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1 Welcome and general information

Dear participants,

it is our great pleasure to welcome all of you in the Arenberg castle, ltel®elgium, for the 4th edition of the
workshop on Total Least Squares and Errors-In-Variables Maglelirst like the three previous workshops, organized
at the same place in August 1991, 1996 and 2001, this workshop attragiblg interdisciplinary audience and
therefore covers a broad scope of fields such as statistics, numedbgdia, system identification, signal processing,
chemistry, computer vision, environmental sciences, etc., and subjegiisgdrom theory to practice. All lectures and
poster presentations focus on the central question: “How to deal withumegasnt error?”. The invited lectures form
the backbone of the workshop and aim to present a general overi/@teoned results in a certain field over the past
5 years. Significant progress has been made in nonlinear measureroeahnd behavioral modeling, regularized and
structured total least squares, numerical TLS algorithms, errorsriabl@s system identification, geometric fitting,
and applied fields such as signal processing, chemistry and envirosastaces. | strongly believe that bridging
the gap between disciplines is a conditio sine qua non for tackling the sciehadieisges in this area. It is our hope
that this workshop will enhance this crossfertilization!

Enjoy your stay, the workshop, and the city of Leuven and its environments

Sabine Van Huffel and Ivan Markovsky

Lunches

August 21, 12h00-13h30: ESAT (00.62 or 00.57)
August 22, 12h00-13h30: ESAT (00.62 or 00.57)
August 23, 12h00-13h30: ESAT (00.62 or 00.57)

Breakfast (for those staying in a dormitory room)

Every morning at ESAT (00.62 or 00.57).

Coffee breaks

In the Salons Arenberg Castle.

August 21, 10h30-11h00 and 15h00-15h30
August 22, 10h00-10h30 and 16h00-16h30
August 23, 10h15-10h30

Welcome drink and dinner on Monday

In the "oude Kantien” at 19n00.



Banquet on Tuesday

In the faculty Club at 20h00.

Transportation

The Arenberg Castle is located approximately 3km. (30 minutes walking) freroethter of Leuven. It is accessible
by public transportation—bus number 2 direction Campus, stop De Oude Kaflitiethe opposite direction, bus
number 2 goes to the station of Leuven.)

Computer facilities

Participants in the workshop will have an access to a computer lab in the buiflthg electrical engineering de-
partment (ESAT), see the map on page 77. Those who have laptops willdoéoaaccess Internet via a wireless
connection within the ESAT building. Room 00.62 is reserved for the parhtspat the workshop.

Workshop address

Ida Tassens

Dept. of Electrical Engineering, ESAT-SCD (SISTA)
Katholieke Universiteit Leuven,

Kasteelpark Arenberg 10

B—3001 Leuven-Heverlee, Belgium

tel: 32/16/32.17.09, fax: 32/16/32.19.70
email:i da. t assens@sat . kul euven. be



2 Proceedings

One special issue @ignal Processingnd one special issue Gomputational Statistics and Data Analysidl be
published as proceedings of the workshop. However, the call farpap also open to papers that are not presented
during the workshop. We encourage authors, whose work is more sttisticiented to submit their manuscripts
to Computational Statistics and Data Analysis and authors whose work is nyaieagipns oriented to submit their
manuscripts for Signal Processing.

The scope of topics for the special issues overlaps with this of the wapkdine deadline for submissions for both
special issues is October 1, 2006. Submissions for Computational Statigtibsta Analysis should be sent by e-mail
to the workshop secretaridtda. t assens@sat . kul euven. be). Submissions for Signal Processing should be
entered ahtt p: // ees. el sevi er. coni si gpr o selecting “TLS and EIV modeling” as the Article Type.

Guest editors for special issue of Signal Processing

e S. Van Huffel, K.U.Leuven, Dept. Elektrotechniek (ESAT), Kasteelganberg 10, B-3001 Leuven, Belgium
I. Markovsky, K.U.Leuven, Dept. Elektrotechniek (ESAT), Kasted{parenberg 10, B-3001 Leuven, Belgium

R. Vaccaro, Department of Electrical & Computer Engineering, Unityeo$ Rhode Island, 4 East Alumni Ave.
Kingston, RI 02881, USA

T. Soderstdm, Information Technology, Department of Systems and Control, Uppsal@tdity, P O Box 337,
SE-751 05, Uppsala, Sweden

Guest editors for special issue of Computational Statistics and Data Angsis

S. Van Huffel, K.U.Leuven, Dept. Elektrotechniek (ESAT), Kasteelgsdnberg 10, B-3001 Leuven, Belgium

C.-L. Cheng, Institute of Statistical Science, Academia Sinica, Taipei, TaiRRi@ C

N. Mastronardi, Istituto per le Applicazioni, del Calcolo "M.Picone” sezriBsational Council of Italy, via G.
Amendola 122/D, I-70126 Bari, Italy

C. Paige, McGill University, School of Computer Science, 3480 UsitgStreet, Montreal, PQ, Canada H3A
2A7

A. Kukush, Kiev National Taras Shevchenko University, Volodymgrsk 60, 01033, Kiev, Ukraine



3 Program

Monday, August 21

08h00-08h45 Registration in Arenberg Castle
08h45-09h00 Opening and welcome by Sabine Van Huffel

Session |: Regularized total least squares

Chair: S. Van Huffel

09h00-09h45 G. Goluh Matrices and moments: perturbation for least squares 11
09h45-10h30 A. Beck The regularized total least squares problem: Theoretical propemntigtheee glob- 11

ally convergent algorithms
10h30-11h00 Break
11h00-11h30 D. Sima Level choice in truncated total least squares 14
11h30-12h00 A. WatsonRobust counterparts of errors-in-variables problems 15
12h00-13h30 Lunch

Session Il: Nonlinear measurement error models

Chair: K. Kanatani

13h30-14h15 C.-L. ChengOn the conditional score and corrected score estimation in nonlinear reeady
ment error models

14h15-15h00 A. Kukush and H. Schneewei€agmparing the efficiency of structural and functional methi-8
ods in measurement error models

15h00-15h30 Break

15h30-16h00 ShalabhOn the estimation of linear ultrastructural model when error variancesnarerk 18

16h00-16h30 G. Garg, Shalabh, N. MisraConsistent estimation of regression coefficients in measui&-
ment error model under exact linear restrictions

Poster Session (room 00.62 at ESAT)

17h00-18h30 Poster Sessioffor a list of posters see page 10)
19h00-22h00 Welcome drink and dinner in “De Oude Kantien”



Tuesday, August 22

Session lll: Numerical methods for total least squares

Chair: G. Golub

08h30-09h15 C. Paige and Z. StralkgBidiagonalization as a fundamental decomposition of data in liner
approximation problems

09h15-10h00 A. Bjorck, A band Lanczos algorithm for least squares and total least squalgdsims 22

10h00-10h30 Break

10h30-11h00 X.-W. Chang, G. Golub, C. Paig®linimal backward perturbations for data least squar@g
problems

11h00-11h30 D. Titley-Peloquin, X.-W. Chang, C. Paigéharacterizing matrices consistent with give@26
approximate solutions to LS, DLS, TLS and Scaled TLS problems

11h30-12h00 M. SchuermansOn the equivalence between total least squares and maximum likelih®od
principal component analysis with applications in chemometrics

12h00-13h30 Lunch

Session IV: Geometric fitting

Chair: C.-L. Cheng

13h30-14h30 K. Kanatanj Hyperaccuracy for geometric fitting 29

14h30-15h15 I. Markovsky Low-rank approximation and its applications for data fitting 31

15h15-16h00 A. Kukush Estimation in a multivariate errors-in-variables model with unknown noise va&8
ance ratio

16h00-16h30 Break

Session V: Total least squares applications in computer addpra

Chair: N. Mastronardi

16h30-17h00 E. Kaltofen, Z. Yang, L. ZhiA structured total least squares algorithm for approximasa
greatest common divisors of multivariate polynomials

17h00-17h30 J. Winkler and J. AllanStructured matrix methods for the computation of rank reduc@8
Sylvester matrix

Guided visit through Leuven

18h00-20h00 Guided visit through Leuven
20h00-22h00 Banquetin “The Faculty Club”



Wednesday, August 23

Session VI: Errors-in-variables system identification

Chair: I. Markovsky

08h30-09h30 T. Sderstdm, Errors-in-variables methods in system identification 36

09h30-10h15 R. Guidorzi, R. Diversi and U. SoverirBome issues on errors-in-variables identification 37

10h15-10h30 Break

10h30-11h00 J. Linden, B. Vinsonneau, K. Burnhamiodel-based control in the errors-in-variabled0
framework

11h00-11h30 R. Pintelon and J. Schoukergequency domain maximum likelihood estimation of lineat2
dynamic errors-in-variables models

11h30-12h00 J. Schoukens and R. Pintelddentifiability analysis for errors-in-variables problems 44

