm for finding the global optimal solution by con-
verting the original problem into a sequence of simple optimization problems of theform

(GTRS) min
x

{
xTAx+2bTx+c : ‖Lx‖2 ≤ ρ

}

parameterized by a single parameterα . The optimal solution corresponds to a particular value ofα , which can be
found by a simple one-dimensional search. Problem (GTRS) is also knownin the literature as the generalized trust
region subproblem and, similarly to problem (RQ), is a nonconvex problem.Using the hidden convexity result of [4]
we are able to convert the GTRS problem into a simpleconvexoptimization problem that can be solved by finding the
root of a one-dimensional secular equation. Overall, the algorithm finds an ε-optimal solution after solvingO(logε−1)
GTRS problems. Practically, the numerical experiments in [2] show that a high-accuracy optimal solution is typically
obtained after only few iterations.

The method devised in [11] was developed to solve the specific case of the RTLS problem. The starting point is
the observation thatx∗ is an optimal solution of problem (RQ) if and only if

x∗ ∈ argminy∈Rn{ f2(y)( f (y)− f (x∗)) : ‖Ly‖2 ≤ ρ},

(here f2(y) = ‖y‖2 + 1, f (y) = ‖Ay− b‖2/(‖y‖2 + 1)) which naturally leads to consider the following fixed point
iterations:

xk+1 ∈ argminy∈Rn{ f2(y)( f (y)− f (xk)) : ‖Ly‖2 ≤ ρ}.

The latter scheme, similarly to the one used in [2], also involves the solution of a GTRS problem at each iteration.
A different method for solving the GTRS problem is discussed in [11]. Specifically, the GTRS is converted into an
equivalent quadratic eigenvalue problem (QEP) for which efficient solvers are known to exist. The numerical results
presented in [11] indicate that, similarly to the method proposed in [2], the method converges at a very fast rate and
requires the solution of very few (up to 5) GTRS problems. The numerical results reported in [11] also indicate that
the method produces aglobal solution. This fact was also validated empirically by comparing the two procedures in
[2]. However, a proof of convergence to a global optimal solution of theRTLS was not given in [11].

The aforementioned results suggest that the problem (RQ) of minimizing a quadratically constrained ratio of two
quadratic functions seems to share some kind of hidden convexity property, namely, it can be shown to be equivalent
to some (tractable) convex optimization reformulation. In [3] we show that this isindeed the case. We obtain a simple
condition in terms of the problem’s data under which the attainment of the minimum in problem (RQ) is warranted.
This condition allows us to derive an appropriate nonconvex reformulationof (RQ), and to apply an extension of the
so-called S-Lemma for three quadratic homogeneous forms [9]. By so doing, we prove that problem (RQ) can be
recast as a semidefinite programming problem for which efficient solution algorithms are known to exist (e.g., interior
point methods). Based on the latter formulation, we propose athird globally and efficiently convergent algorithm for
solving the RQ problem. Another byproduct of the aforementioned results isa superlinear convergence result for the
iterative scheme suggested in [11], and which is extended for themore generalclass of problems (RQ). Moreover, it
is shown that this algorithm produces anε-global optimal solution in no more thanO(

√
logε−1) main loop iterations.

12



This result also provides a theoretical justification to the successful computational results reported in the context of
(RTLS) in [11] and [3].

The talk is partially based on joint works with Aharon Ben-Tal and Mar c Teboulle.
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4.3 Level choice in truncated total least squares

Diana Sima, Sabine Van Huffel, Katholieke Universiteit Leuven, Department of Electrical Engineering,ESAT-SCD,
{diana.sima,sabine.vanhuffel}@esat.kuleuven.be

Introduction Ill-posed problems are problems where the solution does not depend continuously on the input data,
where arbitrarily small perturbations in the input data produce arbitrarily large changes in the solution. Discrete ill-
posed problems of the typeAx≈ b might arise from the discretization of continuous problems, such as integral or
differential models.

When the systemAx≈ b is a discrete ill-posed problem, the least squares or total least squares methods yield
unreliable solutions forx, dominated by noise in the data or by numerical approximation errors. This happens because
discrete ill-posed problems have an intrinsic sensitivity, which is shown through the fact that the singular values ofA
decay without gap towards zero (or towards a “noise level”).

Regularization techniques are used for many years as a way of stabilizing the computation of least squares solutions
in discrete ill-posed problems. Truncated singular value decomposition and Tikhonov regularization are two of the
most known methods.

Truncation methods for linear estimation The aim of regularization by truncation is to appropriately identify a
good truncation level, and to construct a truncated solution that can capture the essential features of the unknown true
solution, without explicit knowledge about the true solution, and even without a priori knowledge about the magnitude
of the noise in the data.

A better understanding of truncation methods (such as truncated singular value decomposition (TSVD) and trun-
cated total least squares (TTLS) [1]) is possible in view of the recent results oncore problemsof linear systems [4].
The core reduction of an incompatible linear system is a tool that is able to avoidthe problems of nonuniqueness and
nongenericity in the computation of the total least squares solution (and variations). We propose the use oftruncated
core problemsin order to avoid close-to-nongenericity in ill-posed linear approximation problems.

If A∈ R
m×n andb∈ R

m, then the TTLS core problem with truncation levelk involves solving the core system

Ak
11x

k
1 ≈ bk

1

in TLS sense, where
[
bk

1 Ak
11

]
is a (k+ 1)-dimensional truncated core of

[
b A

]
, e.g., a (k+ 1)× (k+ 1) partial

bidiagonalization of
[
b A

]
. From thek-dimensional solutionxk

1, we can easily construct then-dimensional TTLS
solutionxTTLS,k, using,e.g., the right orthogonal transformations associated with the partial bidiagonalization.

Choice of the truncation level Among model selection criteria that use the given data in order to select a good
hyperparameter, we mention thediscrepancy principle, theL-curve, (generalized) cross validationandAkaike’s in-
formation criterion. Here, we focus on the generalized cross validation (GCV) [2, 5]. We make use of concepts from
the field of regularization for nonlinear models [3], which are also linked to the interpretation of GCV as a rotation-
invariant version of the ordinary cross-validation.

The GCV criterion can be written as

min
k

‖rk‖
2
F(

N− peff
k

)2 , (4.1)

whererk denotes the residual between the corrected model
[
b̂k Âk

]
(reconstructed for a fixed value ofk) and the

given data
[
b A

]
; N is the number of “noisy” elements in the data, and theeffective number of parameters peff

k is
the trace of the so-calledgeneralized information matrix[3]. The generalized information matrix is defined as the
derivative of the reconstructed model with respect to the noisy data.

Since in the TLS caseA∈ R
m×n andb∈ R

m are both considered noisy,N = m(n+1). The residual error norm is
given by

‖rk‖
2
F =

∥∥∥
[
b A

]
−
[
b̂k Âk

]∥∥∥
2

F
=

‖Ax̂TTLS,k−b‖2
2

‖x̂TTLS,k‖
2
2 +1

= ‖
[
b A

]
‖2

F −‖
[
bk

1 Ak
11

]
‖2

F +(σ ′′)2,
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whereσ ′′ is the smallest singular value of
[
bk

1 Ak
11

]
.

We prove that there exists a relatively easy-to-compute closed-form expression for the effective number of param-
eters in the truncated core TLS problem:

peff
k =

1
2

Tr





(
Ak

11
⊤

Ak
11

(σ ′′)2 − Ik +8(v′′1)
2xk

1xk
1
⊤

)−1


 ,

where(u′′,σ ′′,v′′) denotes the smallest singular triplet of the (bidiagonal) matrix
[
bk

1 Ak
11

]
. Note that ifAk

11 is bidi-
agonal, the evaluation ofpeff

k involves inverting a (small)k×k tridiagonal plus rank-one matrix.

Plugging-in‖rk‖
2
F and peff

k into (4.1), we obtain a new closed-form expresion for GCV, specially adapted to the
truncated TLS problem formulation. Its computation involves only the bidiagonal matrix obtained afterk bidiagonal-
izations steps, and the smallest singular triplet of this bidiagonal matrix.

Conclusion As for truncated SVD, the truncated TLS problems admits closed-forms expressions for each of the
classical model selection techniques for choosing truncation levels. We focused on generalized cross validation, which
needs an important adjustment compared to the simple GCV criterion that applies totruncated SVD. However, the
GCV function can still be efficiently computed during a partial bidiagonalizationalgorithm for truncated TLS.
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4.4 Robust counterparts of errors-in-variables problems

G. Alistair Watson, Department of Mathematics,
University of Dundee, Dundee DD1 4HN, Scotland,
gawatson@maths.dundee.ac.uk

Let data points(xi ,yi), i = 1, . . . ,m, be given, wherexi ∈ IRt andyi ∈ IR, and all values contain errors. Let the points
be related through a linear model, containingn parameters, so that we can write

yi ≈
n

∑
j=1

a jφ j(xi), i = 1, . . . ,m, (4.2)
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wherea∈ IRn is the vector of free parameters. Writing this in matrix/vector form asy ≈ Aa, then total least squares
can be used to find values of the variables. In certain application areas, itmay be more appropriate to solve arobust
counterpart of this [1], which may be interpreted as the requirement to minimize‖ỹ− Ãa‖ with respect toa over the
worst of perturbations defined by(ỹ, Ã) ∈ E , whereE is an uncertainty set. For example, if

E = {(y+ r ,A+E) : ‖r‖ ≤ ρ1,‖E‖ ≤ ρ2},

whereρ1,ρ2 are given, then the problem is equivalent to findinga to solve

min
a∈Rn

max
‖r‖≤ρ1,‖E‖≤ρ2

‖y+ r − (A+E)a‖,

and when the norms are least squares norms, good methods are available tocompute solutions (for example, [3], [4]).

An alternative to total least squares is orthogonal distance regression [2], where direct perturbations of the variables
themselves are considered. Let

z̃i = ỹi −
n

∑
j=1

a jφ j(x̃i), i = 1, . . . ,m.

Then robust counterparts of the basic problem correspond to the minimization of ‖z̃‖ with respect toa over theworst
of all perturbations such that

(ỹ1, . . . , ỹm, x̃1, . . . , x̃m) ∈ E ,

whereE is an uncertainty set. We consider such problems for different setsE , and in particular for the set

E = {y1 + r1, . . . ,ym+ rm,x1 +s1, . . . ,xm+sm : |r i | ≤ ρi ,‖si‖A ≤ γi , i = 1, . . . ,m},

where‖.‖A is a norm onIRt , and whereρi ,γi , i = 1, . . . ,mare given.

Because the orthogonal distance regression problem does not depend on the model being linear, we can also
consider the treatment of nonlinear problems.

The intention is to use and build on ideas presented in [5], and the main focus ison algorithmic development.
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4.5 On the conditional score and corrected score estimation in nonlinear measure-
ment error models

Chi-Lun Cheng, Institute of Statistical Science, Academia Sinica, Taiwan, R.O.C.
clcheng@stat.sinica.edu.tw

This paper reviews the conditional score and corrected score estimation of the unknown parameters in nonlinear
measurement error (errors-in-variables) models. This includes the functional and structural models. The connection
among these methodologies and total least squares (TLS) is also examined. Acompendium of existing results as well
as some possible extensions are discussed.

The ordinary regression models assume that the independent variables are measured without error. However, in
many situations, the independent variables cannot measured precisely. When the measurement error is too large to
ignore, the estimators for the regression parameters are biased and inconsistent. Measurement error models are impor-
tant alternatives for ordinary regression models, in which we assume thatrelation between the independent variabley
and independent variableξ is known but one cannot observeξ directly. Instead, one observesx = ξ + δ , whereδ is
independents ofξ and has mean zero.

The linear measurements error model has a long history and is dated back 1877 (Adcock, 1977), which has been
well investigated. For a summary, see Fuller (1987) and Cheng and Van Ness (1999). For the past two decades,
the researches on measurement error models are more focused on nonlinear measurement error models, see Carroll,
Ruppert and Stefanski (1995) for a reference.

There are two general methodologies proposed in the literature to estimate the regression parameters in nonlinear
measurement error models. The first one is theconditional scoremethod that was proposed by Stefanski and Carroll
(1987). The second one is calledcorrected scoremethod, which was proposed by Stefanski (1989) and Nakamura
(1990) independently.

In this paper, we will review these two methods. In our view, they have some fundamental difference in their
assumptions that has been neglected in the literature. We will also bring some recent developments to attention and
some possible extensions are discussed. Finally the connection between theconditional score method and TLS (total
least squares) is addressed.
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4.6 Comparing the efficiency of structural and functional methods in measurement
error models

Hans Schneeweiss, Department of Statistics, University of Munich,schneew@stat.uni-muenchen.de
Alexander Kukush, Department of Mechanics and Mathematics, Kiev National Taras Shevchenko University
alexander kukush@univ.kiev.ua

The paper is a survey of recent investigations by the authors and othersinto the relative efficiencies of structural
and functional estimators of the regression parameters in a measurement error model. While structural methods, in
particular the quasi-score (QS) method, take advantage of the knowledgeof the regressor distribution (if available),
functional methods, in particular the corrected score (CS) method, discards such knowledge and works even if such
knowledge is not available. Among other results, it has been shown that QSis more efficient than CS as long as the
regressor distribution is completely known. However, if nuisance parameters in the regressor distribution have to be
estimated, this is no more true in general. For small measurement errors, the efficiencies of QS and CS (and also of
ML) become almost indistinguishable, whether nuisance parameters are present or not. QS is (asymptotically) biased
if the regressor distribution has been misspecified, while CS is always consistent and thus more robust than QS.

4.7 On the estimation of linear ultrastructural model when error variances are
known

Shalabh, Indian Institute of Technology Kanpur, India,shalab@iitk.ac.in, shalabh1@yahoo.com
H. Schneeweiss, University of Munich, Germany

In a linear measurement error model, the parameters can be estimated consistently only when some additional
information besides the data set is available. There are various formulationsthat are commonly employed; e.g., [1]
and [2]. Among them, an interesting formulation relates to the specification of thevariances of the measurement
errors associated with the variable in the linear relationship. Under such a specification, the slope parameter in a
bivariate model is estimated by the technique of orthogonal regression in which the sum of squares of the perpendicular
distances, rather than the horizontal and vertical distances, from the data points to the regression line is minimized.
The resulting estimation turns out to be the maximum likelihood estimator if the errors are assumed to be normally
distributed

Besides the techniques of orthogonal regression for the estimation of parameters, there are other alternative pro-
cedures but they have received far less attention in the literature of measurement error models. For instance, we may
employ the technique of reduced major axis in which the slope parameter is estimated by the geometric mean of the
two estimators arising from the direct and inverse regression; see, e.g., [3] for and expository account. Similarly, we
may estimate the slope parameter by the arithmetic mean of the two estimators; see, e.g.,[4]. Likewise the slope pa-
rameter may be estimated by the slope of the line that bisects the angle between the direct and inverse regression lines
; see, e.g., [5]. This paper considers all these techniques in the contextof a linear ultrastructural model and discuss
their asymptotic properties.

A simple question then arises that out of these suggested estimators, which estimation is better under what condi-
tions. It can be well appreciated that the reliability ratios associated with studyand explanatory variables are easily
available or can be well estimated in measurement error models, see [6] and [7] for more details on this aspect. So an
attempt is made in this paper to express the efficiency properties of all the estimators under consideration as a function
of reliability ratios associated with study and explanatory variables only. Thishelps in obtaining the conditions for the
superiority of one estimator over the other in terms of reliability ratios only.