12h00-13h30 Lunch

Session VII: Total least squares applications in signal proessing

Chair: R. Pintelon

13h30-14h15 A. YeredoyOn the role of constraints in system identification 46
14h15-15h00 R. Vaccarg Optimal parameter estimation from shift-invariant subspaces 45
15h00-15h45 L. De LathauwerPrincipal component, independent component and parallel factiys@ésa 49
15h45-16h30 J. RamosApplications of TLS and related methods in the environmental sciences 49
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4 Abstracts

4.1 Matrices and moments: Perturbation for least squares
Gene H. Goluh Stanford Universitygol ub@ccm st anf or d. edu

Given a matrixA, (mx n) a vectorb, and an approximate solution vector, we are interested in determining ap-
proximate error bounds induced by the approximate solution. We are alidaio bounds for the perturbation using
the Theory of Momnents. For an nxn symmetric, positive definite mataxd a real vectou, we study a method to
estimate and bound the quadratic faut (A)u/u'u whereF is a differentiable function. This problem arises in many
applications in least squares theory eg computing a parameter in a leagissprablem with a quadratic constraint,
regularization and estimating backward perturbations of linear leastesgjpesblems. We describe a method based
on the theory of moments and numerical quadrature for estimating the quddraticA basic tool is the Lanczos
algorithm which can be used for computing the recursive relationshiprtbogonal polynomials. We will present
some numerical results showing the efficacy of our methods and will disenssis extensions of the method.

(Joint work with Zheng Su)

4.2 The regularized total least squares problem:
Theoretical properties and three globally convergent algorithms

Amir Beck, Faculty of Industrial Engineering and Management, Technion - Id$restitute of Technology, Haifa,
Israel,emai | : becka@e.technion.ac.il

Total Least Square€TLS) is a method for treating an overdetermined system of linear equakionsh, where
both the matrixA and the vectob are contaminated by noise. In practical situations, the linear system is often ill-
conditioned. For example, this happens when the system is obtained viatidition of ill-posed problems such
as integral equations of the first kind (see e.g., [7] and referencesirtheln these cases the TLS solution can be
physically meaningless and thus regularization is essential for stabilizinglttes.

Regularization of the TLS solution was addressed by several ap@m®acich as truncation methods [6, 8] and
Tikhonov regularization [1]. In this talk we will consider a third approactvirich a quadratic constraint is introduced.
It is well known [7, 11] that the quadratically constrained total least m&pigroblem can be formulated as a problem
of minimizing a ratio of two quadratic function subject to a quadratic constraint:

|AX—b]|?

RTL i |ILx|)? <

rris mind P 2 <.

whereA € R™" b e R™ p > 0 andL € R*"(k < n) is a matrix that defines a (semi)norm on the solution. The RTLS
problem was extensively studied in recent years [2, 3, 7, 10, 11éyAlKficulty with this problem is its nonconvexity.
As a result, several methods [7, 10] devised to solve it are not guachtieonverge to a global optimum but rather

to a point satisfying first order necessary optimality conditions.

We will present three globally and efficiently convergent algorithms,dbasghe algorithms proposed in [2, 3, 11],
for solving the more general problem of minimizing a ratio of (possibly indejimjtedratic functions subject to a

11



quadratic constraint:

(RQ) mxin{f(x) = ggg

:||Lxu23p},

where
fi(x) =x"Ax—2bTx+¢, i=12

A1, A € R™"are symmetric matricebg, b, € R, ¢1, ¢, € R. We do not assume thAg andA; are positive semidefinite
(as in the case of the RTLS problem). The only assumption made is that tHemrshwvell defined. Surprisingly, at
least with respect to the methodologies and techniques presented in theaiadkstho real advantage in dealing with
the specific instance of the RTLS problem.

The procedure devised in [2] relies on the following key observationtal{f for fractional programs:

Observation: givena € R, the following two statements are equivalent:
1. ming { f1(x)/ f2(x) 1 |Lx||? < p} < @.
2. miny { f1(x) —a fa(x) : |LX|[2 < p} < 0.

Based on the latter observation, we develop an efficient algorithm fangritie global optimal solution by con-
verting the original problem into a sequence of simple optimization problems &ditime

(GTRS mxin{xTAer 2b"x+c:|[Lx||> < p}

parameterized by a single parameterThe optimal solution corresponds to a particular value pfvhich can be
found by a simple one-dimensional search. Problem (GTRS) is also kimothkie literature as the generalized trust
region subproblem and, similarly to problem (RQ), is a nonconvex prollesing the hidden convexity result of [4]
we are able to convert the GTRS problem into a singplevexoptimization problem that can be solved by finding the
root of a one-dimensional secular equation. Overall, the algorithm fimesoatimal solution after solvin@(loge 1)
GTRS problems. Practically, the numerical experiments in [2] show that aduighracy optimal solution is typically
obtained after only few iterations.

The method devised in [11] was developed to solve the specific case oT e iRoblem. The starting point is
the observation tha€" is an optimal solution of problem (RQ) if and only if

X" € argminyge{ f2(y) (F(y) — £(x')) : Lyll? < p}.

(here fa(y) = |ly||? + 1, f(y) = ||Ay—b||?/(|ly||? + 1)) which naturally leads to consider the following fixed point
iterations:

Xer1 € argminepn{ f2(y) (F(y) — F(x)) 1 [ILy]1* < p}.

The latter scheme, similarly to the one used in [2], also involves the solution diREGroblem at each iteration.

A different method for solving the GTRS problem is discussed in [11]cBipelly, the GTRS is converted into an
equivalent quadratic eigenvalue problem (QEP) for which efficielvess are known to exist. The numerical results
presented in [11] indicate that, similarly to the method proposed in [2], the methw@tiges at a very fast rate and
requires the solution of very few (up to 5) GTRS problems. The numegsailts reported in [11] also indicate that
the method producesglobal solution This fact was also validated empirically by comparing the two procedures in
[2]. However, a proof of convergence to a global optimal solution oRMES was not given in [11].

The aforementioned results suggest that the problem (RQ) of minimizingdaajically constrained ratio of two
quadratic functions seems to share some kind of hidden convexity propantely, it can be shown to be equivalent
to some (tractable) convex optimization reformulation. In [3] we show that tlimsleed the case. We obtain a simple
condition in terms of the problem’s data under which the attainment of the minimunolgon (RQ) is warranted.
This condition allows us to derive an appropriate nonconvex reformulafiRQ), and to apply an extension of the
so-called S-Lemma for three quadratic homogeneous forms [9]. By sg,d@i prove that problem (RQ) can be
recast as a semidefinite programming problem for which efficient soluti@nidms are known to exist (e.g., interior
point methods). Based on the latter formulation, we propdab@d globally and efficiently convergent algorithm for
solving the RQ problem. Another byproduct of the aforementioned reswdtsuperlinear convergence result for the
iterative scheme suggested in [11], and which is extended fantre generatlass of problems (RQ). Moreover, it
is shown that this algorithm produces &iglobal optimal solution in no more tha(/loge—1) main loop iterations.

12



This result also provides a theoretical justification to the successful datignal results reported in the context of
(RTLS) in [11] and [3].

The talk is partially based on joint works with Aharon Ben-Tal and Mar ¢ Teboulle.
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4.3 Level choice in truncated total least squares

Diana Sima, Sabine Van Huffel, Katholieke Universiteit Leuven, Department of Electrical Enginee®AT-SCD,
{di ana. si ma, sabi ne. vanhuf f el }@sat . kul euven. be

Introduction lll-posed problems are problems where the solution does not dependwmrgiy on the input data,
where arbitrarily small perturbations in the input data produce arbitrarigelahanges in the solution. Discrete ill-
posed problems of the typ&x ~ b might arise from the discretization of continuous problems, such as integral o
differential models.

When the systemi\x =~ b is a discrete ill-posed problenthe least squares or total least squares methods yield
unreliable solutions fox, dominated by noise in the data or by numerical approximation errors. Tihigeha because
discrete ill-posed problems have an intrinsic sensitivity, which is shown girthe fact that the singular values/Af
decay without gap towards zero (or towards a “noise level”).

Regularization techniques are used for many years as a way of stabiligiogrtiputation of least squares solutions
in discrete ill-posed problems. Truncated singular value decompositionikhdrbv regularization are two of the
most known methods.

Truncation methods for linear estimation The aim of regularization by truncation is to appropriately identify a
good truncation level, and to construct a truncated solution that can edp&uessential features of the unknown true
solution, without explicit knowledge about the true solution, and even withptiori knowledge about the magnitude
of the noise in the data.

A better understanding of truncation methods (such as truncated singliardecomposition (TSVD) and trun-
cated total least squares (TTLS) [1]) is possible in view of the recanitseoncore problemf linear systems [4].
The core reduction of an incompatible linear system is a tool that is able to tieopioblems of nonuniqueness and
nongenericity in the computation of the total least squares solution (andieasa We propose the use fincated
core problemsn order to avoid close-to-nongenericity in ill-posed linear approximatioblpros.

If Ae R™"andb € R™, then the TTLS core problem with truncation lekehvolves solving the core system
A'{lxii ~ b'{

in TLS sense, wheréb¥ AX ] is a (k+ 1)-dimensional truncated core §b A, e.g, a (k+ 1) x (k+ 1) partial
bidiagonalization of[b A}. From thek-dimensional solutiorx'{, we can easily construct thedimensional TTLS
solutionxrT sk, using,e.g, the right orthogonal transformations associated with the partial bidiéigatien.

Choice of the truncation level Among model selection criteria that use the given data in order to selectda goo
hyperparameter, we mention tdescrepancy principlethe L-curve (generalized) cross validatioand Akaike’s in-
formation criterion Here, we focus on the generalized cross validation (GCV) [2, 5]. Wesraae of concepts from
the field of regularization for nonlinear models [3], which are also linked ¢arterpretation of GCV as a rotation-
invariant version of the ordinary cross-validation.

The GCV criterion can be written as 5
2
ff\ 2’
K (N—p")

wherery denotes the residual between the corrected m{ﬁi@l ,&k} (reconstructed for a fixed value &f and the

(4.1)

given data[b A]; N is the number of “noisy” elements in the data, and ¢ffective number of parameterﬁ“p’s
the trace of the so-callegeneralized information matrif3]. The generalized information matrix is defined as the
derivative of the reconstructed model with respect to the noisy data.

Since in the TLS cas& € R™" andb € R™ are both considered noidy,= m(n+ 1). The residual error norm is
given by
2 ||Arrisk—bl3

= —Ilb AIIZ—1Tok A%T112 +(g")?
F T s34 1 b AlIE=1 o3 AfL]lE + ("),

Iz =[[[b A~ [Bc A
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whereo” is the smallest singular value @f% A ].

We prove that there exists a relatively easy-to-compute closed-formssipn for the effective number of param-
eters in the truncated core TLS problem:

~1
1 Ak T Ak i
P =5Tr ( (1;/,)211—|k+8(\/1’)2x'{x'{ :

where(u”, 0”,V") denotes the smallest singular triplet of the (bidiagonal) mabfx AX,]. Note that ifAY; is bidi-
agonal, the evaluation qdﬁff involves inverting a (smalll x k tridiagonal plus rank-one matrix.

Plugging-in||r/|2 and pﬁﬁ into (4.1), we obtain a new closed-form expresion for GCV, speciallp@dbto the
truncated TLS problem formulation. Its computation involves only the bididgoagix obtained aftek bidiagonal-
izations steps, and the smallest singular triplet of this bidiagonal matrix.

Conclusion As for truncated SVD, the truncated TLS problems admits closed-form&ssipns for each of the
classical model selection techniques for choosing truncation levels.d\edd on generalized cross validation, which
needs an important adjustment compared to the simple GCV criterion that appieadated SVD. However, the
GCV function can still be efficiently computed during a partial bidiagonalizaigorithm for truncated TLS.
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4.4 Robust counterparts of errors-in-variables problems
G. Alistair Watson, Department of Mathematics,

University of Dundee, Dundee DD1 4HN, Scotland,

gawat son@rat hs. dundee. ac. uk

Let data pointgx,yi),i = 1,...,m, be given, where; € R' andy; € R, and all values contain errors. Let the points
be related through a linear model, containimgarameters, so that we can write

n
yizZajqoj(xi), i:l,...,m, (4.2)
=1
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wherea € R" is the vector of free parameters. Writing this in matrix/vector forny asAa, then total least squares
can be used to find values of the variables. In certain application ar@aay ibe more appropriate to solveabust
counterpart of this [1], which may be interpreted as the requirement to miniritjze Aa|| with respect ta over the
worst of perturbations defined b, A) € &, where& is an uncertainty set. For example, if

&={(y+r,A+E):|r| < pu, |[E[l < p2},
whereps, p2 are given, then the problem is equivalent to findintg solve

min  max [y+r—(A+E)al,
acR|r||<py,[|E[<p2

and when the norms are least squares norms, good methods are avaitaiigtde solutions (for example, [3], [4]).
An alternative to total least squares is orthogonal distance regregsiorhgre direct perturbations of the variables
themselves are considered. Let

n
Z :Vi—Zajqoj(f(i),i =1,....m
=

Then robust counterparts of the basic problem correspond to the minimizdtjd|| with respect ta over theworst
of all perturbations such that
(yl,...,ym,)?l,...,)?m) €&,

whereé’ is an uncertainty set. We consider such problems for differentssedad in particular for the set

E={y1+r1,....¥m+TImX1+St,.... Xm+Sm: [ri| < o, |s[a< yi,i=1,...,m},

where||.||a is @a norm onR', and wherep;, y,i = 1,...,mare given.

Because the orthogonal distance regression problem does notddepahe model being linear, we can also
consider the treatment of nonlinear problems.

The intention is to use and build on ideas presented in [5], and the main foousigorithmic development.
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4.5 On the conditional score and corrected score estimation in nonlinear easure-
ment error models

Chi-Lun Cheng, Institute of Statistical Science, Academia Sinica, Taiwan, R.O.C.
cl cheng@t at . si ni ca. edu. tw

This paper reviews the conditional score and corrected score estimétioe enknown parameters in nonlinear
measurement error (errors-in-variables) models. This includes tloéidoal and structural models. The connection
among these methodologies and total least squares (TLS) is also examemdpandium of existing results as well
as some possible extensions are discussed.

The ordinary regression models assume that the independent variebleeasured without error. However, in
many situations, the independent variables cannot measured precisey. tthé measurement error is too large to
ignore, the estimators for the regression parameters are biased anslstexan Measurement error models are impor-
tant alternatives for ordinary regression models, in which we assumeethibn between the independent variaple
and independent variabfis known but one cannot obsergedirectly. Instead, one observes= & + d, whered is
independents of and has mean zero.

The linear measurements error model has a long history and is dated batkARock, 1977), which has been
well investigated. For a summary, see Fuller (1987) and Cheng and Ves (1899). For the past two decades,
the researches on measurement error models are more focused oeamomeaasurement error models, see Carroll,
Ruppert and Stefanski (1995) for a reference.

There are two general methodologies proposed in the literature to estimaggtbgsion parameters in nonlinear
measurement error models. The first one isdtweditional scoranethod that was proposed by Stefanski and Carroll
(1987). The second one is calledrrected scoranethod, which was proposed by Stefanski (1989) and Nakamura
(1990) independently.

In this paper, we will review these two methods. In our view, they have someéamental difference in their
assumptions that has been neglected in the literature. We will also bring soemt developments to attention and
some possible extensions are discussed. Finally the connection betweendit®nal score method and TLS (total
least squares) is addressed.
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4.6 Comparing the efficiency of structural and functional methods in masurement
error models

Hans SchneeweisdDepartment of Statistics, University of Munich¢hneew@t at . uni - nuenchen. de
Alexander Kukush, Department of Mechanics and Mathematics, Kiev National Taras Shekeéniversity
al exander _kukush@ni v. ki ev. ua

The paper is a survey of recent investigations by the authors and aiteetke relative efficiencies of structural
and functional estimators of the regression parameters in a measurenoemhedel. While structural methods, in
particular the quasi-score (QS) method, take advantage of the knowdétlye regressor distribution (if available),
functional methods, in particular the corrected score (CS) method, dsssach knowledge and works even if such
knowledge is not available. Among other results, it has been shown that &e efficient than CS as long as the
regressor distribution is completely known. However, if nuisance parasnietéhe regressor distribution have to be
estimated, this is no more true in general. For small measurement errordjdleneies of QS and CS (and also of
ML) become almost indistinguishable, whether nuisance parameters asmpoe not. QS is (asymptotically) biased
if the regressor distribution has been misspecified, while CS is alwaysstemtsand thus more robust than QS.

4.7 On the estimation of linear ultrastructural model when error variances are
known

Shalabh Indian Institute of Technology Kanpur, Indighal ab@i t k. ac. i n, shal abhl@ahoo. com
H. SchneeweissUniversity of Munich, Germany

In a linear measurement error model, the parameters can be estimated otgpsisty when some additional
information besides the data set is available. There are various formul#tamnsre commonly employed; e.g., [1]
and [2]. Among them, an interesting formulation relates to the specification ofetti@nces of the measurement
errors associated with the variable in the linear relationship. Under supkcifisation, the slope parameter in a
bivariate model is estimated by the technigue of orthogonal regressiondh thie sum of squares of the perpendicular
distances, rather than the horizontal and vertical distances, from th@adiats to the regression line is minimized.
The resulting estimation turns out to be the maximum likelihood estimator if the em@essaumed to be normally
distributed

Besides the techniques of orthogonal regression for the estimationavhptars, there are other alternative pro-
cedures but they have received far less attention in the literature of ree@nt error models. For instance, we may
employ the technique of reduced major axis in which the slope parameter is edtingetee geometric mean of the
two estimators arising from the direct and inverse regression; see,3.fpr find expository account. Similarly, we
may estimate the slope parameter by the arithmetic mean of the two estimators; s¢4, eigewise the slope pa-
rameter may be estimated by the slope of the line that bisects the angle betweieadihend inverse regression lines
; see, e.g., [5]. This paper considers all these techniques in the cofteXinear ultrastructural model and discuss
their asymptotic properties.