Further, most of the literature associated with measurement error models generally assumes the normal distribution
for the measurement errors. In practice, such an assumption may not always hold true. The distribution of measurement
errors essentially depends on the nature of experiment. The specificationof normally may thus sometime leads to
invalid and erroneous statistical consequences. The effect of departure from normality is another aspect of study
which is attempted in this paper.
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The finite sample properties of the proposed estimators under different type of distributions of measurement errors
is studied through a Monte-Carlo experiment. The validity of large sample approximations in small samples is also
reported.
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4.8 Consistent estimation of regression coefficients in measurement error model
under exact linear restrictions

Gaurav Garg, Shalabh, Neeraj Misra, Department of Mathematics & Statistics, Indian Institute of Technology,
Kanpur-208016, India,ggarg@iitk.ac.in, shalab@iitk.ac.in, neeraj@iitk.ac.in

In linear regression models, the ordinary least squares estimator (OLSE)is inconsistent and biased when the
observations on variables are observed with measurement errors. It iswell known that in order to obtain the consistent
estimators of regression coefficients, some additional information from outside the sample, e.g., measurement error
variance, ratio of measurement error variances or reliability ratio etc. is required.

In many situations, some prior information on the regression coefficients is available which can be used to improve
upon the OLSE. When such prior information can be expressed in the formof exact linear restrictions binding the
regression coefficients and the data is observed without measurement errors, the restricted least squares estimator is
commonly used. When there are no measurement error in the data, this estimator isconsistent, satisfies the given
linear restrictions on regression coefficients and has smaller variability thanthe OLSE. However the restricted least
squares estimator becomes inconsistent and biased, when the observations are contaminated with measurement errors.
So the problem of obtaining a consistent estimator, which also satisfies the restrictions is addressed in this paper.
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The multivariate ultrastructural model is considered and no assumption is madeabout the distributional form
of any of the measurement errors and random error component in the model. Only the existence and finiteness of
first four moments of measurement errors and random error componentare assumed. The additional knowledge of
reliability matrix and covariance matrix of measurement errors associated with explanatory variables is used to obtain
the consistent estimators which also satisfy the given restrictions.

The bias vectors and mean squared error matrices of the estimators are derived and studied using the large sample
approximation theory. An inter-comparison of both the estimators is made and dominance conditions for the supe-
riority of one estimator over the other are obtained under structural and functional forms of the measurement error
models. The effect of departure from normal assumption is also studied. AMonte-Carlo simulation experiment is also
conducted to study the behaviour of estimators in finite samples.
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4.9 Bidiagonalization as a fundamental decomposition of data in linear approxi-
mation problems

Christopher C. Paige, McGill University, Montreal, Canada,chris@cs.mcgill.ca

Zdeněk Strakoš, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague,
strakos@cs.cas.cz

Let A be a nonzeron by k real matrix, andb be a nonzero realn-vector. Consider estimatingx from the linear
approximation problem

Ax≈ b, (4.3)

where the uninteresting case is for clarity of exposition excluded by the obvious assumptionb 6⊥ R(A ), that is
ATb 6= 0. In a sequence of papers [1, 2, 3] it was proposed to orthogonally transform the the original datab,A into the
form

PT[ b AQ
]
=

[
b1 A11 0
0 0 A22

]
, (4.4)

whereP−1 = PT , Q−1 = QT ,b1 = β1e1, andA11 is a lower bidiagonal matrix withnonzero bidiagonal elements. The
matrix A11 is either square, when (4.3) is compatible, or rectangular, when (4.3) is incompatible. The matrixA22, and
the corresponding block row and column in (4.4), can be nonexistent. Theoriginal problem is in this way decomposed
into the approximation problem

A11x1 ≈ b1 , (4.5)

and the remaining partA22x2 ≈ 0. It was proposed to findx1 from (4.5), setx2 = 0, and substitute for the solution of
(4.3)

x≡ Q

[
x1

0

]
. (4.6)

The (partial) upper bidiagonalization of[b,A] described above has remarkable properties, see [3, Theorems 2.2,
3.2 and 3.3].

• First, the lower bidiagonal matrixA11 with nonzero bidiagonal elements has full column rank and its singular
values are simple. Consequently, any zero singular values or repeats that A has must appear inA22.

• Second,A11 has minimal dimensions, andA22 has maximal dimensions, over all orthogonal transformations
giving the block structure in (4.4), without any additional assumptions on thestructure ofA11 andb1.

• Finally, all components ofb1 = β1e1 in the left singular vector subspaces ofA11, that is, the first elements of all
left singular vectors ofA11 (multiplied byβ1 6= 0), are nonzero.

In the approach represented by (4.3)–(4.6), the datab,A are fundamentally decomposed. The necessary and suffi-
cient information for solving the problem (4.3) is given byb1,A11. All irrelevant and repeated information is filtered
out toA22. The problem (4.5) is therefore called acore problemwithin (4.3).

The core problem formulation can be used to solve least squares, scaledtotal least squares and data least squares
problems. The core problem solutions are identical to the minimal 2-norm solutions of all formulations of the (scaled)
total least squares problem with the single right hand side [4]. It gives the minimum norm solution determined by the
algorithm of Golub and Van Loan [5], [4, Theorem 3.7, p. 58], if it exists. If such a solution does not exist, then the
core problem approach gives the nongeneric minimum norm (scaled) totalleast squares solution described by Van
Huffel and Vandewalle [4, Theorem 3.12, p. 72]. In this way, one simpleand efficient approach can be applied to
different classes of problems. The core problem formulation also offers a new theoretical insight into hybrid methods
for solving noisy ill-posed problems [6, Section 6.6], and several authors have reported promising preliminary results
in this direction.

In our contribution we will review the theory and recent applications of the core problem formulation, and describe
the status of investigation of several open questions.
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4.10 A band-Lanczos algorithm for least squares and total least squares problems

Åke Bj örck, Linköping University

Recently C. C. Paige and Zdenek Strakoš [7] have shown that the bidiagonaliztion

UT (b AV
)

=
(
β1e1 L

)
,

whereU andV are orthogonal andL lower bidiagonal, can be used to extract a regular core problem for the TLS and
related linear approximation problemsAx≈ b. For computing this bidiagonal decomposition Golub and Kahan [3]
gave two mathematically equivalent algorithms. The first uses Householder transformations applied alternately from
left and right. It is a very stable algorithm and the method of choice for dense problems. The second algorithm uses a
coupled two-term Lanczos recurrence, as in LSQR by Paige and Saunders [6]. It has the advantage that the matrixA
is not explicitly transformed and therefore it is suitable for large scale problems withA sparse. An inherent drawback
is that a loss of orthogonality will occur in the computed columns inU andV.

In this talk we develop a similar reduction for the multidimensional TLS problem

min
E, F

‖
(
E F

)
‖F , (A+E)X = B+F,

with d right-hand sidesB = (b1, . . . ,bd), For this the consistency relations can be written

(
B+F A+E

)(−Id
X

)
= 0,
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and we now seek(F, E) that reduces the rank of the matrix(A, B) by d. The multidimensional TLS problemcannot,
as the corresponding LS problem, be reduced tod separate problems.

We present an orthogonal decomposition of
(
B A

)
,

UT (B AV
)

=
(
R L

)
,

whereR and L have band-widthd + 1, which generalizes the bidiagonal decomposition. As ford = 1, it can be
realized by Householder reflections (dense case) or by a Lanczos-like recursion (sparse case). The Lanczos algorithm
is new, but related to the symmetric band Lanczos algorithm of Axel Ruhe [8]. Ruhe’s algorithm has been refined and
generalized in several recent papers, notably in [1]. A survey of thesymmetric case is given by R. W. Freund in [2].

With a single starting vector the algorithm terminates with a core problem if a zero element is encountered in one
of the diagonals ofL. Whend > 1, the bandwidth can be reduced by one in the Householder algorithm, whenever
a zero occurs in one of the outermost bands ofL. When the bandwidth has been reducedd times the process will
terminate with a separable problem.

The orthonormal columns inU = (u1,u2,u3, . . .) andV = (v1,v2,v3, . . .) form bases for the left right Krylov
sequence

b1,b2,(AAT)b1,(AAT)b2,(AAT)2b1,(AAT)2b2, . . . ,

ATb1,A
Tb2,(A

TA)ATb1,(A
TA)ATb2,(A

TA)2ATb1, . . . .

The band Lanczos algorithm needs to include a deflation process in orderto detect and remove linearly dependent
vectors in these sequences. Suppose, for example, that the vector(AAT)b2 is linearly dependent upon previous vectors
in the left Krylov sequence. Then this and all later vectors(AAT)kb2, k > 1, must be removed. Since the left and
right Krylov sequence are coupled, all vectors of the form(ATA)kATb2 in the right Krylov sequence are must also be
removed!

When deflation occurs the length of the recursions is reduced by one. When the bandwidth has been reducedd
times the left and right Krylov subspaces have reached their maximal dimensions and the process terminates. Diana
Sima [9] gives a rigorous implementation of this band Lanczos algorithm.

To solve the TLS problem the partial SVD of the reduced band matrix is needed. As a first step a reduction to
bidiagonal form and performed. This can be done efficiently in≈ 4n2(d−1) flops using the vectorized algorithm of
Kaufman [5].
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4.11 Minimal backward perturbations for data least squares problems

X.-W. Chang, School of Computer Science, McGill University,chang@cs.mcgill.ca
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Let A∈ R
m×n andb∈ R

m with m≥ n. The data least squares (DLS) problem is defined as follows (see, e.g.,[2],
[4], [5]):

min
E,x

‖E‖2
F , s.t.(A+E)x = b. (4.7)

It is known that the DLS problem is equivalent to minx‖Ax−b‖2
2/‖x‖2

2 (see, e.g., [5]).

Given a nonzeroy∈ R
n, we might want to verify whether it is, for example, a backward stable solution to the DLS

problem (4.7). So we would like to solve the following minimal backward perturbation problem:

min
∆A

‖∆A‖2
F , s.t.y = argmin

x

‖(A+∆A)x−b‖2
2

‖x‖2
2

. (4.8)

From [5, (5.14)–(5.17)],y solves the perturbed DLS problem in (4.8) if and only if

(A+∆A)T [(A+∆A)y−b] = yσ2
M, σ2

M ≡ ‖(A+∆A)y−b‖2
2/‖y‖2

2 < σ2
min(A+∆A). (4.9)

Let r = b−Ay. Then from (4.9), we see that∆A is a backward perturbation for our DLS problem if and only if it is in
the following set

C ≡
{

∆A : (yTy)(A+∆A)T(∆Ay− r)−
(
∆Ay− r)T(∆Ay− r)y = 0,

‖(A+∆A)y−b‖2
2/‖y‖2

2 < σ2
min(A+∆A)

}
. (4.10)

Since the inequality in (4.10) makes it difficult to derive a general expression for ∆A∈ C , we consider a larger set

C+ ≡
{

∆A : (yTy)(A+∆A)T(∆Ay− r)−
(
∆Ay− r)T(∆Ay− r)y = 0

}
. (4.11)

In [1], a general expression for∆A∈ C+ was derived as follows

Theorem 1 The setC+ satisfies

C+ = {(I −vv†)ry† +vy†−vv†A+(I −vv†)Z(I −yy†) : v∈ R
m, Z ∈ R

m×n, vTb = 0}.

This theorem can also be derived by following the more complicated approach of [7]. Based on Theorem 1, we can
obtain the following result.

Theorem 2 Let λ∗ ≡ λmin
(
(I −bb†)A(I −2yy†)AT(I −bb†)

)
. Then

µF(y) ≡ min
∆A∈C+

‖∆A‖F =

(
‖r‖2

2

‖y‖2
2

+λ∗

)1/2

= σmin

([
(I −bb†)A(I −yy†),

‖r‖2

‖y‖2
(I −bb†)(I − rr †),

‖r‖2

‖y‖2
b∗
])

,
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where

b∗ ≡

{
b/‖b‖2, b 6= 0,
0 b = 0.

The following matrix is a solution tomin∆A∈C+
‖∆A‖F :

∆̂A =

{
ry†, λ∗ = 0,
ry†−v∗vT

∗ (A+ ry†)− (vT
∗ Ay)v∗y†, λ∗ < 0,

where v∗ is a unit eigenvector of(I −bb†)A(I −2yy†)AT(I −bb†) corresponding toλ∗.

SinceC ⊆ C+, µF(y) ≤ min∆A∈C ‖A‖F , i.e.,µF(y) is a lower bound on the optimal backward perturbation bound
of DLS. However our computational experience so far indicates that when y is a reasonable approximation to the exact
solution of the DLS problem (4.7), theny and the optimal̂∆A satisfy the inequality in (4.9). Therefore, in such cases,
µF(y) is the minimal backward perturbation bound of DLS.

ComputingµF(y) directly is expensive. But we can derive an asymptotic estimate ofµF(y) by using Corollary 3.4
of [3]. In fact, we can show that the quantity

µ̃F(y) ≡
1

‖y‖2

∥∥∥∥
(

ATA+
‖r‖2

2

‖y‖2
2

I
)−1/2

(
ATr +

‖r‖2
2

‖y‖2
2

y

)∥∥∥∥
2

is an asymptotic estimate ofµF(y), i.e., limy→x µ̃F(y)/µF(y) = 1, wherex is the exact solution to

(xTx)AT(b−Ax)+
(
b−Ax)T(b−Ax)x = 0,

which is the equation in (4.11) with∆A replaced by 0 andy by x. We can use two approaches to evaluatingµ̃F(y).
One is to use the QR factorization ofB, and the other is to use the moment method, see [6].
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4.12 Characterizing matrices consistent with given approximate solutions to LS,
DLS, and scaled TLS problems
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We describe a general constructive approach to characterizing sets of matrices consistent with given approximate
solutions to various linear problems. This complements work done by Waldén, Karlson, and Sun (see [3]), who showed
that givenA∈ C m×n, b∈ C m, and a nonzero approximate solutiony∈ C n to the least squares problemAx≈ b, then
with r ≡ b−Ay, the set of matricesE for whichy is the least squares solution to(A+E)y≈ b is

E ≡ {E ∈ C
m×n : (A+E)H [(A+E)y−b] = 0}

= {−w̃w̃†A+(I − w̃w̃†)[ry† +Z(I −yy†)] : w̃∈ C
m, Z ∈ C

m×n}.

The authors of [3] used this result to derive minimal perturbations inA andb for a given approximate solutiony;
that is, withA, b, y, andr as above, given a positive scalarγ, and definingµ ≡ γ2/(1+ γ2‖y‖2

2) and the minimum
eigenvalueλ∗ ≡ λmin(AAH −µrr H),

min
E, f

{‖[E,γ f ]‖2
F : (A+E)H [(A+E)y− (b+ f )] = 0} = µ‖r‖2

2 +min{0, λ∗}.

We give simple, constructive new proofs of some results in [3], and extend this approach to the data least squares,
total least squares, and scaled total least squares problems.

Among other things, such results can be used to derive and analyze minimal backward errors for approximation
problems, and develop stopping criteria for solution techniques. For example, Rigal and Gaches derived an optimal
stopping criterion for the iterative solution of compatible systems (see [2] and, for example, [1, Thm. 7.1]) by showing
that for givenA∈ C m×n, b∈ C m, 0 6= y∈ C n, and positive scalarsα andβ ,

min
η ,E, f

{η : (A+E)y = b+ f , ‖E‖2 ≤ ηα , ‖ f‖2 ≤ ηβ} =
‖b−Ay‖2

β +α‖y‖2
.

Our matrix characterization approach can be used to derive this and some new results, and might also be useful for
deriving minimal backward errors for other problems, such as under-determined linear systems of equations, singular
value problems, or eigenproblems.
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4.13 On the equivalence between total least squares and maximum likelihood prin-
cipal component analysis with applications in chemometrics

M. Schuermans, I. Markovsky, S. Van Huffel , KULeuven, ESAT-SCD, Kasteelpark Arenberg 10, B-3001 Leuven-
Heverlee,mieke.schuermans,ivan.markovsky,sabine.vanhuffel@esat.kuleuven.be

The Maximum likelihood Principal Component Analysis (MLPCA) method has been devised in chemometrics
as a generalization of the well-known PCA method in order to derive consistent estimators in the presence of errors
with known error distribution. For similar reasons, the Total Least Squares (TLS) method has been generalized in
the field of computational mathematics and engineering to maintain consistency of the parameter estimates in linear
models with measurement errors of known distribution. The purpose of this talk is to explore the tight equivalences
between MLPCA [2, 3] and element-wise weighted TLS (EW-TLS) [4, 1]. Moreover, an adapted version of the EW-
TLS method is derived in order to make it useful for problems in chemometrics.We will present a computationally
efficient algorithm and compare this algorithm with the standard EW-TLS algorithm and the MLPCA algorithm in
computation time and convergence behaviour on chemical data.

Despite the seemingly different problem formulations of the MLPCA method andthe TLS method, it is shown
that both methods can be reduced to the same mathematical kernel problem, i.e. finding the closest (in a certain sense)
weighted low rank matrix approximation where the weight is derived from the distribution of the errors in the data.
Mathematically, we will consider the following weighted low rank matrix approximation problem:

min
D̂

‖ D− D̂ ‖W s.t. rank(D̂) ≤ r, (4.12)

with D ∈ R
m×n, the noisy data matrix, rank(D) = k, r < k, ∆̂D = D− D̂ the estimated measurement noise,W the

covariance matrix ofvec(∆̂D) wherevec(∆̂D) stands for the vectorized form of̂∆D, i.e., a vector constructed by
stacking the consecutive columns of̂∆D in one vector and‖ · ‖W= vec⊤(·)W−1vec(·). When the measurement noise
is centered, normal and independently and identically distributed,W = I , whereI is the identity matrix, and the
optimal closeness norm is the Frobenius norm,‖ · ‖F . This is used in the well-known TLS and the PCA methods.
Nevertheless, when the measurement errors are not identically distributedthe Frobenius norm is no longer optimal
and a weighted norm is needed instead.

Different solution approaches, as used in MLPCA and EW-TLS, are discussed. These approaches differ in the
representation of the rank constraint rank(D̂)≤ r in problem (4.12) and in the applied optimization technique in order
to solve problem (4.12).

In the MLPCA approach, the rank constraint rank(D̂) ≤ r is represented as

D̂ = TP⊤,
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with T ∈ R
m×r andP∈ R

n×r . So, problem (4.12) can be rewritten as follows:

min
T

(
min
P,D̂

vec⊤(D− D̂)W−1vec(D− D̂) s.t.D̂ = TP⊤

)
.

In the standard EW-TLS approach, the rank constraint is forced by rewriting rank(D̂) ≤ r as

D̂

[
B̂

−In−r

]
= 0, (4.13)

whereB̂∈ R
r×(n−r). Moreover, the weighting matrixW is assumed to be block diagonal

W =




W1
. ..

Wm


 ,

where each blockWi is the covariance matrix of the errors in thei-th row of the data matrixD. So, for the EW-TLS
approach, problem (4.12) can be rewritten as

min
B̂

(
min

D̂

m

∑
i=1

(di − d̂i)W
−1
i (di − d̂i)

⊤ s.t.D̂

[
B̂

−In−r

]
= 0

)
, (4.14)

with di , d̂i ∈R
n thei-th row ofD andD̂, respectively, andWi thei-th weighting matrix defined as the covariance matrix

of the errors indi . Algorithms described in [1, 4], were designed to solve the standard EW-TLS problem (4.14) for
the case whenm≥ n and when the measurement errors are only row-wise correlated. In chemometrics, however, the
data matrix usually has sizem×n with m≤ n, e.g., in problems of mixture analysis, curve resolution and data fusion.
When the measurement errors are uncorrelated or column-wise correlated, the algorithms presented in [1, 4], can still
be applied to the transposed data matrix. For other cases of measurement error correlation, the algorithms need to be
optimized by considering the left kernel ofD̂, i.e., the following modification of equation (4.13) should be used:

[
B̂2

⊤
−Im−r

]
D̂ = 0,

whereB̂2 ∈ R
r×(m−r). By means of experiments on chemical data, we will show that the EW-TLS method certainly

has potential for problems when the data matrix has sizem×n with m≥ n and only row-wise correlated measurement
errors. It will also become clear that the standard EW-TLS approach is not the right method of choice for the case
whenm≤ n and only row-wise correlated measurements and that an adapted version of the EW-TLS approach is
needed for handling this case of row-wise correlated measurement errors in data sets wherem≤ n. An algorithm will
be derived to solve the following adapted version of the EW-TLS problem:

min
B̂2

(
min

D̂

m

∑
i=1

(di − d̂i)W
−1
i (di − d̂i)

⊤ s.t.
[

B̂2
⊤

−Im−r

]
D̂ = 0

)
,

with di , d̂i ∈R
n thei-th row ofD andD̂, respectively, andWi thei-th weighting matrix defined as the covariance matrix

of the errors indi . The developed algorithm will be compared with the standard EW-TLS algorithm and the MLPCA
algorithm in computation time and convergence behaviour on chemical data.
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4.14 Hyperaccuracy for geometric fitting
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Geometric Fitting Geometric fittingis to fit to noisy data a geometric model (a curve, a surface, or a relationship
in high dimensions) expressed as animplicit equation that noise free data should satisfy [4, 7]. Its major differences
from the traditional parameter estimation problem are:

• Unlike traditional statistical problems, there is noexplicit model which explains observed data in terms of
deterministic mechanisms and random errors. All descriptions areimplicit.

• There are no inputs or outputs. No such concepts as causes and effects exist. No such distinctions as ordinates
and abscissas exist.

• The underlying data space is homogeneous and isotropic with no inherent coordinate systems. Hence, the esti-
mation process and the results should beinvariant to changes of the coordinate system with respect to which
the data are described.

• In many cases, the data are geometricallyconstrained. Typically, they are points on curves, surfaces, and hy-
persurfaces inherent in the data (e.g., unit vectors and matrices of determinant 0). Often, the parameters to be
estimated are also similarly constrained. Hence, theGaussian distribution, the most fundamental noise model-
ing, does not exist in its strict sense in such constrained spaces.

This type of problem plays a central role in computer vision applications. Whilein the traditional domain of
statistics, thetotal least-squares methodand theerrors-in-variable modelare rather abnormal concepts, to which
attention is paid as a special research theme, the above mentioned propertiesare thenorm in many computer vision
problems.

Performance Evaluation Due to the above mentioned characteristics, performance evaluation of geometric fitting
algorithms is very different from that in the traditional domain of statistics [4, 6, 7].

Traditional estimation It is customary to evaluate estimation methods by investigating the asymptotic performance
as the number of data increases, and theconsistencyis one of the main concerns of statisticians. This is based
on the tenet of statistics that random disturbances can be overcome by sampling many data, invoking the law
of large numbers and the central limit theorem. This is reasonable in practice,too, since methods whose per-
formance grows rapidly as the number of data increases are preferable; such methods can reach admissible
accuracy with a fewer number of data than other methods.
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Geometric fitting The data in computer vision applications are usually generated by a computer using image pro-
cessing operations. They may contain pixel-level or subpixel-level errors, because image processing operations,
often heuristically designed, are executed on digitized images and the resultsare not expected to be strictly
correct. In such small noise domains, it is reasonable to focus on the asymptotic performance as the noise
level approaches 0, since methods whose performance grows rapidly as the noise decreases can tolerate higher
uncertainty in the data than others for admissible accuracy.

Hyperaccuracy In many computer vision applications, the constraint can be written as a linear form in the param-
eters to be estimated by (nonlinearly) changing variables and embedding themin a high dimensional space. For such
linearized constraints, we can easily compute the ML (maximum likelihood) estimator. The best known are:

• Therenormalizationmethod of Kanatani [3, 4, 7].

• TheHEIV (heteroscedastic errors in variable) method of Leedan and Meer [9].

• TheFNS(fundamental numerical scheme) of Chojnacki et al. [2].

We call those estimation methods who have accuracy equivalent to MLhigh accuracymethods and those whose
accuracy are lowerlow accuracy methods, typical examples being least squares and the method of Taubin et al. [10,
11]. In contrast, We call those methods who perform better than MLhyperaccuracy methods.

We demonstrate the existence of a hyperaccurate method [8]. Since the ML estimator achieves a theoretical accu-
racy bound, called theKCR lower bound[1, 5, 7], except for high order noise terms, the difference of hyperaccurate
solution from the ML estimator ought to be in higher order noise terms and hence is necessarily very small. Neverthe-
less, the underlying principle for obtaining such a method is theoretically veryimportant, illuminating the relationship
between geometric ML and the KCR lower bound.
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4.15 Low-rank approximation and its applications for data fitting

Ivan Markovsky , ESAT-SISTA, K.U.Leuven,ivan.markovsky@esat.kuleuven.be

Fitting models to data is an ubiquitous problem with long history and many ramifications, depending on the model
class and the fitting criterion being used. A well known special case is the linefitting problem—find a lineB ⊂ R

2

passing through the origin that best matches a set of given pointsD ,

D := {d1, . . . ,dN }, di =: col(ai ,bi).

The classical line fitting solution is given by the least squares method. In order to apply the least squares method,
however, we have to represent the modelB by equations. Two possible representations for a line inR

2 passing
through the origin are

B1(x) = {col(a,b) | ax= b} and B2(y) = {col(a,b) | a = by},

wherex andy are parameter of the model in the two representations. The corresponding least squares problems are

col(a1, . . . ,aN)x = col(b1, . . . ,bN) (SYS1)

and
col(a1, . . . ,aN) = col(b1, . . . ,bN)y. (SYS2)

In general, the least squares fit is representation dependent, i.e.,B1(xls) 6= B2(yls), wherexls andyls are the least
squares solutions of (SYS1) and (SYS2), respectively. From the datafitting point of view, this is an undesirable feature
of the least squares method: the representation of the model is not part ofthe problem formulation and is therefore
arbitrary. We would prefer a fitting method that does not depend on the choice of the representation.

An almost representation invariant line fitting method is the classical total least squares method. Generically
B1(xtls) = B2(ytls), wherextls andyls are the total least squares solutions of (SYS1) and (SYS2). There are, how-
ever, non-generic cases whenxtls, yls, or both fail to exist. For example,xtls does not exist whenever the optimal fitting
line Btls is vertical. Note that in this caseytls do exist.

Non-generic TLS problems occure because one of the variable (b in (SYS1) anda in (SYS2)) is required to be a
function of the other variable. In system theory such representations are called input/output: the free variable is called
input, and the bound (by the input and the model) variable is called output. By using (SYS1) and (SYS2), we fix an
input/output partition of the variables prior to modeling the data. If the optimal model Btls does not allow such an a
priori fixed input/output partition, the classical TLS problem has no solution. In the context of data fitting, it is better
to deducethe input/output partition from the model instead ofassumingit in advance.
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Representations of a line passing through the origin that does not force agiven input/output partition are the
imageB(P) = image(P) and kernelB(R) = ker(R) representations, whereP∈ R

2×1 andR∈ R
1×2 are parameters

of the model. The line fitting problem for the image and kernel representationsleads to a low-rank approximation
problem: approximate the data matrixD :=

[
d1 · · · dN

]
by a rank-one matrix. In fact, low-rank approximation is a

representation free concept applying to general multivariable static and dynamic modeling problems.

The main difference between the static and the dynamic case is in the structure of the data matrix. In the con-
text of linear time-invariant dynamic systems, the data matrix has structure, typically Hankel or Toeplitz, and the
approximating matrix is searched in the class of matrices with the same structure. Such structured low-rank approx-
imation problems are in general harder to solve than their unstructured counterparts. In this talk, we list applications
of the structured low-rank approximation problem in system theory and signal processing, outline numerical solution
methods, and show links to other problems.
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4.16 Robust regression andℓ1 approximations for Toeplitz problems

Nicola Mastronardi , Istituto per le Applicazioni del Calcolo “M. Picone”, Consiglio Nazionale delle Ricerche, Bari,
Italy, n.mastronardi@ba.iac.cnr.it
Dianne P. O’Leary, Department of Computer Science and Institute for Advanced Computer Studies, University of
Maryland, College Park, Maryland, USA,oleary@cs.umd.edu.

Consider the approximation problem
Ax≈ b

whereA∈ IRm×n andb∈ IRm are given andx∈ IRn is to be determined. We define the residual

r = b−Ax.

The usual approach to the problem is least squares, in which we minimize the 2-norm of the residual over all
choices ofx. This produces the minimum variance unbiased estimator of the solution when theerrors in the observation
b are independent and normally distributed with mean 0 and constant variance.

It is well known, however, that the least squares solution is not robustif outliers occur, i.e., if some of the compo-
nents ofb are contaminated by large error. In this case, alternate approaches have been proposed which judge the size
of the residual in a way that is less sensitive to these components. These include the Huber M-function, the Talwar
function, the logistic function, the Fair function, and theℓ1 norm [2]. In this work we consider how the solution to
these problems can be computed efficiently, in particular when the matrixA has small displacement rank [1]. Matrices
with small displacement rank include matrices that are Toeplitz, block-Toeplitz,block-Toeplitz with Toeplitz blocks
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(BTTB), Toeplitz plus Hankel, and a variety of other forms. For exposition, we will focus on Toeplitz matrices, but
the ideas apply to all matrices with small displacement rank. We also show how to compute the solution efficiently
when we include a regularization term in case the matrixA is ill-conditioned or rank-deficient.
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4.17 A structured total least squares algorithm for approximate greatest common
divisors of multivariate polynomials

Erich Kaltofen 1, Zhengfeng Yang2 and Lihong Zhi2,
1Dept. of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139-4307, USA and
Dept. of Mathematics, North Carolina State University, Raleigh, North Carolina 27695-8205, USA,
2Key Laboratory of Mathematics Mechanization, Academy of Mathematical andSystem Sciences, Beijing 100080,
China,
kaltofen@math.{mit, ncsu}.edu, {zyang, lzhi}@mmrc.iss.ac.cn

The approximate GCD problem has as inputs polynomialsf1, . . . , fs in the variablesy1, . . . ,yr with real or complex
coefficients. Letdi = tdeg( fi) be the total degree offi andk≤ di for all i with 1≤ i ≤ s. The outputs are polynomials
g and f ∗1 , . . . , f ∗s with real or complex coefficients such that tdeg(g) ≥ k and tdeg( f̃i) ≤ di for f̃i = g f∗i , with 1≤ i ≤ s,
and such that‖△ f1‖+ · · ·+ ‖△ fs‖ is minimized, where△ fi = f̃i − fi for 1≤ i ≤ s. Here f̃i is the approximation to
the input polynomials and△ fi is the applied change. We use Euclidean norm on the coefficient vector ofmultivariate
polynomials.

Using a linear algebra formulation, we can apply a structure-preserving total least squares approach to our ap-
proximate GCD problem [2]. It has been proved that tdeg(gcd( f1, . . . , fs)) ≥ k if and only if Sk( f1, . . . , fs) has rank
deficiency at least one. Here the matrixSk( f1, . . . , fs) is essentially a multi-polynomial generalized Sylvester matrix.
The row and column dimensions ofSk are∑s

i=2

(d1+di−k+r
r

)
and∑s

i=1

(di−k+r
r

)
respectively. LetSk(ζ ) = [A1(ζ ) | b(ζ ) |

A2(ζ )] and letA(ζ ) = [A1(ζ ) | A2(ζ )]. The matricesSk( f1, . . . , fs) andA and the vectorb are parameterized via the
vectorζ , which contains the coefficients off1, . . . , fs. The dimension ofζ is ν which is equal to∑s

i=1

(di+r
r

)
. We wish

to solve the two structure-preserving total least norm problems

min
z∈IRν

‖z‖ or min
z∈Cν

‖z‖ with A(c+z)x = b(c+z) for some vectorx, (4.15)

wherec is fixed to the initial coefficient vector. We choose the column correspondingto the absolutely largest com-
ponent in the first singular vector ofSk [1].

We extend the structured total least squares (STLS) method in [3] to solve the minimization problems (4.15). If
the optimization problem is over the complex numbers, real and complex parts need to be separated first. Suppose
z = zR+ izI , x = xR+ ixI andλ = λ R+ iλ I . The problem (4.15) can be transformed into unconstrained optimization
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by the Lagrangian:

L(z,x,λ ) = 1
2 zHz−λ Tr

R (b(cR+zR)−A(cR+zR)xR+A(cI +zI )xI )

−λ Tr
I (b(cI +zI )−A(cR+zR)xI −A(cI +zI )xR)

= 1
2 zHz+λ Tr

R rR(z,x)+λ Tr
I r I (z,x).