A simple question then arises that out of these suggested estimators, whitdties is better under what condi-
tions. It can be well appreciated that the reliability ratios associated with stodyexplanatory variables are easily
available or can be well estimated in measurement error models, see [6]|Jdadrhore details on this aspect. So an
attempt is made in this paper to express the efficiency properties of all the tesmader consideration as a function
of reliability ratios associated with study and explanatory variables only.Héiss in obtaining the conditions for the
superiority of one estimator over the other in terms of reliability ratios only.

Further, most of the literature associated with measurement error modelaijgassumes the normal distribution
for the measurement errors. In practice, such an assumption may agsdiaid true. The distribution of measurement
errors essentially depends on the nature of experiment. The specifichtimmmally may thus sometime leads to
invalid and erroneous statistical consequences. The effect oftdepdirom normality is another aspect of study
which is attempted in this paper.
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The finite sample properties of the proposed estimators under differendtyfistributions of measurement errors
is studied through a Monte-Carlo experiment. The validity of large samplegippations in small samples is also
reported.
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4.8 Consistent estimation of regression coefficients in measurementa model
under exact linear restrictions

Gaurav Garg, Shalabh, Neeraj Misra, Department of Mathematics & Statistics, Indian Institute of Technology,
Kanpur-208016, Indigggarg@i t k. ac. i n,shal ab@itk.ac.in,neeraj @itk.ac.in

In linear regression models, the ordinary least squares estimator (Ot $Egonsistent and biased when the
observations on variables are observed with measurement erromselt ismown that in order to obtain the consistent
estimators of regression coefficients, some additional information frondeutse sample, e.g., measurement error
variance, ratio of measurement error variances or reliability ratio etoqisres.

In many situations, some prior information on the regression coefficientailalle which can be used to improve
upon the OLSE. When such prior information can be expressed in thedbaxact linear restrictions binding the
regression coefficients and the data is observed without measuremaesi #re restricted least squares estimator is
commonly used. When there are no measurement error in the data, this estintaosisgent, satisfies the given
linear restrictions on regression coefficients and has smaller variabilitythlea®@LSE. However the restricted least
squares estimator becomes inconsistent and biased, when the obssaaioontaminated with measurement errors.
So the problem of obtaining a consistent estimator, which also satisfies theti@ss is addressed in this paper.
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The multivariate ultrastructural model is considered and no assumption is at@de the distributional form
of any of the measurement errors and random error component in thel.n@dy the existence and finiteness of
first four moments of measurement errors and random error compareassumed. The additional knowledge of
reliability matrix and covariance matrix of measurement errors associatedxpigmatory variables is used to obtain
the consistent estimators which also satisfy the given restrictions.

The bias vectors and mean squared error matrices of the estimatorsieed ded studied using the large sample
approximation theory. An inter-comparison of both the estimators is made amithaoce conditions for the supe-
riority of one estimator over the other are obtained under structural amidnal forms of the measurement error
models. The effect of departure from normal assumption is also studigldne-Carlo simulation experiment is also
conducted to study the behaviour of estimators in finite samples.
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4.9 Bidiagonalization as a fundamental decomposition of data in linear approxi-
mation problems

Christopher C. Paige McGill University, Montreal, Canadahri s@s. ncgil | . ca

Zdenék Strakos, Institute of Computer Science, Academy of Sciences of the Czech RepRitzgue,
strakos@s. cas.cz

Let A be a nonzerm by k real matrix, andb be a nonzero reai-vector. Consider estimatingfrom the linear
approximation problem
Ax=~Db, (4.3)

where the uninteresting case is for clarity of exposition excluded by theadassumptio f Z (<), that is
ATb £ 0. In a sequence of papers [1, 2, 3] it was proposed to orthogonatigform the the original dataA into the

form bH ‘0
A
pT[bAq]z[ 2 SlAZJ’

whereP~1 =P, Q1= Q",b; = Bie1, andAy1 is a lower bidiagonal matrix withonzero bidiagonal elementghe
matrix A;1 is either square, when (4.3) is compatible, or rectangular, when (4.3)osetible. The matriX,,, and
the corresponding block row and column in (4.4), can be nonexistenbrigiaal problem is in this way decomposed
into the approximation problem

(4.4)

Arxp = by, (4.5)

and the remaining paft,oxo ~ 0. It was proposed to fing; from (4.5), setx, = 0, and substitute for the solution of
(4.3)

X:Q|:):)1:|. (4.6)

The (partial) upper bidiagonalization @, A] described above has remarkable properties, see [3, Theorems 2.2,
3.2.and 3.3].

e First, the lower bidiagonal matri#&;1 with nonzero bidiagonal elements has full column rank and its singular
values are simple. Consequently, any zero singular values or repdadsmmust appear ity».

e SecondA;1 has minimal dimensions, arb, has maximal dimensions, over all orthogonal transformations
giving the block structure in (4.4), without any additional assumptions osttiieture ofA;; andb;.

e Finally, all components db; = ;e in the left singular vector subspacesAaf, that is, the first elements of all
left singular vectors of\;1 (multiplied by 1 # 0), are nonzero.

In the approach represented by (4.3)—(4.6), the adaare fundamentally decomposed. The necessary and suffi-
cient information for solving the problem (4.3) is given by Aq1. All irrelevant and repeated information is filtered
out toAy,. The problem (4.5) is therefore calle¢tare problenmwithin (4.3).

The core problem formulation can be used to solve least squares, tmaldéast squares and data least squares
problems. The core problem solutions are identical to the minimal 2-norm swdudfcall formulations of the (scaled)
total least squares problem with the single right hand side [4]. It giveesihimum norm solution determined by the
algorithm of Golub and Van Loan [5], [4, Theorem 3.7, p. 58], if it exi$tsuch a solution does not exist, then the
core problem approach gives the nongeneric minimum norm (scaled)dattlsquares solution described by Van
Huffel and Vandewalle [4, Theorem 3.12, p. 72]. In this way, one sinaple efficient approach can be applied to
different classes of problems. The core problem formulation alsosodf@ew theoretical insight into hybrid methods
for solving noisy ill-posed problems [6, Section 6.6], and several asith@ve reported promising preliminary results
in this direction.

In our contribution we will review the theory and recent applications of tre problem formulation, and describe
the status of investigation of several open questions.
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4.10 A band-Lanczos algorithm for least squares and total least squares problesm
Ake Bjorck, Linkdping University

Recently C. C. Paige and Zdenek Straké] have shown that the bidiagonaliztion
UT(b AV)=(Ber L),

whereU andV are orthogonal ant lower bidiagonal, can be used to extract a regular core problem for.iBeamd
related linear approximation problemx ~ b. For computing this bidiagonal decomposition Golub and Kahan [3]
gave two mathematically equivalent algorithms. The first uses Househdasfdrmations applied alternately from
left and right. It is a very stable algorithm and the method of choice foraelprablems. The second algorithm uses a
coupled two-term Lanczos recurrence, as in LSQR by Paige and &=U6dl It has the advantage that the matix

is not explicitly transformed and therefore it is suitable for large scalelgnmubwithA sparse. An inherent drawback
is that a loss of orthogonality will occur in the computed columnd iandV.

In this talk we develop a similar reduction for the multidimensional TLS problem

rEnipH (E F)lr, (A+E)X=B+F,

with d right-hand side® = (b, ..., by), For this the consistency relations can be written
—lg B
(B+F A+E) ( X > =0,
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and we now seekf, E) that reduces the rank of the mat(iX, B) by d. The multidimensional TLS problecannot
as the corresponding LS problem, be reduced $eparate problems.

We present an orthogonal decompositior{Bf A),
u'eB AV)=(R L),

whereR and L have band-widthd + 1, which generalizes the bidiagonal decomposition. Asdfet 1, it can be
realized by Householder reflections (dense case) or by a Lanceosetidrsion (sparse case). The Lanczos algorithm
is new, but related to the symmetric band Lanczos algorithm of Axel Ruh®&([8je’s algorithm has been refined and
generalized in several recent papers, notably in [1]. A survey a$yhenetric case is given by R. W. Freund in [2].

With a single starting vector the algorithm terminates with a core problem if a #ETeeat is encountered in one
of the diagonals of.. Whend > 1, the bandwidth can be reduced by one in the Householder algorithmewdren
a zero occurs in one of the outermost band&.ofvhen the bandwidth has been reducktimes the process will
terminate with a separable problem.

The orthonormal columns i) = (u1,up,us,...) andV = (vi,V,vs,...) form bases for the left right Krylov
sequence

b1, bz, (AAT)by, (AAT)by, (AAT)?by, (AAT )%y, ...,
ATby, ATh,, (ATA)AThy, (ATA)AThy, (ATA)2AThy, . ...

The band Lanczos algorithm needs to include a deflation process intordetect and remove linearly dependent
vectors in these sequences. Suppose, for example, that the (&&tob, is linearly dependent upon previous vectors
in the left Krylov sequence. Then this and all later vect((AAT)"bz, k > 1, must be removed. Since the left and
right Krylov sequence are coupled, all vectors of the f¢&hA)XAT b, in the right Krylov sequence are must also be
removed!

When deflation occurs the length of the recursions is reduced by onen ke bandwidth has been reduackd
times the left and right Krylov subspaces have reached their maximal dimeresial the process terminates. Diana
Sima [9] gives a rigorous implementation of this band Lanczos algorithm.

To solve the TLS problem the partial SVD of the reduced band matrix is deédea first step a reduction to
bidiagonal form and performed. This can be done efficienth #n2(d — 1) flops using the vectorized algorithm of
Kaufman [5].
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4.11 Minimal backward perturbations for data least squares problems
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Let Ae R™"Mandb € R™ with m> n. The data least squares (DLS) problem is defined as follows (se€2¢.9.,
[4], [5]):
nE1inHE\|E, s.t.(A+E)x=bh. (4.7)
X

It is known that the DLS problem is equivalent to mijii\x— b||3/|/x||3 (see, e.g., [5]).

Given a nonzerg € R", we might want to verify whether it is, for example, a backward stable soltticthe DLS
problem (4.7). So we would like to solve the following minimal backward pedtion problem:

. _|[(A+DA)X— D)3
M2, sty = v 2, 4.8
From [5, (5.14)—(5.17)]y solves the perturbed DLS problem in (4.8) if and only if
(A+DAT[(A+ DAY b =yoy, of = [[(A+AA)y—b|3/[lY|I3 < oFin(A+DA). (4.9)

Letr =b— Ay. Then from (4.9), we see thA# is a backward perturbation for our DLS problem if and only if itis in
the following set

¢ = {DA: (YY) (A+DA)T (DAY —T) — (AAY—T)T (AAY—T)y =0,
[(A+ DAY —b||5/|ly]15 < Tgin(A+DA) }. (4.10)

Since the inequality in (4.10) makes it difficult to derive a general eximesdsr AA € €', we consider a larger set
€. = {0A: (YY) (A+DA)T (DAY —T) — (DAY —T1)T (AAY—T1)y = 0}. (4.11)
In [1], a general expression f&A € ¥, was derived as follows
Theorem 1 The set?, satisfies
% = {1 —wWhHry"+vy" — WA+ (1 —wWHZ(I —yy") :ve R™, Z e R™", v b=0}.

This theorem can also be derived by following the more complicated agpaid@]. Based on Theorem 1, we can
obtain the following result.

Theorem 2 LetA, = Amin((I —bb")A(I — 2yy")AT (I —bb")). Then

be(y) = min [I0A (”r”% A )1/2
F = F=\7.2 *
oA, ME

o Cnehan iy Iz e (Il
= o [0 080 -0 20 b0 e, ] ).

24



where

b, = b/HbH27 b#0,
710 b=0.

The following matrix is a solution tminaace, ||AA[F:
A/A_ ryTa /\* = 07
Lyt v (At ryh) — (VAYVYT AL <O,

where v is a unit eigenvector ofl — bb")A(I — 2yy")AT (I — bb") corresponding ta\..

Since? C €4, U (Y) < minpacy ||Alle, i-e., Ue (y) is a lower bound on the optimal backward perturbation bound
of DLS. However our computational experience so far indicates that wisea reasonable approximation to the exact
solution of the DLS problem (4.7), thgnand the optimaE\A satisfy the inequality in (4.9). Therefore, in such cases,
Ue (y) is the minimal backward perturbation bound of DLS.

Computingur (y) directly is expensive. But we can derive an asymptotic estimatg of) by using Corollary 3.4
of [3]. In fact, we can show that the quantity

rlj3,\ %2 Irl|3
ATA+ Il <ATr+2y
( DY ) Iyl

.1
) =yl

2
is an asymptotic estimate @i (y), i.e., limy_x fir (y)/tr (y) = 1, wherex is the exact solution to

(X"x)AT (b—AX) + (b—AX)T (b — AX)x = 0,
which is the equation in (4.11) withA replaced by 0 ang by x. We can use two approaches to evaluafirgy).
One is to use the QR factorization Bf and the other is to use the moment method, see [6].
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4.12 Characterizing matrices consistent with given approximate solutionto LS,
DLS, and scaled TLS problems
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We describe a general constructive approach to characterizingf se&rices consistent with given approximate
solutions to various linear problems. This complements work done by&iNalkhrlson, and Sun (see [3]), who showed
that givenA € ™", b € ¥™, and a nonzero approximate solutipg ™" to the least squares problefsx = b, then
with r = b — Ay, the set of matricek for whichy is the least squares solution(t@+ E)y ~ bis

&={Ece™": (A+E)"[(A+E)y—b| =0}
= {—WWWTA+ (I =) [ryT+Z(1 —yy")] : W e &M, Z e €™},

The authors of [3] used this result to derive minimal perturbations amdb for a given approximate solutioy)
that is, withA, b, y, andr as above, given a positive scalgrand definingu = y2/(1+ y?|ly||3) and the minimum
eigenvalue\, = Amin(AAT — prrt),

minJE. yf]| : (A+E)¥[(A+E)y— (b+ )] = 0} = [+ min{0, A.}.

We give simple, constructive new proofs of some results in [3], and exttés approach to the data least squares,
total least squares, and scaled total least squares problems.

Among other things, such results can be used to derive and analyze miriokavdrd errors for approximation
problems, and develop stopping criteria for solution techniques. For dgaRigal and Gaches derived an optimal
stopping criterion for the iterative solution of compatible systems (see [2fanexample, [1, Thm. 7.1]) by showing
that for givenA € ™", be €™ 0#y e ¢", and positive scalars and,

Ib—Ayl>
B+alylz

min{n:(A+E)y=b+f, |[Elz<na, [Ifl2<np}=

Our matrix characterization approach can be used to derive this and senmesults, and might also be useful for
deriving minimal backward errors for other problems, such as uneertiined linear systems of equations, singular
value problems, or eigenproblems.
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4.13 Onthe equivalence between total least squares and maximum liketibd prin-
cipal component analysis with applications in chemometrics
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Heverleeri eke. schuer nans, i van. mar kovsky, sabi ne. vanhuf f el @sat . kul euven. be

The Maximum likelihood Principal Component Analysis (MLPCA) method hanbdevised in chemometrics
as a generalization of the well-known PCA method in order to derive consisséimators in the presence of errors
with known error distribution. For similar reasons, the Total Least Sgu@reS) method has been generalized in
the field of computational mathematics and engineering to maintain consisten®y/mdrdimeter estimates in linear
models with measurement errors of known distribution. The purpose of thiste explore the tight equivalences
between MLPCA [2, 3] and element-wise weighted TLS (EW-TLS) [4, 1¢r&bver, an adapted version of the EW-
TLS method is derived in order to make it useful for problems in chemomettieswill present a computationally
efficient algorithm and compare this algorithm with the standard EW-TLS itihgorand the MLPCA algorithm in
computation time and convergence behaviour on chemical data.

Despite the seemingly different problem formulations of the MLPCA methodtlaed’ LS method, it is shown
that both methods can be reduced to the same mathematical kernel problending.tfie closest (in a certain sense)
weighted low rank matrix approximation where the weight is derived from iteifaltion of the errors in the data.
Mathematically, we will consider the following weighted low rank matrix approxinmagiooblem:

min||D—D|w s.t.rankD) <r, (4.12)
b

with D € R™", the noisy data matrix, rafiR) = k, r <k, AD = D — D the estimated measurement nodé the
covariance matrix of/ec(AAD) wherevec(AAD) stands for the vectorized form @D, i.e., a vector constructed by
stacking the consecutive columnszAd in one vector and - |lw= vec' (-\W~ved-). When the measurement noise
is centered, normal and independently and identically distribMées; |, wherel is the identity matrix, and the
optimal closeness norm is the Frobenius nojim||g. This is used in the well-known TLS and the PCA methods.
Nevertheless, when the measurement errors are not identically distribet&édobenius norm is no longer optimal
and a weighted norm is needed instead.