Before we apply the Newton method, two Sylvester-structured matricesH andY need to be constructed, such that
H(x)z = Sk(z)x andY(x)z = A(z)x. Applying the Newton method on the LagrangianL yields:

[
W JTr

J 0

]




△zR

△zI

△xR

△xI

△λR

△λI




= −




g+JTr

[
λ R

λ I

]

rR(z,x)
r I (z,x)


 , whereg = W




zR

zI

xR

xI


 (4.16)

and where

J =

[
H(xR) −Y(xI ) A(cR+zR) −A(cI +zI )
Y(xI ) H(xR) A(cI +zI ) A(cR+zR)

]
,

W =

[
It1×t1 0t1×t2
0t2×t1 0t2×t2

]
, t1 = 2ν , t2 = −2+2

s

∑
i=1

(di−k+r
r

)
.

We compute the solution of (4.16), and updatez = z+△z,x = x +△x,λ = λ +△λ until ‖△z‖2 ≤ tol, for a given
tolerance.

We have implemented the above method in Maple and compared it with the STLN-based algorithm in [2]. Both
algorithms can be applied to solve the approximate GCD problem and achieve globally optimal backward errors.
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4.18 Structured matrix methods for the computation of a rank reduced Sylvester
matrix

Joab R. Winkler, John D. Allan, Department of Computer Science, The University of Sheffield, United Kingdom
j.winkler@dcs.shef.ac.uk, j.allan@dcs.shef.ac.uk

The Sylvester resultant matrixS(p,q) is a structured matrix that can be used to determine if two polynomials
p = p(y) andq = q(y) are, or are not, coprime, and if they are not coprime, it allows their greatest common divisor
(GCD) to be computed. In particular, the rank loss ofS(p,q) is equal to the degree of the GCD ofp(y) andq(y), and
the GCD can be obtained by reducingS(p,q) to row echelon form.

The computation of the GCD of two polynomials arises in many applications, including computer graphics, control
theory and geometric modelling. Experimental errors imply that the data consistsof noisy realisations of the exact
polynomialsp(y) andq(y), and thus even ifp(y) andq(y) have a non-constant GCD, their noisy realisations,f (y)
andg(y) respectively, are coprime. It is therefore only possible to compute anapproximate GCD, that is, a GCD of
the polynomialsf̃ (y) and g̃(y) that are obtained by small perturbations off (y) andg(y). Different perturbations of
f (y) andg(y) yield different approximate GCDs, all of which are legitimate if the magnitude of these perturbations
is smaller than the noise in the coefficients. It follows thatf̃ (y) and g̃(y) have a non-constant GCD, and thus the
Sylvester resultant matrixS( f̃ , g̃) is a low rank approximation of the Sylvester matrixS( f ,g).

In this paper, the method of structured total least norm is used to compute the rank reduced Sylvester resultant
matrixS( f̃ , g̃), given inexact polynomialsf (y) andg(y) [3, 4]. Although this problem has been considered previously
[1, 2], it is shown that there exist several issues that have not been addressed, and that these issues have a considerable
effect on the degree of the computed approximate GCD.

Let the inexact polynomialsf (y) andg(y) be given by

f (y) =
m

∑
i=0

aiy
m−i and g(y) =

n

∑
i=0

biy
n−i , am,bn 6= 0,

and letzi be the perturbation of the coefficientai of f (y), andzm+1+i be the perturbation of the coefficientbi of g(y),
that are required to perturbS( f ,g) into S( f̃ , g̃), which is a structured low rank approximation ofS( f ,g). It is therefore
required to minimise‖z‖2, where

z=
[

z0 · · · zm zm+1 · · · zm+n+1
]
,

subject to the constraint thatS( f̃ , g̃) = S( f ,g)+ B(z), where the error matrixB(z) has the same structure asS( f ,g),
andS( f̃ , g̃) is a Sylvester resultant matrix of lower rank thanS( f ,g).

A sequence of matricesAk and a sequence of vectorsck, k = 1, . . . ,min(m,n), are formed from the Sylvester
matrix S( f ,g) of the inexact polynomialsf (y) andg(y), and a sequence of matricesEk and a sequence of vectorshk,
k = 1, . . . ,min(m,n), are formed from the error matrixB(z). It is shown in [1] that the computation ofS( f̃ , g̃) requires
the solution of the least squares equality (LSE) problem,

min
r̃=0;z,x

∥∥∥∥
r̃
z

∥∥∥∥
2

, r̃ = r̃(z,x) = (ck +hk)− (Ak +Ek)x, hk = hk(z), Ek = Ek(z),
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for several values ofk, until an acceptable solution is obtained. This optimisation yields the corrected polynomials
f̃ (y) andg̃(y) that have a non-constant GCD, and this enables the Sylvester matrixS( f̃ , g̃) to be constructed.

The GCD of f (y) and g(y) is equal (up to a scalar multiplier) to the GCD off (y) and αg(y), whereα is an
arbitrary constant, and it will be shown thatα has a significant effect on the computed results. In particular, it will be
shown that an incorrect value ofα leads to unsatisfactory numerical answers, and methods for the determination of
its optimal value will be considered. It will also be shown that a termination criterion of the optimisation algorithm
that is based on a small normalised residual may lead to incorrect results, and that it is also necessary to monitor
the singular values ofS( f̃ , g̃) in order to achieve good results. Several non-trivial examples will be used to illustrate
the importance ofα , and the effectiveness of a termination criterion that is based on the normalised residual and the
singular values ofS( f̃ , g̃).

The dependence of the computed solution on the value ofα has implications for the method that is used for the
solution of the LSE problem. In particular, this problem is usually solved by thepenalty method (method of weights),
which requires that the value of the weight be set, but its value is defined heuristically, that is, it is independent of the
data (the coefficients of the polynomials). As noted above, the value of the parameterα is crucial to the success or
failure of the computed solution, and thus the presence of a parameter that isdefined heuristically is not satisfactory.
TheQRdecomposition, which does not suffer from this disadvantage, is therefore used to solve the problem described
in this abstract.
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4.19 Errors-in-variables methods in system identification

Torsten Söderström, Department of Information Technology, Uppsala University,ts@it.uu.se

The lecture gives a survey of errors-in-variables methods in system identification. Background and motivation are
given, and examples illustrate why the identification problem can be difficult. Under general weak assumptions, the
systems are not identifiable, but can be parameterized using one degree of freedom.
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Examples where identifiability is achieved under additional assumptions are also provided. Such examples include
modeling the noise-free input and the measurement noises as ARMA processes. Another possibility is to use multiple
experiments, where some conditions on the different experiments have to beimposed.

It will be described how an Cramer-Rao lower bound for the parameter estimates can be computed, and how
different estimators may be classified.

A number of approaches for parameter estimation of errors-in-variablesmodels are presented. The underlying
assumptions and principles for each approach are highlighted. Approaches covered include the instrumental variable
estimator (based on Yule-Walker type of equations, or more sophisticated versions); various bias-compensating meth-
ods, where the linear least squares normal equations are complemented witha few more equations to handle the noise
contributions; the so called Frisch scheme, applied for identifying a dynamical system; total least squares approaches;
prediction error and maximum likelihood methods; and methods designed for using periodic data.

The lecture is primarily based on [1].
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4.20 Some issues on errors-in-variables identification

Roberto Guidorzi, Roberto Diversi and Umberto Soverini, Department of Electronics, Computer Science and
Systems, University of Bologna{rguidorzi,rdiversi,usoverini}@deis.unibo.it

Topics of the paper.

The EIV context The Errors-in-Variables context is a challenging environment well known from many years that
has seen an increasing amount of research and, consequently, of new results, only in relatively recent times. One of
the appealing features of EIV models consists in their intrinsic capability of describing real processes and in relying
only on limited sets ofa–priori assumptions [1, 2]. These features suggest the use of EIV models in all applications
like, for instance, diagnosis, where the interest is focused on a realistic description of a process more than on other
features like prediction.

The Frisch scheme The scheme proposed by the Nobel prize Ragnar Frisch in 1934 [3] is aninteresting compro-
mise between the great generality of the EIV environment and the possibility ofreal applications. Moreover, the Frisch
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scheme encompasses some other important schemes like Least Squares andthe Eigenvector Method and plays, conse-
quently, a role of paramount importance also from a conceptual point of view. The compatibility of the Frisch scheme
with a whole family of solutions has diverted the attention towards simpler schemesleading to single solutions.

Loci of solutions and their properties in the algebraic caseAny analysis of the Frisch scheme cannot ignore the
existence of two separate loci of solutions, one in the parameter space andthe other in the space of the variances of
the noise affecting the considered variables and, even more important, the maps between these loci. Some fundamental
results [4, 5] describe these maps as well as the shape of the loci in the parameter space under specific conditions (the
inverse of the covariance matrix of the noisy data must be Frobenius–like) [6]. Unfortunately the locus of solutions in
the parameter space can be easily defined only when the data are compatible with a single linear relation; in all other
cases the reference to the parameter space does not lead to significant results. The investigation of the properties of
the locus of solutions in the noise space has offered the key for a deeperanalysis that shows how this locus (a convex
hypersurface lying in the first orthant), differently from what happens in the parameter space, does not degenerate in
any case and enjoys some other important properties [7, 8].

The maximum corank problemOne of the problems considered of great importance in the econometric field consists
in determining the maximal number of linear relations compatible with a given set of noisy data. The importance
attributed to this problem is due to the fact that econometricians consider the solution of this problem as linked to the
extraction of the whole information contained in the data [9]. The solution of thisproblem in the context of the Frisch
scheme has been possible only making reference to the properties of the locus of solutions in the noise space [10];
other approaches have led to determine an upper bound to this number [11].

Relations between algebraic and dynamic contextsWhen the data are generated by a dynamic system and the Frisch
context is used for its identification, it is necessary to consider the properties of the loci of solutions under the con-
straints imposed by the shift properties of dynamic systems [12]. It can a bitsurprising to discover that, in this respect,
the dynamic case can be seen as a subcase of the algebraic one and that the previously mentioned shift properties
lead (in general) to a unique solution [13, 14, 15]. It can also be surprising to show how this solution is linked to the
solution of the maximal corank problem in the algebraic case.

EIV schemes and real data All previous considerations refer to an exact fullfillment of the assumptionsbehind
the Frisch scheme (noise whiteness etc.) that could be satisfied, at best, only in asymptotic conditions. In all practical
cases this cannot be achieved not even asymptotically because of a wholeseries of violations due to non linearity, non
stationarity etc. The development of Frisch identification procedures requires thus the introduction of suitable criteria
leading to the selection of a single model [16, 17, 18].

Bias Eliminated Least Squares and Instrumental Variable methodsThe Frisch scheme in the identification of dy-
namic processes enjoys some peculiarities like the congruence between the model and the estimated noise variances
but does not constitute the only practical way for solving this problem. Another appealing method is based on the
elimination of the bias that would be present by applying least squares. BELS methods constitute a large family of
fast algorithms that, even if affected by convergence problems, can give good results [19, 20, 21]. The very general
applicability context of IV methods allows also their use in the solution of EIV identification problems [22, 23, 24].
Despite their simple implementation and stimulating asymptotic properties these methods are affected by large esti-
mation covariance with limited sets of data [25, 26].

Maximum Likelihood approachesWhen the ratio of the noise variances isa–priori known or when the input can
be described by means of an ARMA process, it is possible, when the noisedistribution is known, to apply a ML
approach [27, 28, 29]. These approaches lead, in previous contexts, to the best achievable accuracy but can be affected
by problems of convergence to local minima.
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4.21 Model-based control in the errors-in-variables framework

Jens G. Linden, Benoit Vinsonneau, Keith J. Burnham
Control Theory and Applications Centre, Coventry University, UK,lindenj@coventry.ac.uk

Errors-in-variables (EIV) modelling techniques have received significant interest in recent years and their per-
formance improvement, with respect to standard approaches, has been illustrated for certain cases [7]. In contrast,
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however, comparably little work has been done in order to investigate the potential benefits of applying EIV tech-
niques for the purpose of control. To address this deficiency, the aim here is to combine EIV filtering with existing
control techniques in order to investigate the potential for improved closed-loop performance in comparison to a con-
ventional approach. As a first step towards realising such an improvement on an practical application, a simulation
study, which illustrates benefits of model-based control in the EIV framework, is presented.

In order to cope with the properties of closed-loop control systems, the conventional EIV setup (see [5] for in-
stance) is modified accordingly: the additive noise on the inputs is then considered to model ‘unobserved inputs’ or
uncertainties with respect to the true inputs of the system (e.g. actuator modelmismatch) rather than measurement er-
rors. This leads to a setup which is considered to be applicable to a wide range of industrial processes, whilst opening
up opportunities to adopt a behavioural model structure [4].

A single-input single-output discrete-time nonlinear system, exhibiting both, bilinear terms as well as a hammer-
stein nonlinearity is simulated. An EIV-extended Kalman filter (EIV-EKF) [6],which is an extension of the EIV-
Kalman filter (EIV-KF), developed in [2, 3], is applied in order to filter inputand output noise components from the
closed-loop system. In contrast to the EIV-KF, the EIF-EKF is able to dealwith linear time-varying (LTV) systems
and/or model mismatch, based on a linear default parameter set, the noisy measurements and the covariance matrix.
The nonlinear system is to be controlled using a model-based controller of theincremental minimum variance type [1],
which balances between the tracking of the reference signal and a smoothcontrol action. The controller is based on an
identified LTV model of the nonlinear system, which is evaluated by a separateadaptive online estimation algorithm.
Moreover, due to the nature of thek-step ahead prediction scheme, the controller utilises the available/measured input
and output signals. The estimation and control performance are assessed with and without the usage of the EIV-EKF.
Preliminary results are encouraging, indicating improvement if the filtered signals are utilised. A Monte Carlo sim-
ulation is employed to show the consistency of the approach, hence demonstrating the benefits of EIV techniques in
model based control.
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4.22 Frequency domain maximum likelihood estimation of linear dynamic
errors-in-variables models

R. Pintelon, and J. Schoukens, Vrije Universiteit Brussel, dept. ELEC, Pleinlaan 2, 1050 Brussels, Belgium
E-mail:Rik.Pintelon@vub.ac.be

This paper studies the linear dynamic errors-in-variables problem in the frequency domain. First the identifiability
is shown under relaxed conditions. Next a frequency domain Gaussian maximum likelihood (ML) estimator is con-
structed that can handle discrete-time as well as continuous-time models on (a)part(s) of the unit circle or imaginary
axis. The ML estimates are calculated via a computational simple and numerical stable Newton-Gauss minimization
scheme. Finally the Cramr-Rao lower bound is derived.

Linear dynamic errors-in-variables (EIV) modelling is important in those applications where one is looking after
a better understanding of the underlying input-output relation of a process rather than making an output prediction
from noisy observations. One can distinguish between two cases: either the excitation of the process can freely be
chosen, or one has to live with the operational (natural) perturbations. If the excitation can freely be chosen then it is
strongly recommended to use periodic excitation signals because it simplifies significantly the identification problem:
(i) nonparametric estimates of the disturbing noise (co-)variances are obtained in a preprocessing step, and (ii) since
mutually correlated, coloured input/output errors are allowed, identificationin feedback is just a special case of the
general framework (see Pintelon and Schoukens, 2001). In the second case the excitation is often random and parts of
it may even be unmeasurable. This paper handles the second case, assuming that the excitation is a stochastic process
with rational power spectrum. As will be shown in the sequel of the paper thesecond case is much more complicated
than the first: besides the plant model one should also identify simultaneously the signal, and the input/output noise
models.

Identifiability is a first key issue in EIV modelling: under which conditions on theexcitation, the input/ output
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errors, and the process is the EIV problem uniquely solvable? This question has been studied in detail in econometrics
and an extensive literature is available (see Sderstrm, 2006 for an exhaustive overview). For example, Anderson and
Deistler (1984) handles the identifiability of scalar EIV problems with colouredinput/output errors, while Nowak
(1993) covers the multivariable case. A second key issue is the numericalcalculation of the EIV estimates. Several
algorithms have been proposed, each of them having their specific advantages and disadvantages (see Sderstrm, 2006
for an exhaustive overview). For example, spectral factorization is thecomputational bottle neck of the statistically
efficient time domain maximum likelihood method (Sderstrm and Stoica, 1989), whilethe computational simple
instrumental variable methods have low statistical accuracy (Sderstrm, 2006). Except for Mahata and Garnier (2005),
all methods handle the discrete-time case and no algorithms for direct continuous-time EIV modelling are available.
In Mahata and Garnier (2005) a method is presented for identifying continuous-time models from non-uniformly
sampled data in the presence of white input/output errors.

The contributions of this paper are:

1. the identifiability of general linear dynamic EIV models is shown under relaxed conditions,

2. a (computational simple) frequency domain Gaussian maximum likelihood (ML)estimator is developed for the
general case of coloured and mutually independent input/output errors,

3. the ML estimator can handle discrete-time as well as continuous-time modelling on(a) part(s) of the unit circle
or imaginary axis,

4. a numerical stable Newton-Gauss minimization scheme of the ML cost functionis derived,

5. easy calculation of the Cramr-Rao lower bound.
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[18] Söderstr̈om, T. (2006). Errors-in-variables methods in system identification, 14th IFAC Symposium on System
Identification (Sysid 06), New Castle (Australia), March 29-31.
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4.23 Identifiability analysis for errors-in-variables problems

J. Schoukensand R. Pintelon, Vrije Universiteit Brussel

In this paper, an analysis is made of the identifiability problem of the errors-in-variables identification as a function
of the added prior information. The analysis is valid for continuous or discrete time systems. The measured input and
output are disturbed by zero mean Gaussian distributed noise, that are in general colored and mutually correlated.

In this paper we study the identifiability using only 2nd order moments of the inputand output. The analysis is
done in the frequency domain, but the results are also valid for the time domain.In the frequency domain, it is known
that the covariance matrix is asymptotically block diagonal, with one block per frequency. For Gaussian signals and
noise the covariance matrices present all information that can be extractedfrom the data.

Without making any prior assumption on the signals, plant model, or the disturbing noise, the EIV problem is
not identifiable. It will be shown that by adding additional assumptions like: white noise/parametric plant or noise
model/no mutual correlation . . . , identifiability can eventually be obtained. The basic idea is to analyse the number
of independent constraints that can be extracted from the covariance matrices as a function of the added constraints,
and these are compared to the number of unknown parameters. This is donefor different combinations: parametric/
nonparametric plant/noise model; white/colored noise; mutual correlated/uncorrelated input/output noise.
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4.24 Optimal Parameter Estimation from Shift-Invariant Subspaces

Richard J. Vaccaro, Department of Electrical Engineering, University of Rhode Island, Kingston, RI, USA,
vaccaro@ele.uri.edu

Consider the following parameter estimation problems: (1) estimating frequencies, damping factors, amplitudes,
and phases from data consisting of a sum of real or complex exponentiallydamped sinusoids; (2) estimating state-
space models from matrix sequences (MIMO impulse responses); (3) estimating directions of arrival using a uniform
linear array of sensors. All of these problems share the following two properties: (1) a certain matrix formed from
noise-free data has low rank, and (2) at least one subspace of this matrix is shift invariant. When processing noisy data
by so-called “subspace-based” methods, the first property is exploitedby using a rank-revealing factorization such
as the singular value decomposition (SVD) to get a subspace estimate. Because of noise, the second property is not
satisfied, and the equation expressing shift invariance has no exact solution. The usual approach is to solve the shift
equation in a least squares (LS) or total least squares (TLS) sense. For the three problems listed above, the LS and
TLS solutions are not statistically optimal, and the variances of estimates obtainedfrom these solutions do not achieve
the CR bound.

In this paper we use a first-order subspace perturbation expansion to obtain an expression for the noisy subspace
projection matrix estimates obtained from an SVD of the data matrix, in terms of the noise-free subspace projection
matrix plus an additive perturbation term. This expression is used to calculate the covariance matrix of the additive
perturbation analytically, and the result is used to solve a single weighted least squares problem for the underlying
shift-invariant subspace. We call this procedure Optimal Subspace Estimation (OSE). Signal parameters are then
obtained by solving the shift eqation using the OSE subspace estimate. The variances of the estimated parameters
achieve the CR lower bounds for the problem over a range of signal-to-noise ratios.

This paper is related to previous work that has derived statistically optimal subspace methods for DOA estimation
problem (problem 3 mentioned above). [1, 2] derive an optimally weighted ESPRIT algorithm, which improves the
performance of the original, least-squares ESPRIT algorithm, so that the variances of the estimates reach the CR
bound. Another subspace-based approach for estimating DOAs, derived by Viberg and Ottersten, is weighted subspace
fitting [3]. Yet another approach for optimal DOA estimation is the MODE algorithm of Stoica and Sharman [4]. The
common ingredient in all of the optimal algorithms cited here is a description of howthe left singular vectors of a
data matrix (or equivalently, the eigenvectors of a covariance matrix), areperturbed by additive noise. All of these
algorithms were derived using an asymptotic (data length goes to infinity) first-order expansion for the perturbed
singular vectors. This expansion appears in [5] based on results fromBrillinger [6]. The expansion used in these papers
is valid when the noise in each column of the data matrix be statistically independent.This isnot the case in Problems 1
and 2 mentioned above. There is related work [7], which considers noise-free matrices that are not necessarily rank
deficient and derives first and second-order perturbation formulas. For the rank deficient case considered here, such
formulas have been derived in [8]. The biggest difference between these approaches is that [7] derives a perturbation
expansion for individual basis vectors, while the SPE [8] expands an entire subspace.

The advantage of the non-iterative OSE algorithm, based on the subspaceperturbation expansion (SPE), is that it
can be used for all three problems mentioned above. The application of the SPE to the DOA estimation problem has
been done in [9]. In this paper, we show how the SPE is used to derive statistically optimal algorithms for problems 1
and 2. In addition, we use a different approach for solving the resultingweighted least squares problems that has
advantages over the approach used in [9].
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4.25 On the role of constraints in system identification

Arie Yeredor , School of Electrical Engineering, Tel-Aviv University,arie@eng.tau.ac.il

The general framework System identification is concerned with the estimation of parameters characterizing an un-
known system. The estimation is usually based on observations of the system’s(possibly noisy) input(s) and output(s).
In the so-called “blind” system identification scenario, the estimation is based on the observed output(s) only, aided
by some general knowledge about statistical properties of the input(s), rather than by actual observations thereof.

Quite commonly, the discussion is limited to discrete-time systems, assumed to be linear and time-invariant (LTI),
stable and causal. As such, their input-output relation can always1 be described as

y[t] =
∞

∑
ℓ=0

h[ℓ]u[t − ℓ] ∀t ∈ Z, (4.17)

whereu[t] is the input,y[t] is the output andh[ℓ] is the system’s impulse response. In the Multiple-Inputs, Multiple-
Outputs (MIMO) case, the inputs and outputs may assume a vector form, but the basic form of the convolutive relation
remains the same:

y[t] =
∞

∑
ℓ=0

H[ℓ]u[t − ℓ] ∀t ∈ Z, (4.18)

whereu[t] andy[t] denote (respectively)M-dimensional andL-dimensional input and output vectors, andH[ℓ] denote
theL×M impulse response matrices.

Although such systems are fully described by their (generally infinite) impulseresponse, some prior knowledge
pertaining to their structure often allows to assume that they can also be described by a reduced (finite) set of pa-
rameters. For example, the Single-Input Single-Output (SISO) model (4.17) is often also modeled by a difference
equation,

1barring the usually uninteresting possibility of an additive constant.
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a0y[t] = −
Np

∑
k=1

aky[t −k]+
Nz

∑
k=1

bku[t −k], (4.19)

whereNp andNz are (respectively) the number of poles and zeros in this model andθ △
= [a0 a1 a2 · · · aNp b0 b1 · · · bNz]

T

is the finite vector of unknown system’s parameters.

Likewise, the MIMO model (4.18) is often described using a State-Space model,

x[t +1] = Ax[t]+Bu[t] (4.20)

y[t] = Cx[t]+Du[t],

wherex[t] is an “internal” (unobserved)N-dimensional state-vector, andA, B, C andD are matrices of the appropriate
dimensions, which together comprise the finite set of unknown model parameters θ .

Similarly, description of the MIMO system with a (matrix) difference equation model, or of the SISO system with
a state-space model are also possible. We shall regard the SISO case asa particular case of the MIMO case, except
where the distinction is necessary.

Identification via constrained optimization Assume that an observation interval of lengthT is available. Typical
system identification approaches seek to minimize (or to maximize) some criterion, which generally involves all of

the available output/input observationsY
△
= [y[1] y[2] · · · y[T]] andU

△
= [u[1] u[2] · · · u[T]] (which is absent in the

blind scenario), the unknown system parametersθ , and possibly some additional “nuisance parameters”φ , often
representing some underlying, unobserved signals. Optimization of the criterion is sought with respect toθ andφ ,
yielding in turn the estimates of these parameters:

min
θ ,φ

C(Y,U ;θ ,φ) ⇒ θ̂ , φ̂ . (4.21)

Often, however, some constraints on eitherθ , φ or both are introduced into the optimization (4.21). The motiva-
tion for incorporating these constraints can come from a surprisingly largevariety of perspectives on the problem.
The main goal of this paper is to review the different approaches that leadto different types of constraints, each
with the associated motivations, and to outline the resulting optimization and estimation approaches, providing some
comparative study of the results.

Following are a few examples of useful constraints, with brief description of the motivation and frameworks by
which they are applied.

• Constraints aimed at avoiding a trivial minimizer of the criterion. This is usually thebasic motivation for adding
constraints, where the associated optimization problem cannot yield a useful solution without excluding trivial
solutions from the feasibility set.

• Constraints aimed at incorporating prior knowledge about the system, suchas the locations of some of its poles
or zeros (in a fashion similar to [4], [2]), so as to improve the resulting estimation accuracy by effectively
reducing the number of degrees of freedom.

• Constraints aimed at imposing certain “natural” structures on some of the signals involves. This type of con-
straints usually involves the nuisance parametersφ , rather than the parameters of interestθ . For example, in the
Structured Total Least Squares (STLS, e.g., [8]),φ can consist of the estimated noiseless signal matrix, whereas
the constraints confine the elements of that matrix to obey a certain structure (Hankel, Toeplitz, etc.).

• Constraints aimed at mitigating the bias induced by additive output noise (e.g., [9], [7], [16]) or by the use of
an inconsistent criterion [18].

• Constraints aimed at guaranteeing the stability of the resulting estimated system [5], [9].
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Most of these constraints would take the form of “equality constraints”, namely f (θ ,φ) = 0 (where f (·) is an
associated vector function), but some may also involve forms of inequalities.The basic approaches for optimizing the
criteria under the associated types of constraints (Lagrange multipliers, Method of multipliers, Successive projections,
Linear programming) will also be reviewed and graphically illustrated, whereapplicable.
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4.26 Principal component, independent component and parallel factor analysis

Lieven De Lathauwer, Lab. ETIS, CNRS/ENSEA/UCP, Cergy-Pontoise, France,
Lieven.DeLathauwer@esat.kuleuven.be

This talk is an introduction to Independent Component Analysis (ICA) and Parallel Factor Analysis (PARAFAC),
the way they are related and their links with Principal Component Analysis (PCA). PCA is now a standard technique
for the analysis of two-way multivariate data, i.e., data available in matrix format. However, principal components
are subject to rotational invariance. By imposing statistical independence rather than uncorrelatedness, the solution
becomes unique. This is ICA. On the other hand, PARAFAC is a technique for multiway data analysis, based on
the decomposition of the data tensor in rank-1 terms. PARAFAC is unique under mild conditions on the factors.
ICA decomposes a higher-order cumulant tensor in rank-1 terms. Hence, ICA uniqueness stems from PARAFAC
uniqueness. PCA is often used as preprocessing, leading to PARAFAC with orthogonality constraints.

4.27 Applications of TLS and related methods in the environmental sciences

Jośe A. Ramos, Department of Electrical and Computer Engineering, Indiana UniversityPurdue University - Indi-
anapolis,jaramos@iupui.edu

Rainfall-Runoff and Signal Separation Problems:Converting rainfall into runoff is a highly nonlinear process
due to the soil-water interaction that starts when rainfall reaches the ground. Additional variables to consider are
evaporation, transpiration, losses due to vegetation and land use, and thedifferent flow processes that take place in
a watershed. For instance, baseflow is a much slower process than groundwater and surface flow. Given records of
rainfall and runoff data, one can build an accurate state-space model such as

xk+1 = Axk +Buk +wk

yk = Cxk +Duk +vk,

where at timek, uk, yk, andxk are, respectively, the rainfall, runoff, and the state of the system. Suchmodels have been
used in real-time forecasting scenarios for flood control purposes [4]. However, the above model does not take into
account the nonlinearities of the rainfall-runoff process. Most lumped rainfall-runoff models separate the baseflow
and groundwater components from the measured runoff hydrograph inan attempt to model these as linear hydro-
logic reservoir units. Similarly, rainfall losses due to infiltration as well as other abstractions are separated from the
measured rainfall hyetograph, which are then used as inputs to the linear hydrologic reservoir units. This data pre-
processing is in essence a nonlinear signal separation problem where rainfall is separated into infiltration and excess
rainfall, and the measured hydrograph into surface flow and groundwater flow as shown in Figure 1. These are then
used to build separate linear models such as

xg
k+1 = Agxg

k +Bgug
k

yg
k = Cgxg

k +Dgug
k,
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xs
k+1 = Asx

s
k +Bsu

s
k

ys
k = Csx

s
k +Dsu

s
k,

where

uk = ug
k +us

k
yk = yg

k +ys
k

,
N−1

∑
k=0

uk =
N−1

∑
k=0

yk.

In the separation process, a TLS approach is used since the infiltration process is an exponential signal. Thus, the
classical NMR fitting techniques [2, 3, 5] are used.

Physical Parameter Extraction Problems:When modeling physical processes such as the rainfall-runoff inter-
action, where water flows into different compartments, one is faced with a physical parameter extraction problem.
This is quite evident in black-box system identification where an unknown similarity transformation matrix destroys
the physical meaning of the problem. Here we show that such similarity trsnsformation can be recovered as a post
identification TLS problem. That is, suppose the identified state-space system matrices are{Ā, B̄,C̄, D̄}, while the
physical parameter matrices are those of a system with three compartments as shown in Figure 2. The the parameter
matrices for both the physical and identified models are shown in Table 1.

The two systems are related by a similarity transformationT, i.e.,TĀT−1 = A, TB̄= B, andC̄T−1 =C. As one can
see, this system of equations is nonlinear, but if we rewrite these asTĀ = AT, TB̄ = B, andC̄ = CT, then we convert
the problem into a linear one. It turns out that the solution can be framed as an orthogonal complement problem of
the formxTA = 0p×q, wherep andq are problem dependent dimensions,x contains all the elements of theT matrix
plus some of the parameters from theA matrix, andA is a matrix obtained from the identified model parameters, i.e.,
{Ā, B̄,C̄}. We will generalize the above results and show an example of a two-tank reservoir model.

Other Applications and Related Methods:We will also discuss applications of TLS in hyperspectral analysis,
variogram fitting of spatial processes, and Chemometrics applications in the environemental sciences.

Table 1. Physical(unknown) and identified model parameters.