Different solution approaches, as used in MLPCA and EW-TLS, amreudsed. These approaches differ in the
representation of the rank constraint réﬁkg r in problem (4.12) and in the applied optimization technique in order
to solve problem (4.12).

In the MLPCA approach, the rank constraint rédk < r is represented as

D=TP',
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with T € R™" andP € R™'. So, problem (4.12) can be rewritten as follows:

min (anvecT(D —-D)W lvedD-D) s.tD= TPT> ,
PD

In the standard EW-TLS approach, the rank constraint is forceadvinytirey rank(f)) <ras

~

6[ B ]207 (4.13)

—In—r
whereB € R™ (™", Moreover, the weighting matri is assumed to be block diagonal

W
W = >
Win

where each block\ is the covariance matrix of the errors in thth row of the data matri®. So, for the EW-TLS
approach, problem (4.12) can be rewritten as

~

mjn(mjni(di—&)vvil(di—&f s.t.f)[ B ]:o), (4.14)

B D = —ln—r

with d, d; € R" thei-th row of D andD, respectively, aniM thei-th weighting matrix defined as the covariance matrix
of the errors ind;. Algorithms described in [1, 4], were designed to solve the standard ESVproblem (4.14) for

the case whem > n and when the measurement errors are only row-wise correlated. imochetrics, however, the
data matrix usually has sizex nwith m< n, e.g., in problems of mixture analysis, curve resolution and data fusion.
When the measurement errors are uncorrelated or column-wise catrétegalgorithms presented in [1, 4], can still
be applied to the transposed data matrix. For other cases of measureroenbgelation, the algorithms need to be
optimized by considering the left kernel bf i.e., the following modification of equation (4.13) should be used:

é;—r —lmr D- 0,

whereB, € RT(m-1), By means of experiments on chemical data, we will show that the EW-TLS chetittainly
has potential for problems when the data matrix hasrsizen with m> nand only row-wise correlated measurement
errors. It will also become clear that the standard EW-TLS approacatitha right method of choice for the case
whenm < n and only row-wise correlated measurements and that an adapted vefrsienEMV-TLS approach is
needed for handling this case of row-wise correlated measuremert erdata sets whem < n. An algorithm will

be derived to solve the following adapted version of the EW-TLS problem:

m
min (mjnZ(di—di)Wl(di—di)T St By Iy ]5=0>,
B2 D =

with d;, d € R" thei-th row of D andD, respectively, aniM thei-th weighting matrix defined as the covariance matrix
of the errors ird;. The developed algorithm will be compared with the standard EW-TLS algowiid the MLPCA
algorithm in computation time and convergence behaviour on chemical data.
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4.14 Hyperaccuracy for geometric fitting
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Geometric Fitting Geometric fittings to fit to noisy data a geometric model (a curve, a surface, or a relationship
in high dimensions) expressed asianplicit equation that noise free data should satisfy [4, 7]. Its major differences
from the traditional parameter estimation problem are:

e Unlike traditional statistical problems, there is erplicit model which explains observed data in terms of
deterministic mechanisms and random errors. All descriptionsrgykcit.

e There are no inputs or outputs. No such concepts as causes ard effist. No such distinctions as ordinates
and abscissas exist.

e The underlying data space is homogeneous and isotropic with no inhenirate systems. Hence, the esti-
mation process and the results shouldrbdariant to changes of the coordinate system with respect to which
the data are described.

¢ In many cases, the data are geometricatipstrained Typically, they are points on curves, surfaces, and hy-
persurfaces inherent in the data (e.g., unit vectors and matrices ofiteat 0). Often, the parameters to be
estimated are also similarly constrained. Hence Ghassian distributionthe most fundamental noise model-
ing, does not exist in its strict sense in such constrained spaces.

This type of problem plays a central role in computer vision applications. Winitee traditional domain of
statistics, thdotal least-squares methoahd theerrors-in-variable modehbre rather abnormal concepts, to which
attention is paid as a special research theme, the above mentioned prapertiesormin many computer vision
problems.

Performance Evaluation Due to the above mentioned characteristics, performance evaluationroégenfitting
algorithms is very different from that in the traditional domain of statistics [Z]6

Traditional estimation It is customary to evaluate estimation methods by investigating the asymptoticrpanice
as the number of data increases, andabesistencys one of the main concerns of statisticians. This is based
on the tenet of statistics that random disturbances can be overcome bljngamany data, invoking the law
of large numbers and the central limit theorem. This is reasonable in praciicesince methods whose per-
formance grows rapidly as the number of data increases are prefesable methods can reach admissible
accuracy with a fewer number of data than other methods.
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Geometric fitting The data in computer vision applications are usually generated by a compirigrimage pro-
cessing operations. They may contain pixel-level or subpixel-levelgiibecause image processing operations,
often heuristically designed, are executed on digitized images and the r@suh®t expected to be strictly
correct. In such small noise domains, it is reasonable to focus on the eigmgerformance as the noise
level approaches 0, since methods whose performance grows rapitily aoise decreases can tolerate higher
uncertainty in the data than others for admissible accuracy.

Hyperaccuracy In many computer vision applications, the constraint can be written as a lowairi the param-
eters to be estimated by (nonlinearly) changing variables and embeddingntieemgh dimensional space. For such
linearized constraints, we can easily compute the ML (maximum likelihood) estindtebest known are:

e Therenormalizationmethod of Kanatani [3, 4, 7].
e TheHEIV (heteroscedastic errors in variaBlenethod of Leedan and Meer [9].

e The FNS(fundamental numerical schejnaf Chojnacki et al. [2].

We call those estimation methods who have accuracy equivalent thiyi_Laccuracymethods and those whose
accuracy are lowdow accuracy methodsypical examples being least squares and the method of Taubin et al. [10,
11]. In contrast, We call those methods who perform better tharhiyfieraccuracy methods

We demonstrate the existence of a hyperaccurate method [8]. Since thstivia®r achieves a theoretical accu-
racy bound, called thECR lower boundl, 5, 7], except for high order noise terms, the difference of hygpmirate
solution from the ML estimator ought to be in higher order noise terms ancthenecessarily very small. Neverthe-
less, the underlying principle for obtaining such a method is theoreticallyimggrtant, illuminating the relationship
between geometric ML and the KCR lower bound.

Bibliography

[1] N. Chernov and C. Lesort, Statistical efficiency of curve fitting alfpons, Comput. Stat. Data Anal47-4
(2004), 713-728.

[2] W. Chojnacki, M. J. Brooks, A. van den Hengel and D. Gawley,tl@mfitting of surfaces to data with covari-
ancesJEEE Trans. Patt. Anal. Mach. Intell22-11 (2000), 1294-1303.

[3] K. Kanatani, Renormalization for unbiased estimatiBmc. 4th Int. Conf. Comput. Vision (ICCV’'93ylay
1993, Berlin, Germany, pp. 599-606.

[4] K. Kanatani,Statistical Optimization for Geometric Computation: Theory and Practdsevier, Amsterdam,
The Netherlands, 1996; Dover, New York, U.S.A., 2005.

[5] K. Kanatani, Cramer-Rao lower bounds for curve fitti@@yaphical Models Image Processing0-2 (1998),
93-99.

[6] K. Kanatani, Uncertainty modeling and model selection for geometricenfss,|EEE Trans. Patt. Anal. Ma-
chine Intell, 26-10 (2004), 1307-1319.

[7] K. Kanatani, Further improving geometric fittingroc. 5th Int. Conf. 3-D Digital Imaging and Modeling
(3DIM2005) June 2005, Ottawa, Canada, pp. 2-13.

[8] K. Kanatani, Ellipse fitting with hyperaccuradyyoc. 9th Euro. Conf. Comput. Vision (ECCV’'08)ay 2006,
Graz, Austria, Vol. 1, pp. 484—495.

[9] V. Leedan and P. Meer, Heteroscedastic regression in computenvizroblems with bilinear constrairitt.
J. Comput. Vision.37-2 (2000), 127-150.

30



[10] G. Taubin, Estimation of planar curves, surfaces, and non-pkpeace curves defined by implicit equations
with applications to edge and rage image segmentalifek: Trans. Patt. Anal. Mach. Intel13-11 (1991),
1115-1138.

[11] G. Taubin, F. Cukierman, S. Sullivan, J. Ponce and D. J. Kriegarameterized families of polynomials for
bounded algebraic curve and surface fittil€EE Trans. Patt. Anal. Mach. Intell16-3 (1994), 287-303.

Kenichi Kanatani received his M.S. and Ph.D. in applied mathematics from the University of
Tokyo in 1974 and 1979, respectively. After serving as Professoomputer science at Gunma
University, Gunma, Japan, he is currently Professor of computercgcarOkayama University,
Okayama, Japan. He was a visiting researcher at the University ofldviaryJ.S.A., the Uni-
versity of Copenhagen, Denmark, the University of Oxford, U.K., &kiRA at Rhone Alpes,
France. He is the author &roup-Theoretical Methods in Image Understandi@gringer, 1990),

. Geometric Computation for Machine Visig®xford, 1993) andStatistical Optimization for Ge-

, = | ometric Computation: Theory and Practigdsevier, 1996; Dover, 2005). He is an IEEE Fellow.

4.15 Low-rank approximation and its applications for data fitting
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Fitting models to data is an ubiquitous problem with long history and many ramificatlepending on the model
class and the fitting criterion being used. A well known special case is théitting problem—find a linez c R?
passing through the origin that best matches a set of given p@ints

P :={dq,...,dn }, di =: col(a, by).

The classical line fitting solution is given by the least squares method. br twchpply the least squares method,
however, we have to represent the mogdelby equations. Two possible representations for a lin&4rpassing
through the origin are

P1(x) ={col(a,b) |ax=b} and HA(y)={col(a,b)|a=by},
wherex andy are parameter of the model in the two representations. The corresporaihgdeares problems are
col(ay,...,an)x = col(by,...,by) (SYS1)

and
col(ay,...,an) =col(by,...,by)y. (SYS2)

In general, the least squares fit is representation dependen#i(&s) # %2 (Yis), wherexs andy;s are the least
squares solutions of (SYS1) and (SYS2), respectively. From thditleig point of view, this is an undesirable feature
of the least squares method: the representation of the model is not plae pfoblem formulation and is therefore
arbitrary. We would prefer a fitting method that does not depend on thieechbthe representation.

An almost representation invariant line fitting method is the classical total lgasres method. Generically
P1(xs) = A2(Yus), Wherexys andyis are the total least squares solutions of (SYS1) and (SYS2). Therbare
ever, non-generic cases wheg, yis, or both fail to exist. For exampleys does not exist whenever the optimal fitting
line Ays is vertical. Note that in this casgs do exist.

Non-generic TLS problems occure because one of the variblite(S§YS1) anda in (SYS2)) is required to be a
function of the other variable. In system theory such representatiercaied input/output: the free variable is called
input, and the bound (by the input and the model) variable is called outputsiByg (SYS1) and (SYS2), we fix an
input/output partition of the variables prior to modeling the data. If the optimal m@#gdoes not allow such an a
priori fixed input/output partition, the classical TLS problem has no solutiothe context of data fitting, it is better
to deducehe input/output partition from the model insteadasumingt in advance.

31



Representations of a line passing through the origin that does not fayoeera input/output partition are the
image%(P) = imag€gP) and kernel#(R) = ker(R) representations, wherec R?*! andR € R*2 are parameters
of the model. The line fitting problem for the image and kernel representdgads to a low-rank approximation
problem: approximate the data matbx= [dl dN] by a rank-one matrix. In fact, low-rank approximation is a
representation free concept applying to general multivariable staticyaradc modeling problems.

The main difference between the static and the dynamic case is in the structbeedata matrix. In the con-
text of linear time-invariant dynamic systems, the data matrix has structureallypitankel or Toeplitz, and the
approximating matrix is searched in the class of matrices with the same struatarestBuctured low-rank approx-
imation problems are in general harder to solve than their unstructuretecparts. In this talk, we list applications

of the structured low-rank approximation problem in system theory analgigacessing, outline numerical solution
methods, and show links to other problems.

Bibliography

[1] I. Markovsky and S. Van Huffel. Overview of total least squamasthods. Technical Report 05-34, Dept. EE,
K.U.Leuven, 2005.

About the author Ivan Markovsky obtained MS degree in Control and Systems Engineering
in 1998 from the Technical University of Sofia and PhD degree in EledtEingineering in 2005
from K.U.Leuven. Since February 2005 he is a postdoctoral reséesitoh Electrical Engineering
department of K.U.Leuven. His current research work is focusedantification methods in the
behavioral setting and errors-in-variables estimation problems. He islaoradithe book “Exact

and Approximate Modeling of Linear Systems: A Behavioral ApproachAkg Philadelphia,
2006).

4.16 Robust regression and, approximations for Toeplitz problems

Nicola Mastronardi , Istituto per le Applicazioni del Calcolo “M. Picone”, Consiglio NazionaldelRicerche, Bari,
Italy, n. mast ronar di @a. i ac.cnr.it

Dianne P. O’Leary, Department of Computer Science and Institute for Advanced ComputeieStlithiversity of
Maryland, College Park, Maryland, USA| eary@s. und. edu.

Consider the approximation problem
Ax~Db

whereA € R™" andb € R™ are given and € R" is to be determined. We define the residual
r=b—Ax

The usual approach to the problem is least squares, in which we minimizentbierof the residual over all
choices ok. This produces the minimum variance unbiased estimator of the solution whemdhein the observation
b are independent and normally distributed with mean 0 and constant variance

It is well known, however, that the least squares solution is not rabastliers occur, i.e., if some of the compo-
nents ofb are contaminated by large error. In this case, alternate approacteesd®yvproposed which judge the size
of the residual in a way that is less sensitive to these components. Thaseittee Huber M-function, the Talwar
function, the logistic function, the Fair function, and thenorm [2]. In this work we consider how the solution to
these problems can be computed efficiently, in particular when the ndgtids small displacement rank [1]. Matrices
with small displacement rank include matrices that are Toeplitz, block-Toepliitzk-Toeplitz with Toeplitz blocks
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(BTTB), Toeplitz plus Hankel, and a variety of other forms. For exposijtwa will focus on Toeplitz matrices, but
the ideas apply to all matrices with small displacement rank. We also show hawnjoute the solution efficiently
when we include a regularization term in case the matrixill-conditioned or rank-deficient.
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4.17 A structured total least squares algorithm for approximate greatest common
divisors of multivariate polynomials

Erich Kaltofen, Zhengfeng Yand and Lihong Zhi?,
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Dept. of Mathematics, North Carolina State University, Raleigh, North Car@i695-8205, USA,
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The approximate GCD problem has as inputs polynonfials ., fs in the variabley;, . ..,y with real or complex
coefficients. Let), = tdeq f;) be the total degree df andk < d; for all i with 1 <i < s. The outputs are polynomials
gandf;,..., f& with real or complex coefficients such that tdgpg> k and tdegﬂ) < d; for ﬂ =gf*, withl1<i<s,
and such thafl A fy|| +--- +||afs|| is minimized, wheren f; = f; — f; for 1 <i < 's. Heref; is the approximation to
the input polynomials and f; is the applied change. We use Euclidean norm on the coefficient veatasltvariate
polynomials.

Using a linear algebra formulation, we can apply a structure-preserviagl¢éast squares approach to our ap-
proximate GCD problem [2]. It has been proved that tded( f1,..., fs)) > k if and only if S(f1,..., fs) has rank
deficiency at least one. Here the matgx fi, ..., fs) is essentially a multi-polynomial generalized Sylvester matrix.
The row and column dimensions §f arey$ , (4% andy? | (47" respectively. Le6({) = [A1({) | b({) |
Ax({)] and letA({) = [A1({) | A2({)]. The matricess((fy,..., fs) andA and the vectob are parameterized via the
vector, which contains the coefficients 6éf, . . ., fs. The dimension of is v which is equal tdy{_; (dir”). We wish
to solve the two structure-preserving total least norm problems

min ||z or min||z|| with A(c+z)x = b(c+ z) for some vectox, (4.15)
zeRY zeCVv

wherec is fixed to the initial coefficient vector. We choose the column corresponditize absolutely largest com-
ponent in the first singular vector & [1].

We extend the structured total least squares (STLS) method in [3] to s@weittimization problems (4.15). If
the optimization problem is over the complex numbers, real and complex padstode separated first. Suppose
Z=7Zr+iz,X=Xxr+iX andA = Ar+iA,. The problem (4.15) can be transformed into unconstrained optimization

33



by the Lagrangian:
L(z.x,A) = 3 22— AR (b(cr+ zr) — A(Cr+ ZR)XR+A(CI +21)X))
—A"(b(c +2) — A(cr+Zr)X — A(CI +21)XR)
=124 AR rR(ZX) + A 11 (2,X).

Before we apply the Newton method, two Sylvester-structured matda@asdY need to be constructed, such that
H(x)z = &(z)x andY (x)z = A(z)x. Applying the Newton method on the Lagranglagields:

AZR
+J
w o Jr AXR| 9 |:)\|] . Z)
[J O} axi | =7 Fr(Z,X) ,  Wwhereg=W YR (4.16)
A)\R r (Z, X) X]
_A)\| i

and where

J— [H (XR) —Y(X|) A(CR—|— ZR) —A(C| +Z )]
Y(x) H(xr) A(q+2z) AlcrR+zr) |’

ltyxt; Oyt ] S Gkt
W= | Xt Hxt ,t1:2v,t2:—2+22 ' .
|:Ot2><tl Ol2><tz i= ( r )

We compute the solution of (4.16), and update z+ Az, x = X+ AX,A = A + AA until ||Az]|; < tol, for a given
tolerance.