Physical Model Identified Model

A =




−k21 k12 0
k21 −k12−k32 k23

0 k32 −k23−k03


 Āc =




a11 a12 a13

a21 a22a23

a31 a32 a33




B =




1 0
0 0
0 1


 B̄c =




b11 b12

b21 b22

b31 b32




C =

[
1 0 0
0 0 1

]
C̄c =

[
c11 c12 c13

c21 c22 c23

]

D =

[
0 0
0 0

]
D̄c =

[
0 0
0 0

]
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4.28 Recursive total least squares not using SVD

Dan Pachner, Jirka Roubal, Pavel Trnka, Department of Control Engineering , Faculty of Electrical Engineering,
Czech Technical University, Technicka 2, 166 27 Prague 6, Czech Republic,
{pachner, roubalj, trnkap}@control.felk.cvut.cz

Introduction The standard approach to the Total Least Squares TLS problem solutionis the SVD de-composition
algorithm [2]. The SVD solution is well known and reliable numerical tool nicely implemented in Matlab. None-
the-less, for some applications like adaptive control, which may also be based on a TLS model, the SVD matrix
decomposition can be unnecessarily complex. In our contribution, we propose a simplified TLS problem solution
approach, which replaces the SVD by the QR decomposition.

Recursive Total Least Squares in a Rotating System of Co-Ordinates In our contribution, we propose an itera-
tive TLS problem solution. At every iteration stage, an OLS (ordinary least squares) problem is solved. At the next
iteration, the dependant variable is rotated to the direction perpendicular to the last stage model hyper-plane. Whereas
with the ordinary least squares the error distances are measured along adefined direction, the TLS solution minimizes
the squared distances along the direction perpendicular to the model hyper-plane. We propose the iterative scheme
based on that direction update. We will show the sum of squared distancesto be minimized by both OLS and TLS
models are the same only the constraint is different: either the length of the vector of model parameters has to be one
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or the last vector co-ordinate has to be one. There is one interesting consequence of this observation: the two OLS and
TLS optimization problems would yield the same vector of parameters if it would have happened the OLS optimiza-
tion problem would result in a vector of the last co-ordinate equal to one. In this case all model parameters would be
zero except of the last one. In other words, if one calculates the OLS model parameters and the result happens to be
such vector of all zeros except of the last one, there is no need to calculate the TLS model parameters because the
result would have been exactly the same. The reason is the vector of parameters satisfies both constraints at the same
time. Our algorithm is based on this idea. The geometric interpretation of the data rotation is the following one: At
each iteration, the OLS problem supposes a special dependant variable”y as a linear combination of the TLS problem
data ”x such that this linear combination is perpendicular to the model hyper-plane from the previous iteration. It
also supposes the independent variables to be an ortho-normal basis ofthe previous iteration hyper-plane. Thus, the
distance, which has to be measured along the direction perpendicular to the model hyper-plane, is measured along the
direction perpendicular to the last known OLS model hyper-plane. Both OLS problem solution and the rotation matrix
update can be achieved via the QR matrix decomposition. Thus, our TLS problem solution approach replaces the SVD
matrix decomposition with a series of the QR decompositions. We will demonstrate that our iterative algorithm can
easily be generalized to the mixed TLS problems. A proof of convergence will be provided.

Adaptive TLS and State Space Models In our contribution will show this TLS problem solution is convenient
for the adaptive TLS models and the recursive subspace system identification. The reason is the dependant variable
direction update requires only a low number of iterations for slowly varying model parameters. Thus, exactly one
matrix QR decomposition has to be performed instead of the SVD decomposition to track slowly varying TLS model
parameters. We will show this algorithm can easily be combined with the standardforgetting techniques known from
the adaptive control theory [3]. To demonstrate this, we will show how a rotating line which rotates round the clock
like a clockwork hand, can be tracked by the algorithm, see the Figure 1. The clockwork hand position is measured
under noisy conditions and the rotation pivot position is unknown. Next wewill show that our algorithm can be used
with a subspace identification approach related state space model identification recursive algorithm [1] and with an
ARX model structure related multi-step predictor identification.
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4.29 On a recursive state space model identification method

Dan Pachner, Jirka Roubal, Pavel Trnka
Department of Control Engineering, Faculty of Electrical Engineering, Czech
Technical University, Technicka 2, 166 27 Prague 6, Czech Republic,
{pachner, roubalj, trnkap}@control.felk.cvut.cz

Introduction Most of our linear model identification applications were based on the Bayesian paradigm. The Bayesian
statistical approach is based on the subjective belief measure [3]. Thanks to this statistical background, the Bayesian
identification methods can easily combine the experimental data with the prior information about the process model.
This technique proved to be very rewarding in all our applications. In manycases, the experimental data do not bring
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Figure 4.1: The clockwork hand tracked by the adaptive TLS and OLS models.

enough information to build a reasonable process model [5]. In practice,there can be found many prior informa-
tion examples. For instance the process settling time is between 1 and 5 minutes, theprocess DC gain is exactly 1
(for a conveyer) etc. Quite often the low frequency information about theprocess model can be drawn from a first
principles considerations (laws of physics, chemical laws), whereas thehigh frequency behaviour must be identi-
fied experimentally. Because for most processes, the fast transient effects are usually governed by too complicated
theoretical laws.

Since the subspace identification methods have emerged in 1990’s [1] therehas been an obvious gap between
Bayesian approach and the new methods. Whereas the new subspace identification proved to be very robust and
reliable, the Bayesian methods could easily provide the process parameter uncertainty in terms of their conditional
probability density function, and to combine the prior information with the data. theother Bayesian approach advan-
tage has been it naturally provides recursive system identification methods, which are linked to the sufficient statistics
calculations.

Since then, it has been our goal to understand the subspace identificationmethods in view of the Bayesian approach.
We set the goal to find the new method Bayesian interpretation. We hope this willfurnish the subspace identification
methods with the standard Bayesian advantages as mentioned.

State Space Model Identification in the Bayesian Paradigm In our contribution, we will demonstrate how the state
space linear system model parameters can be estimated within the Bayesian paradigm. It will be shown the state space
model is naturally derived if the multi-step prediction conditional probability is considered instead of the one step-
ahead prediction as usual. Thus, the state space model parametersA, B, C, D can be understood as the multistep
prediction probability parameters. In our recursive identification method, we consider the following conditional co-
variance matrix

PF = cov
(
yt+1

t+TF
|ut+1

t+TF

)
, (4.22)

wherey is the process output andu is the process input on the future horizonTF . It will be shown that the covariance
matrix PF eigenstructure is related to the process model order. Defining a matrixN composed row-wise from the co-
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variance matrix eigenvectors related to the non-zero (statistically) eigenvalues, the futurey values are decomposed to
a sum of initial conditionx response and the future controls forced response

Nyt+1
t+TF

= N




CA
CA2

...
CATF


x(t)+N




D
CB D
...

.. .
CATF−1B · · · CB D


ut+1

t+TF
. (4.23)

In our algorithm, we use the equation (4.23) to define process state functionNOx(t), which can picked to be our
model representation of the process state. HereO is the system observability matrix as in (4.23). In our contribution,
it will be shown the conditional probability distribution function related to the covariance matrix in (4.22) has to be
modified to force the model causality. In other words the process outputsy(k) have to be independent on the future
controlsu(k+ j), j > 0. Techniques known from the Bayesian information fusion can be used toforce the process
model causality.

The state representationNOx(t) is calculated using the following conditional probability

p
(

yt+1
t+TF

|ut+1
t+TF

,ut−TP
t ,yt−TP

t

)
, (4.24)

whereTP means the past horizon. Once the state representation is evaluated, the model matricesA, B, C, D are found
to be parameters of the following conditional probabilities.

p(NOx(t)|NOx(t −1),u(t −1)) , p(y(t)|NOx(t),u(t)) . (4.25)

It will be shown all the conditional probability functions evaluations can be performed recursively using a nu-
merically robust orthonormal matrix triangularizations, known from recursive least squares methods. The matrixN
calculation can either be based on the SVD matrix decomposition algorithm, or a modified least squares algorithm [2].

Advanced distributed parameters process control [4] require a low dimensional model that can be provided by our
algorithm. the use of our algorithm will be demonstrated on a glass furnace data. This example involves the prior
information incorporation to the state space model parameters.
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4.30 Comparison of the joint output method and the sample maximum likelihood
method in errors-in-variables identification
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mhong@it.uu.se, ts@it.uu.se, {Johan.Schoukens,Rik.Pintelon}@vub.ac.be

Introduction In errors-in-variables (EIV) identification, both the Joint Output (JO) method [1] and the Sampled
Maximum Likelihood (SML) method [2] are attractive estimators because they can handle general noise conditions
and give high accuracy. In the JO approach, the EIV system is regarded as a multivariable system with a two–
dimensional output vector and three mutually uncorrelated white noise sources. By converting the model into the
innovations form, a maximum likelihood JO(ML) method can be applied to give consistent parameter estimates. The
SML method is a frequency-domain identification approach where the exactcovariance matrices of the disturbing
noise is replaced by the sampled covariance matrices, which are calculated from a small number (M) of indepen-
dent, repeated experiments. Compared to the frequency domain Maximum Likelihood method assuming known noise
variances, the loss in efficiency of SML is(M−2)/(M−3), which is not large even for smallM.

An essential assumption for the JO(ML) method is that the noise free input signal is stationary with rational
spectrum, so that it can be described as an ARMA process. In the JO(ML) method, the input and output noises are
also assumed to be described as ARMA processes with a small set of parameters. The SML method works under
arbitrary true input signals and noise conditions, but with another importantassumption: the noise-free signal is
periodic. In general, both the JO(ML) method and the SML method can give good estimates but work under different
experimental situations. If there is a condition suitable for both approaches, which method can give better estimation
accuracy? It is of interest to investigate the relation between JO(ML) and SML methods.

In this paper, we compare these two methods by simulation under different cases, such as, assorted dynamic
systems with different orders, different input signals, white or coloredinput output noises, varied signal-to-noise
ratios (SNR) etc. Based on these results, more complicated theoretical comparisons might be attempted in the future.

Results and discussion AssumeNM periodic data are available, whereM is the number of periods andN is the
number of data points in each period. Also assume that in each period the noise-free input signal is a realization of a
stationary process.

The JO(ML) method uses all data points and assumes that the input signal is an ARMA process but does not exploit
that the data are periodic. However, the SML method uses the periodic information but disregards that the input signal
is an ARMA process. For comparison, we also give the Cramer-Rao lowerbound based on known input-output noise
variances and the period information but no assumptions on the input signals. See [2].

During the comparisons, the standard deviation (std) of each method are calculated from their theoretical co-
variance matrices of the estimation parameters, which have been proved to bewell meet their relevant Monte-Carlo
simulations. Details on these formulas can be found in [1], [4], [3] and [2].

Firstly, we analyze the effect of different order systems with white input and white output noise. Comparison results
shows that for low order systems, the estimation accuracy of SML and JO(ML) method are quite similar. See Figure
1. While for high order systems, for those regions where the signal-to-noise ratios (SNR) is poor, the std of JO(ML)
method is larger than that of the SML method. The smaller the SNR, the more distinctthis phenomenon becomes.
New comparison results under the same condition are shown except addingthe periodic information to JO(ML) by
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simple averaging the data over the M periods. The difference of JO(ML) and SML estimation results in the low SNR
area has disappeared. According to these results, it seems that using theperiodic information is important for high
dynamic system especially when SNR is low. Furthermore, different input signals have been tried for various systems.
The results show that for high order systems the input signal is more important than for low order systems.
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Figure 4.2: Spectrum of noise free signals and noises (up), and comparison of standard deviation of JO(ML) and SML
(down) for a second order system white measurement noise.

Several examples with colored measurement noises were also tried. They give similar results as for white noise
cases, i.e., if the periodic information has not been considered, the std of the JO(ML) method is similar to that of the
SML method except at the very low SNR regions, where the estimation uncertainty of JO(ML) is larger than that of
SML. This phenomenon is more pronounced for high order dynamic systems.
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4.31 A fast algorithm for solving the Sylvester structured total least squares prob-
lem

Bingyu Li and Lihong Zhi , Key Lab of Mathematics Mechanization, AMSS, Beijing 100080 China,
{liby,lzhi}@mmrc.iss.ac.cn

Given two univariate polynomialsf , g ∈ IR[x] with deg( f ) = m and deg(g) = n. For a positive integerk with
k≤ min(m,n), we wish to find perturbations△ f , △g with deg(△ f ) ≤ m and deg(△g) ≤ n, which solve the following
approximate GCD problem:

min
△ f ,△g

‖△ f‖2
2 +‖△g‖2

2 such that deg(gcd( f +△ f ,g+△g)) ≥ k. (4.26)

SupposeS( f ,g) is the Sylvester matrix off andg, thek-th Sylvester matrixSk is a submatrix ofS obtained by
deleting the lastk−1 rows ofSand the lastk−1 columns of coefficients off andg separately inS. We know that
deg(gcd( f ,g)) ≥ k if and only if dim Nullspace(Sk) ≥ 1 [3]. In [9, 8, 5, 6, 1, 10] structured total least squares(STLS)
algorithms have been applied to solve the approximate GCD problem (4.26). The implementation of STLS which
does not exploit the displacement structure of Sylvester matrix has its complexity of cubic in the degrees of the input
polynomials. In [8, 9], a fast implementation based on Structured Total Least Norm (STLN) [12, 11] for constructing
a Sylvester matrix of given lower rank was proposed. It has a quadraticamount of complexity in the degrees of the
input polynomials. However, due to the large penalty used in STLN, we haveto apply the generalized Schur algorithm
in [4, 2] to operate on an ill-conditioned matrix. In the following, we describe anew fast algorithm which generalizes
the method in [7] to solve the Sylvester structured total least squares problem.

SupposeSk = [bk, Ak], wherebk is the first column ofSk andAk is a matrix consisting of the remaining columns
of Sk. The Sylvester-structure preserving perturbation[hk,Ek] of Sk can be represented by a vectorz∈ IRm+n+2 which
contains the unknown coefficients of polynomials of degreesmandn. We solve the equality-constrained least squares
problem:

min
z,x

‖z‖2, subject tor(z,x) = bk +hk− (Ak +Ek)x = 0. (4.27)

The above minimization problem can be transformed into unconstrained optimization by the Lagrangian:

L(z,x,λ ) = 0.5zTz−λ T(bk +hk−Akx−Ekx). (4.28)

Construct a Sylvester structured matrixXk such that

Xk z = Ekx−hk = [hk,Ek]

[
−1
x

]
. (4.29)

Apply the Newton method on the LagrangianL and yields:

M




△z
△x
△λ


=




It1×t1 0t1×t2 XT
k

0t2×t1 0t2×t2 AT
k +ET

k
Xk Ak +Ek 0s×s






△z
△x
△λ


= −

[
g+JT λ
r(z,x)

]
, (4.30)

wheret1 = m+ n+ 2, t2 = m+ n−2k+ 1,s= m+ n− k+ 1,J = [Xk,Ak + Ek], andg is the gradient of the objective
function in (4.27).

SinceM is not strongly regular [7], a permutation matrixP is considered to transformM as:

M = PMPT =




It1×t1 XT
k 0t1×t2

Xk 0s×s Ak +Ek

0t2×t1 AT
k +ET

k 0t2×t2


 . (4.31)

The Schur complement ofM w.r.t. the blockIt1×t1, is:

M̂ =

[
−XkXT

k Ak +Ek

AT
k +ET

k 0t2×t2

]
. (4.32)
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Theorem 3 M̂ is a strongly regular matrix of displacement rank at most8 with respect to the displacement defined
byM̂−FM̂FT , where

F =

[
Zm+n−k+1

Zm+n−2k+1

]
,

here Zi is a lower shift matrix of order i.

By applying the generalized Schur algorithm with:m+n−k+1 negative steps andm+n−2k+1 positive steps,
we obtain theLDLT factorization ofM̂ stably. Consequently, the solution to (4.30) can be obtained withO((2m+2n−
3k+2)2) flops. We updatez = z+△z, x = x+△x, λ = λ +△λ until ‖△z‖2 ≤ tol, which is a given tolerance.

We have implemented the fast algorithm in Maple and applied it to compute the approximate GCD of univariate
polynomials. The experiments show the efficiency and stability of the new fastalgorithm compared with that of the
STLN based fast algorithm [8, 9].
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4.32 Computational aspects of the geographically weighted regression

Andrzej Ma ćkiewicz and Barbara Maćkiewicz, Institute of Mathematics, Technical University of Poznań, Poland;
mackiewi@sol.put.poznan.pl; Institute of Socio-Economic Geography and Spatial Management, Adam
Mickiewicz University in Poznán, Poland;basic@amu.edu.pl

Geographically Weighted Regression (GWR) is a new and powerful method for the analysis of spatially varying
relationships [2]. At the beginning of such an analysis it is assumed that wehave definedm differentdata pointsin
a given region of the country. Eachi-th data point is uniquely defined by a pair of coordinates(ui ,vi). We give this
location a valueyi of the dependent variabley and valuesxik (1≤ k≤ n−1) of independent variablesxi .

Let us consider aglobal regression modelwritten asyi = β0 + ∑n−1
k=1 βkxik, where the dependent variabley is

regressed over a set of independent variablesxi . Then, the classical regression equation can be written in a matrix
form as an overdetermined (and usually not compatible) system of linear equations

y = Xβ , (4.33)

whereX ∈ R
m×n is not necessarily sparse,y ∈ R

m andβ = (β0, ...,βn−1) is the vector of parameters (constant over
space) to be estimated.GWRextends this traditional regression framework by allowing local rather thanglobal pa-
rameters to be estimated so that thelocal modelfor each individuali-th location (called thei-th regression point) is
rewritten asyi = β0(ui ,vi)+ ∑n−1

k=1 βk(ui ,vi)xik, whereβk(ui ,vi) is the value of a continuous functionβk(u,v) at this
location. So, in this method we want to determine a matrixB = (βk(ui ,vi)) ∈ R

m×n which consists ofm sets of local
parameters. The parameters in eachi-th row of the above matrixB are determined from a weighted, overdetermined
linear system

Wiy = WiXβ , (4.34)

where a matrixWi = diag(wi1,wi2, ...,wik, ...,wim) is anm×m spatial weighting matrix and 1≥ wik > 0 is the weight
given to data pointk in the calibration of the model for regression pointi. The weightwi j is usually calculated from
the formula

wi j = exp

(
−

1
2

(
di j

b

)2
)

,

wheredi j is the distance between regression pointi and data pointj, and the parameterb (calledbandwidth) is chosen
so that weighting matricesWi are well conditioned. Hence, data points closer to the regression point are weighted
more heavily in the local regression than are data points farther away. If two regression points are close to each other,
then the two corresponding weighted systems (4.34) are almost identical andshould have very similar solutions. The
spatial variation of each particular parameter estimate is analyzed graphicallyat the end of the process and compared
with the behavior of the global solution of the system (4.33). In many applications this approach is much better suited
to reality than an ordinary linear regession (related to the system 4.33).

Theoretically the system (4.33) and each of the systems (4.34) can be solved separately as anLSproblem. As these
systems are usually very big, this approach is hardly acceptable from the computational point of view. Moreover, the
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matrices involved are often ill-conditioned and some kind of regularization mustbe performed in order to assure con-
tinuity of each parameter estimate over the region considered. To save the computation time the authors of theGWR
method had recommend (in [2]) a normal equations approach as a method of choice for solving the systems (4.34)
involved. This paper presents an alternative approach, still fast but more stable numerically. The new algorithm uses
(only once) properly chosen Householder [3] postmultiplications in orderto ”tri-orthogonalize” [5] the coefficient
matrix X. It is proved (on the basis of the ImplicitQ Theorem and Krylov subspace methods) that these transforma-
tions provide an elegant way of extracting a well-conditionedgeneral coresubproblem both for the problem (4.33),
and the correlated weighted problems (4.34). Next, a modified version of theGMRESalgorithm is used to solve all of
the weighted problems in the special ”dendrite like” order (determined by the spatial distribution of the data points).
As the special and effective preconditioning technique is implemented, and the solution of one system is used to start
the next iteration process, the whole matrixB is determined quickly and fulfils the desired expectations. Sensitivity
analysis is included.

This approach has been used successfully used for land price analysis in Poland. Possible new applications to signal
and image processing (in aTLSapproach) are mentioned. Computer programs (written in Fortran 95 and Matlab) will
be delivered on request by the authors.
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4.33 A cumulant statistic–based method for continuous–time errors–in–variables
model identification

Stéphane Thil, Hugues Garnier, Marion Gilson
Centre de Recherche en Automatique de Nancy – CRAN UMR 7039 CNRS-UHP-INPL,
Universit́e Henri Poincaŕe, Nancy 1, BP 239 – 54506 Vandœuvre-lès-Nancy Cedex – France
firstname.lastname@cran.uhp-nancy.fr

Continuous-time errors-in-variables system identification

In this paper the continuous-time errors-in-variables model
depicted in the opposite Figure is considered.
Errors-in-variables (EIV) models, where uncertainties or
measurement noises are present on both input and output ob-
servations, play an important role when the identification pur-
pose is the determination of the inner laws that describe the
process, rather than the prediction of its future behavior. Nu-
merous scientific disciplines use such EIV models, including
time series modeling, array
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signal processing for direction-of-arrival estimation, blind channel equalization, multivariate calibration in analytical
chemistry, image processing, or environmental modeling [9].

Furthermore, in many areas of science and engineering, the identified dynamic models should be physically mean-
ingful. As a result, there is a need for modeling approaches that are able toyield directly from the sampled data ef-
ficiently parameterized (parsimonious) continuous-time models that have clearphysical interpretations. The attention
in the system identification community was almost completely focused on the discrete-time model identification tech-
niques until recently. The last decade has indeed witnessed considerable development in continuous-time approaches
to system identification from sampled data (see [5] and [8, 3] for more recent references).

The goal of this paper is to present an approach for continuous-time modeling that can take into account colored
measurement noise in both input and output observations. Many methods have been proposed to solve the EIV prob-
lem in discrete-time, whereas in continuous-time it is relatively unexplored. Anoverview of the main discrete-time
methods can be found in [6]. Regarding the continuous-time, an approachhas been recently proposed in [4], assuming
the noises contaminating the data to be white.

Unless we impose certain assumptions on the signal and noise models, it is well-known that the general EIV
model is not uniquely identifiable from second order statistics [1]. Althoughthat problem can be overcome by adding
supplementary conditions, EIV models suffer from this lack of identifiability. This motivates the approaches based on
higher-order statistics.

Higher-order statistics The proposed methods are based upon the third-order cumulants; their mainproperties are
quickly recalled. Some statistical assumptions on the noise-free input signaland on the noises are necessary: the
probability density function of the input signal is assumed to be non-symmetric,whereas the noises are assumed to
be symmetrically distributed. The differential equation of the system is then satisfied by the third-order cumulants [2]

Cuyu(τ1,τ2) = G(p,θ)Cuuu(τ1,τ2) =
B(p)

A(p)
Cuuu(τ1,τ2) (4.35)

whereCuuu, Cuyu are the third-order (cross-)cumulants andG(p,θ) is the parametrization of the real system. The
noise-cancellation property of the third-order cumulants implies that equation(4.35) is (asymptotically) noise-free,
consequently the simple least-squares method gives consistant estimates. However, when only a finite data record is
available, errors appear in both left- and right-hand side of equation (4.35).
To obtain estimates of the parameter vector, two possibilities are then considered.
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Linear regression. To estimate the parameter vectorθ , the linear regression theory can be applied to equation
(4.35). Minimizing the following equation error

e1(τ1,τ2) = A(p)Cuyu(τ1,τ2)−B(p)Cuuu(τ1,τ2) (4.36)

two criterion-based estimators are derived: the simple LS estimator and the TLSestimator.

Non-linear regression: the Steiglitz-McBride algorithm. From equation (4.35),θ can also be derived by mini-
mizing the following output error

e2(τ1,τ2) = Cuyu(τ1,τ2)−
B(p)

A(p)
Cuuu(τ1,τ2) (4.37)

This output error is non-linear in the parameters. To avoid the recourse tonon-linear optimization, following the
work of J.M.M. Anderson in discrete-time [2], the Steiglitz-McBride [7] algorithm is used. An equation error is
consequently defined, converging towards the output error (4.37) in an iterative fashion. Another criterion-based
estimator is then defined.

The state variable filter. One of the key points in continuous-time system identification is how to handle time-
derivation. Here the cumulants time-derivatives are needed and to estimate them the state variable filter [10] is utilized:
in a first step the derivatives of the input/output signals are estimated, then the cumulants derivatives are computed
from these estimates.
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4.34 New errors-in-variables unscented Kalman filter algorithms with enhance-
ments

Benoit Vinsonneau, David P. Goodall, Keith J. Burnham
Control Theory and Applications Centre, Coventry University, UK,b.vinsonneau@coventry.ac.uk

The errors-in-variables (EIV) filtering problem has only recently beenformulated and solved [4] for systems that
are assumed to be linear and time invariant (LTI). EIV algorithms derived for single input single output (SISO) systems
are described in [1]. Extensions to the multiple input multiple output (MIMO) case have been proposed in both the
stochastic [2, 3] and deterministic [9] contexts. Based on one of the proposed algorithms in [1], termed here the EIV
Kalman filter (EIV-KF), a parallel development proposed in [10] has extended the approach to encompass linear time
varying (LTV) systems. This is achieved with a new EIV extended Kalman filter(EIV-EKF), which estimates a set
of compensating parameters within an extended state. As well as handling the LTV case, the EIV-EKF algorithm has
been shown to provide a superior performance over the EIV-KF for theLTI case when the system parameters are not
known exactly.

Unfortunatelly, the performance of the EIV-EKF decreases when applied to a system which exhibits severe nonlin-
earity, due probably to the limitations imposed when utilising the linearisation step in theprediction stage of both state
and error covariance; noting that only the first order terms of the Taylorseries are described accurately. A solution to
such a problem, that has been proposed in ‘classical’ Kalman filtering, is to make use of an unscented transformation
(UT) [5, 6, 7, 8]. Essentially, the UT provides a method of capturing the statistics of a random vector which undergoes
a nonlinear transformation [8]. For non-Gaussian inputs, approximationsare accurate to at least the second order, with
the accuracy of the third and higher moments being determined by the choice ofhyperparameters.

Prompted by the potential advantages of adopting a UT approach, the poster presents the results of a recent study
utilising a new EIV-UT-KF algorithm. Whilst the work presented may be best described as ‘work-in-progress’, the
novelty of the results and timeliness of the work is considered to be ideal for this Workshop. When applied to a
nonlinear system having an assumed structure and known parameters, preliminary results of a Monte Carlo analysis
have shown that a developed EIV-UT-KF algorithm provides improvementover the existing EIV-KF and EIV-EKF
algorithms.
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4.35 Algorithms for data fitting in error-in-variables models with line ar and quadratic
constraints

Burkhard Schaffrin , Department of Geological Science, The Ohio State University, Columbus,OH 43210-1275
Schaffrin.1@osu.edu

Yaron A. Felus, Surveying Engineering Department, Ferris State University, Big-Rapids, MI, 49307-2291,
felusy@ferris.edu

Fitting a surface to a given set of measurements is an essential function forengineers and geodesists, also known
as trend analysis [7],[1],[4]. This technique uses Least-Squares (LS) adjustment to estimate the parameters (ξ ) of a
polynomial surface within a linear model (y = Aξ +e) that includes the vector of observed attribute values (y), a vector
of normally distributed errorse, and a matrix of variablesA, constructed from the geographical locations. However,
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in this linear model the matrix of variablesA is considered as fixed or error-free. This is not the case in many physical
situations where errors exist both in the vector of attributes (y) and in the geographical locations matrix (A). The
Total Least-Squares (TLS) approach as applied to the Error-in-Variables model is the proper method to treat problems
where all the data are affected by random errors. The traditional approach to solve the TLS problem [2],[6] utilizes
the Eckart-Young-Mirsky theorem to derive the best estimate [Â, ŷ] for the augmented matrix by setting the minimum
eigenvalue of the Singular Value Decomposition of [A; y] to zero.

A different approach to solve the TLS problem is based on the Euler-Lagrange theorem [4],[3] and follows an
optimization process that minimizes a target function. In this contribution, the Euler-Lagrange approach is first used
to solve an enhanced TLS problem that includes linear constraints as follows:

y−e= (A−E) ·ξ , rk[A] = m< n,
κ0 = K ·ξ , rk[K] = l ≤ m,
E{[E,e]} = 0, D{vec[E,e]} = Σ0⊗ In, C{E,e} = 0,

(4.38)

whereE is an×mrandom error matrix,Σ0 = σ2
0 · Im+1 is a(m+1)×(m+1)matrix with an unknown variance component

(σ2
0), K and κ0 are l×m matrix, resp.l×1 vector of known values describing the constraints,m is the number of

parameters,n the number of independent observations, andl the number of constraints. DenoteeA = vec(E)∼ (0, σ2
0 ·

Im⊗ In); then the TLS Lagrange target function for model (4.38) is expressed by:

Φ(e,eA,λ ,µ,ξ ) := eTe+eT
AeA +2λ T (y−Aξ −e+Eξ )−2µT (κ0−Kξ ) = stationary (4.39)

whereλ and µ denote then×1, resp. l×1 vectors of Lagrange multipliers. Using this target function, the following
nonlinear normal equations are obtained:




ATA ATy KT

yTA yTy κT
0

K κ0 ν̂ · I


 ·




ξ̂
−1
µ


=




ξ̂
−1
µ


 · ν̂ (4.40)

whereν̂ = (y−A · ξ̂ )T · (y−A · ξ̂ )/(1+ ξ̂ T · ξ̂ ); all estimated parameters are marked with a bar (·) or a hat (̂·). Four
algorithms have been developed to solve this TLS problem with linear constraints: One which is slow but guaranteed
to converge, two which are fast but may only converge with good starting values, and a hybrid approach. A numerical
example of fitting a surface to a set of surveyed points is used to demonstratethe computational efficiency of the
algorithms and the accuracy improvement over the traditional model.

In some physical cases, the problem has quadratic constraints in addition tothe linear constraints, for example
when fitting an ellipsoidal surface through a list of measured points. The mathematical model in this case is:

y−e= (A−E) ·ξ ,
κ0 = K ·ξ , ξ T ·M ·ξ = α2,
E{[E,e]} = 0, D{vec[E,e]} = Σ0⊗ In, C{E,e} = 0,

(4.41)

using the same notations as before. Here M is a givenm×mnon-negative definite, symmetric matrix, andα2 is a given
constant. The TLS Lagrange target function for model (4.41) is:

Φ(e,eA,λ ,µ1,µ2,ξ ) := eTe+eT
AeA +2λ T (y−Aξ −e+Eξ )−2µT

1 (κ0−Kξ )−µ2
(
α2−ξ TMξ

)
= stationary

(4.42)
leading to the following nonlinear normal equations:




ATA+ µ2M ATy KT

yTA yTy−α2µ2 κT
0

K κ0 ν̂ · Il


 ·




ξ̂
−1
µ1


=




ξ̂
−1
µ1


 · ν̂ (4.43)

in conjunction with the modified secular equation:

α2 = (ATy−KT µ1)
T(ATA+ µ2M− ν̂ · Im)−1 ·M · (ATA+ µ2M− ν̂ · Im)−1(ATy−KT µ1) (4.44)
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Using equations (4.43) and (4.44), an algorithm to solve the TLS problem withlinear and quadratic constraints
is derived and tested on a numerical example. The accuracy and computational efficiency of the newly developed
algorithm is described, as well as some other open questions related to the current investigation.
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4.36 Inverse iteration for total least squares interpretted as combination of least
squares problem and rotation of coordinates

Otakar Šprdlı́k, Department of Control Engineering , Faculty of Electrical Engineering,Czech Technical University
in Prague,sprdlo1@control.felk.cvut.cz
Zdeněk Hur ák, Center for Applied Cybernetics, Prague,z.hurak@c-a-k.cz

Inverse iteration method is one of the most powerful methods for computing selected eigenvectors (see for instance
[1], section 7.6.1). It can also be used for finding numerical solution to total least squares problem (TLS) (see for
instance [2], section 5.3). Recently, some new algorithms appeared in literature (see for instance [3] being presented
at this workshop) that approach the numerical computation of TLS problemvia iterative algorithm in which at eac

The statement of the total least squares problem is: For a given overdetermined system of linear equationsAx≈ b
whereA∈ R

m×n andm> n, find x∈ R
n satisfying(A+∆A)x = b+∆b and minimizing‖[∆A;∆b]‖F . It is well known
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that under certain technical assumptions this minimizing vector ˆx can be found in the direction of the right singular
vector ofD = [∆A;∆b] corresponding to the least singular value.

Singular vector odD corresponding to the least singular value can be computed iteratively finding the eigenvector
of DTD corresponding to its eigenvalue closest to zero by the inverse iteration method. Usage of QR factorization of
D enables recursification of the algorithm. The following iteration can be followed

RT
DRDθ (k) = DTDθ (k) =

[
x̂(k−1)

−1

]
,

[
x̂(k)

−1

]
=

−θ (k)

θ (k)
n+1

,

whereRD denotes the triangular factor ofD andx̂(k) denotes TLS solution estimate atkth iteration. Further, it can be
derived fromR−1

D viewed as an inverse of a block matrix that

x̂(k+1) = x̃+
RDn+1,n+1

1+ x̃T · x̂(k)
·R−1

A R−T
A x̂(k) (4.45)

where x̃ denotes solution of least squares andRA is the triangular QR factor ofA. If the algorithm is initiated by
x̂(0) = 0, result of the first iteration ˆx(1) is equal to the solution ˜x of ordinary least squares problem.

The core idea of TLS solved iteratively with the help of LS followed by rotationof coordinates is that under certain
circumstances solutions to LS and TLS coincide. Aligning the coordinate systems can enable use of the LS algorithms
for solving the TLS task. An intuitive idea is to rotate the original coordinate system at each step such that the new
system is aligned with the solution of LS problem from the previous step.

Recall that the size of the augmented vector of TLS solution estimateθ̂ (k) in kth iteration is(n+ 1). In the first
iteration the ordinary LS solution is assigned toθ̂ (1), next an orthonormal basis ofn-dimensional subspace orthogonal
to the solutionθ̂ (1) is derived. The (n+1)th basis vector of the new coordinate system (= (n+1)th column of rotation
matrixQ(1)) is colinear withθ̂ (1).

In each other iteration the data rotation is accomplished by mutliplication ofD by Q(k) from the right. Standard
LS problem is then solved for̃θ (k+1) and estimate to the TLS problem is then obtained by rotation and normalization
with respect to the last component

DQ(k)
︸ ︷︷ ︸
D(k+1)

θ̃ (k+1) ≈ 0, θ̂ (k+1) = Q(k)θ̃ (k+1),

[
x̂(k+1)

−1

]
= −θ̂ (k+1)

θ̂ (k+1)
n+1

,

whereQ(k) is derived fromθ̂ (k) in the same way asQ(1) from θ̂ (1). The normalization of̂θ (k) should be incorporated
in the iterative scheme to provide numerical stability.

Considering ˆx(0) equals zero vector in the inverse iteration scheme, both algorithms start with ˆx(1) = x̃. At thek-th
step, the inverse iteration algorithm gives (with nonsingularDTD)

[
x̂(k)

−1

]
∝ (DTD)−1

[
x̂(k−1)

−1

]
, while the combination of LS and rotation yields

[
x̂(k)

−1

]
∝ Q(k−1)

[
x̃(k)

−1

]

where columns ofQ(k−1) form an orthonormal basis ofR(n+1), last column ofQ(k−1) is colinear with[x̂(k−1);−1]T ,
andx̃(k) is the solution of LS solved in the new coordinate frameQ(k−1).

With solution of LS in the new coordidate frame expressed using the fact explained below (4.45) the LS/rotation
iteration became [

x̂(k)

−1

]
∝

(
DTD

)−1
Q(k−1)

[
0
−1

]

VectorQ(k−1)[0;−1]T is taken as the negative of the last column ofQ(k−1), which is colinear with[x̂(k−1);−1]T due
to the construction ofQ. Inverse iteration and combination of least squares and rotation of coordinate frame are thus
equivalent.

We have shown inverse iteration scheme produces solutions of LS problemsolved in a coordinate frame with the
last basis vector colinear with the result of previous iteration and transformed back to the original coordinate frame.
Results of iterations of the algorithm presented in [3] are the same as results of inverse iteration scheme initiated with
all-zerox(0). The proven equilavence of the two algotithms – inverse iteration and combinedLS and rotation – can
perhaps bring some
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About the authors OtakarŠprdĺık was born in 1980 in Jilemnice, Czech Republic. He received his Ing. (MSc.)
degree in Technical Cybernetics at Czech Technical University in Prague, Faculty of Electrical Engineering in Febru-
ary 2005. He is currently a Ph.D. student at the Department of Control Engineering, Czech Technical University in
Prague. His research deals with estimation and detection of human movement bymeans of inertial sensors.
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4.37 Estimation in a multivariate errors-in-variables model with unknown noise
variance ratio

Alexander Kukush, Kiev National Taras Shevchenko University,
E-mail:alexander kukush@univ.kiev.ua

Consider a modelAX = B, whereA ∈ R
m×n, X ∈ R

n×p, andB ∈ R
m×p. The model means the following. For

the true values, we haveAX = B, whereA,B,X are non-random matrices. We observeA = A+ Ã andB = B+ B̃,
whereÃ, B̃ are random matrices. We want to estimateX with fixed n and p and increasingm. This general model
includes static models if the rows of[Ã, B̃] are independent, and dynamic models if the matrices[A,B] and[Ã, B̃] are
structured. Common assumption is that the covariance structure of[Ã, B̃] is known up to a scalar factor, which leads
to Elementwise–Weighted TLS Problem in the static case and to Structured TLS Problem in the dynamic case, see
Kukush and Van Huffel (2004) and Kukush et al. (2005b).

In the present paper we assume that[Ã, B̃] is partitioned into two uncorrelated blocks[D̃1, D̃2] of sizesm×n1 and
m×n2, andED̃T

k D̃k = λ 0
kWk, k = 1,2, whereWk are known positive semidefinite matrices andλ 0

k are two unknown
positive scalars. In dynamic setting this means that both input and output noise variances are unknown.

To construct a consistent estimatorX̂ we use a clustering assumption. The idea is due to Wald (1940), who studied
a scalar model. We suppose that there are two copies of initial modelA(k)X = B(k), k= 1,2, whereA(k)∈R

mk×n,X ∈
R

n×p, andB(k) ∈ R
mk×p. DenoteD̃k = [Ã(k), B̃(k)] and letd̃i j (k), 1≤ i ≤ mk, 1≤ j ≤ n+ p be the entries of̃Dk, and

D̃T
k = [d̃1(k), . . . , d̃m(k)]. We list the conditions for consistency.

(i) Ed̃i j (k) = 0, for all i, j,k.

(ii) ∃ δ > 0 ∀ i, j,k : E|d̃i j (k)|4+δ ≤ const.

(iii) Each of the sequences{d̃i(1), i ≥ 1} and{d̃i(2), i ≥ 1} is finite dependent.

(iv) ∃ n1,1≤ n1 ≤ n+ p−1 ∀ i ≥ 1, 1≤ j ≤ n1, n1 +1≤ l ≤ n+ p, k = 1,2 : Ed̃i j (k)d̃il (k) = 0.

(v) D̃(k) = [D̃1(k), D̃2(k)], D̃1(k) of sizem×n1, with ED̃T
1 (k)D̃2(k) = 0, andD̃T

j (k)D̃ j(k) = λ 0
j Wj(k), j = 1,2, k =

1,2, whereWj(k) are known positive semidefinite matices, andλ 0
j are two unknown positive scalars.
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(vi) For true matrices,‖A(k)‖F/mk ≤ const, for all mk ≥ 1, k = 1,2.

(vii) liminf m1,m2→∞ σ1(A
T
(1)A(1)/m1−A

T
(2)A(2)/m2) > 0, whereσ1(c) is the smallest singular

value ofC.

Let Xext := [XT ,−Ip]
T = [XT

1 ,XT
2 ]T ,X1 ∈ R

n1×p.

(viii) liminf m1→∞ tr(XT
j (Wj(1)/m1)Xj) > 0, for j = 1,2.

(ix) Wj(1)/m1−Wj(2)/m2 → 0, asm1,m2 → ∞, j = 1,2.

(x) liminfmk→∞ λmin(A
T
(k)A(k)/mk) > 0, for k = 1,2.

First we define the estimate ofλ 0 := (λ 0
1 ,λ 0

2 ). For λ := (λ1,λ2) ∈ R+×R+ introduce

Ψ(k)(λ ) = DT(k)D(k)−

[
λ1W1(k) 0

0 λ2W2(k)

]
,

D(k) = [A(k),B(k)],

and letµ1k(λ )≤ µ2k(λ )≤ . . .≤ µpk(λ ) be thep smallest eigenvalues ofΨ(k)(λ ) with the corresponding orthonormal
eigenvectorsf1k(λ ), . . . , fpk(λ ), Lpk(λ ) be the span off1k(λ ), . . . , fpk(λ ). The objective function is

Q(λ ) =
2

∑
k=1

2

∑
i=1

µ2
ik(λ )+c‖sinΘ(λ )‖2.

Herec> 0 is a fixed constant andΘ(λ ) is a diagonal matrix of canonical angles betweenLp1(λ ),Lp2(λ ), and sinΘ(λ )
is the diagonal matrix with diagonal elements the sines of these angles, see Steward and Sun (1990). For a fixed
positive sequence{εq}, such thatεq → 0, asq → ∞, an estimator̂λ = (λ̂1, λ̂2) = λ̂ (m1,m2) satisfies the inequality

Q(λ̂ ) ≤ inf
λ1,λ2≥0

Q(λ )+ εq, q := min(m1,m2).

Now introduce a compound matrixDc = [DT(1),DT(2)]T ,Wc j := Wj(1)+Wj(2), j = 1,2, and

Ĥ := DT
c Dc−

[
λ̂1Wc1 0

0 λ̂2Wc2

]
.

Let Lp(Ĥ) be the subspace spanned by the firstp eigenvalues of̂H corresponding to the smallest eigenvalues. An
estimatorX̂ is defined by the equalityLp(Ĥ) = span(ẑ1, . . . , ẑp), where[X̂T − Ip]

T = [ẑ1, . . . , ẑp].

Theorem 4 Under the conditions (i) to (x),̂λ → λ 0 and‖X̂−X‖F → 0, as m1,m2 → ∞, a.s.

The results are applicable to system identification, with a turnover point in the input data. Simulation examples
are discussed. Another estimator is proposed in Markovsky et al. (2006), that estimator is easier to compute, but its
asymptotic properties are unclear. In case where nothing is known aboutcovariance structure of the error matrix[Ã, B̃],
at leastt clusters,t = np, are needed to estimateX consistently. The most of results are joint with Prof. S. Van Huffel
and Dr. I. Markovsky (K.U.Leuven), see Kukush et al. (2005a) andMarkovsky et al. (2006).
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4.38 Rank-(R1,R2,R3) reduction of tensors based on the Riemannian trust-region
scheme

M. Ishteva1,∗, L. De Lathauwer2,1, P.-A. Absil3, R. Sepulchre4, S. Van Huffel1,
1ESAT/SCD, Katholieke Universiteit Leuven, Belgium,2CNRS, ETIS, Gergy-Pontoise, France,
3INMA, Université catholique de Louvain, Belgium,4Montefiore Institute, Université de Lìege, Belgium,
∗Mariya.Ishteva@esat.kuleuven.be

Introduction. Higher-order tensors are generalizations of vectors (order 1) and matrices (order 2) to three or more
dimensions. They have various application areas, such as higher-order statistics, independent component analysis,
biomedical engineering, and wireless communications. The mode-n (n = 1,2, . . .) vectors of a tensor are its columns,
rows, etc. The dimension of the vector space spanned by the mode-n vectors is called the mode-n rank. This is a
generalization of the column and row rank of a matrix. Contrary to the case ofmatrices, different mode-n ranks are
not necessarily equal to each other.

We look for the best rank-(R1,R2,R3) approximation of third-order tensors. In the matrix case, the best low-rank
approximation can be obtained from the truncated Singular value decomposition (SVD). However, in the tensor case,
the truncated Higher-order SVD (HOSVD) [2] gives a suboptimal low-rank approximation of the tensor, which can
only be used as a starting value for iterative algorithms.

Problem formulation. For a real third-order tensorA ∈ R
I1×I2×I3, find a tensor ˆA ∈ R

I1×I2×I3 that minimizes the
least-squares cost functionf ( ˆA ) = ‖A − ˆA ‖2 under the constrains rank1( ˆA )≤R1, rank2( ˆA )≤R2, rank3( ˆA )≤R3.
This minimization problem is equivalent to (see [3]) the maximization of

g(U, V, W) = ‖A ×1 UT ×2 VT ×3 WT‖2 (4.46)

over the orthonormal matricesU ∈ R
I1×R1, V ∈ R

I2×R2, W ∈ R
I3×R3.

Riemannian trust-region scheme.This is an iterative algorithm for minimizing a cost function, consisting of the
following steps (see [1]):

– compute an updateη to be applied to the current iteratex; η solves a trust-region subproblem;

– evaluate the quality of the model;

– accept or reject the new iterate;

– update the trust-region radius.

Riemannian trust-region based rank-(R1,R2,R3) approximation of a tensor.The functiong has the invariance
property:

g(U, V, W) = g(UQ(1), VQ(2), WQ(3)) ,
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whereQ(i) are orthogonal matrices. Thus,g has a unique projectiong:

g(UOR1, VOR2, WOR3) := g(U, V, W).

In our algorithm, we express the tensor approximation problem as minimizing the cost function−g on a proper
manifold (a product of three Grassmann manifolds). We apply the Riemanniantrust-region scheme, using the trun-
cated conjugate-gradient method for solving the trust-region subproblem.Making use of second order information
about the cost function, superlinear convergence is achieved. We provide some simulation results concerning the
stability of the algorithm.
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4.39 On core problem formulation in linear approximation problems with mult iple
right-hand sides

Iveta Hnětynková, Martin Plešinger, Zdeňek Strakoš.
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Consider an orthogonally invariant linear approximation problemAx≈ b. In [10] it is proved that the partial
upper bidiagonalization of the extended matrix[b,A] determines acore approximation problem A11x1 ≈ b1, with the
necessary and sufficient information for solving the original problem given by b1 and A11. The transformed data
b1 andA11 can be computed either directly, using Householder orthogonal transformations, or iteratively, using the
Golub-Kahan bidiagonalization [4]. The bidiagonalization is stopped at the first zero bidiagonal element. It is shown
how the core problem can be used in a simple and efficient way for solving different formulations of the original
approximation problems. The proof in [10] is based on the singular value decomposition of the matrixA. In [5], [6],
the core problem formulation is derived from the relationship between the Golub-Kahan bidiagonalization and the
Lanczos tridiagonalization [7], see [1], and from the well-known properties of Jacobi matrices. For a rewiev see the
lecture [9] presented at this workshop.

In this contribution we concentrate on extension of the idea of core problemformulation to linear approxima-
tion problems with multiple right-hand sides. Here a concept of a (minimally dimensioned) approximation problem
containing the necessary and sufficient information for solving the original problem seems more complicated. The
analysis should start from the singular value decomposition, and computationshould be based on the block (banded)
Lanczos bidiagonalization, see [8, Section 2.3], [2], [3].
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We will discuss several examples illustrating difficulties which have to be resolved in order to get a general multi-
ple right-hand sides core problem formulation.
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6 Location

All sessions with oral presentations will take place in theauditorium Arenberg , Arenberg Castle, Kasteelpark Aren-
berg 1, 3001 Heverlee. (There are no parallel tracks for this workshop.) The poster session is scheduled for room
00.62 in the department of electrical engineering (ESAT). See the maps below and the route description on

http://www.esat.kuleuven.ac.be/info/route.en.php

The region of the Arenberg castle.
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