We have implemented the above method in Maple and compared it with the STlel-alorithm in [2]. Both
algorithms can be applied to solve the approximate GCD problem and achidadglmptimal backward errors.
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4.18 Structured matrix methods for the computation of a rank reduced Sylester
matrix

Joab R. Winkler, John D. Allan, Department of Computer Science, The University of Sheffield, Unitedd#om
j - wi nkl er @lcs. shef.ac. uk, j.allan@ics. shef. ac. uk

The Sylvester resultant matrip,q) is a structured matrix that can be used to determine if two polynomials
p = p(y) andq = q(y) are, or are not, coprime, and if they are not coprime, it allows their gtezdesmon divisor
(GCD) to be computed. In particular, the rank loss$Sgb, q) is equal to the degree of the GCD pfy) andq(y), and
the GCD can be obtained by reduci8@p, q) to row echelon form.

The computation of the GCD of two polynomials arises in many applications, ingudimputer graphics, control
theory and geometric modelling. Experimental errors imply that the data coosistésy realisations of the exact
polynomialsp(y) andq(y), and thus even ip(y) andq(y) have a non-constant GCD, their noisy realisatioi(y)
andg(y) respectively, are coprime. It is therefore only possible to compuggaroximate GCDthat is, a GCD of
the polynomialsf(y) andd(y) that are obtained by small perturbationsfdf/) andg(y). Different perturbations of
f(y) andg(y) yield different approximate GCDs, all of which are legitimate if the magnitude edetperturbations
is smaller than the noise in the coefficients. It follows tfi4g) and d(y) have a non-constant GCD, and thus the
Sylvester resultant matri&( f, ) is a low rank approximation of the Sylvester mat&X ,g).

In this paper, the method of structured total least norm is used to computantkeaduced Sylvester resultant
matrixS(f, ), given inexact polynomial§(y) andg(y) [3, 4]. Although this problem has been considered previously
[1, 2], itis shown that there exist several issues that have not lielassed, and that these issues have a considerable
effect on the degree of the computed approximate GCD.

Let the inexact polynomial§(y) andg(y) be given by
m n
flyy=Say™ and gy)=S by,  ambn#0,
(v) i; (y) i; i n

and letz be the perturbation of the coefficiemtof f(y), andzm.1.i be the perturbation of the coefficiemtof g(y),
that are required to pertuf® f,g) into S(f, §), which is a structured low rank approximationSff, g). It is therefore
required to minimiselz||,, where

ZZ[ZO  Zm Imypl o Zm+n+l]7

subject to the constraint th& f.§) = S(f,g) + B(2), where the error matriB(z) has the same structure &&f, g),
andS(f,§) is a Sylvester resultant matrix of lower rank tH&(f, g).

A sequence of matrice&y, and a sequence of vectorg k= 1,...,min(m,n), are formed from the Sylvester
matrix §(f, g) of the inexact polynomial$(y) andg(y), and a sequence of matricBgand a sequence of vectdig
k=1,...,min(m,n), are formed from the error matrB(z). It is shown in [1] that the computation S(f, §) requires
the solution of the least squares equality (LSE) problem,

, P=Fzx) =(x+h) - (A+E)x,  h=h(2), Ex=E(2),
2

f=0zx || Z
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for several values ok, until an acceptable solution is obtained. This optimisation yields the correotgdopnials
f(y) andd(y) that have a non-constant GCD, and this enables the Sylvester i§dtr} to be constructed.

The GCD of f(y) andg(y) is equal (up to a scalar multiplier) to the GCD fy) and ag(y), wherea is an
arbitrary constant, and it will be shown thathas a significant effect on the computed results. In particular, it will be
shown that an incorrect value of leads to unsatisfactory numerical answers, and methods for the determiofatio
its optimal value will be considered. It will also be shown that a termination @itesf the optimisation algorithm
that is based on a small normalised residual may lead to incorrect reswtthatrit is also necessary to monitor
the singular values o&(f§) in order to achieve good results. Several non-trivial examples will bd tsillustrate
the importance ofr, and the effectiveness of a termination criterion that is based on the nathedisidual and the
singular values o§(f, §).

The dependence of the computed solution on the value lodis implications for the method that is used for the
solution of the LSE problem. In particular, this problem is usually solved bpé&malty method (method of weights),
which requires that the value of the weight be set, but its value is defingttieally, that is, it is independent of the
data (the coefficients of the polynomials). As noted above, the value ofattaenetera is crucial to the success or
failure of the computed solution, and thus the presence of a parameter dleéinisd heuristically is not satisfactory.
TheQRdecomposition, which does not suffer from this disadvantage, is threre$ed to solve the problem described
in this abstract.
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4.19 Errors-in-variables methods in system identification
Torsten Soderstrom, Department of Information Technology, Uppsala University@t . uu. se

The lecture gives a survey of errors-in-variables methods in systettifidation. Background and motivation are
given, and examples illustrate why the identification problem can be difficaliet/general weak assumptions, the
systems are not identifiable, but can be parameterized using one défyesziom.
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Examples where identifiability is achieved under additional assumptions arpraldded. Such examples include
modeling the noise-free input and the measurement noises as ARMA pescésiother possibility is to use multiple
experiments, where some conditions on the different experiments havenpbsed.

It will be described how an Cramer-Rao lower bound for the parametenaes can be computed, and how
different estimators may be classified.

A number of approaches for parameter estimation of errors-in-variabbetels are presented. The underlying
assumptions and principles for each approach are highlighted. Apm®aovered include the instrumental variable
estimator (based on Yule-Walker type of equations, or more sophisticatsdng); various bias-compensating meth-
ods, where the linear least squares normal equations are complementadawtmore equations to handle the noise
contributions; the so called Frisch scheme, applied for identifying a dynasyistem; total least squares approaches;
prediction error and maximum likelihood methods; and methods designediigrperiodic data.

The lecture is primarily based on [1].
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4.20 Some issues on errors-in-variables identification

Roberto Guidorzi, Roberto Diversi and Umberto Soverini Department of Electronics, Computer Science and
Systems, University of Bologngr gui dor zi , rdi ver si , usoverini }@lei s. uni bo. it

Topics of the paper.

The EIV context The Errors-in-Variables context is a challenging environment well knfsam many years that
has seen an increasing amount of research and, consequentlyw céswdts, only in relatively recent times. One of
the appealing features of EIV models consists in their intrinsic capability afrithésg real processes and in relying
only on limited sets oa—priori assumptions [1, 2]. These features suggest the use of EIV models pphtations
like, for instance, diagnosis, where the interest is focused on a reakestarigtion of a process more than on other
features like prediction.

The Frisch scheme The scheme proposed by the Nobel prize Ragnar Frisch in 1934 [3]ilgexpsting compro-
mise between the great generality of the EIV environment and the possibitggladpplications. Moreover, the Frisch
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scheme encompasses some other important schemes like Least Squénesagenvector Method and plays, conse-
quently, a role of paramount importance also from a conceptual poimgwf Yhe compatibility of the Frisch scheme
with a whole family of solutions has diverted the attention towards simpler scHeaminag to single solutions.

Loci of solutions and their properties in the algebraic caskny analysis of the Frisch scheme cannot ignore the
existence of two separate loci of solutions, one in the parameter spatkeaotther in the space of the variances of
the noise affecting the considered variables and, even more important,pedoateveen these loci. Some fundamental
results [4, 5] describe these maps as well as the shape of the loci in #magiar space under specific conditions (the
inverse of the covariance matrix of the noisy data must be Frobenius-dik&)rifortunately the locus of solutions in
the parameter space can be easily defined only when the data are compitttilalesiwgle linear relation; in all other
cases the reference to the parameter space does not lead to signefscaist iThe investigation of the properties of
the locus of solutions in the noise space has offered the key for a deeglgsis that shows how this locus (a convex
hypersurface lying in the first orthant), differently from what happenthe parameter space, does not degenerate in
any case and enjoys some other important properties [7, 8].

The maximum corank problemOne of the problems considered of great importance in the econometricdiedbts
in determining the maximal number of linear relations compatible with a given satisy data. The importance
attributed to this problem is due to the fact that econometricians considerltitieisof this problem as linked to the
extraction of the whole information contained in the data [9]. The solution optioislem in the context of the Frisch
scheme has been possible only making reference to the properties of ikeofasnlutions in the noise space [10];
other approaches have led to determine an upper bound to this number [11]

Relations between algebraic and dynamic conteX¢hen the data are generated by a dynamic system and the Frisch
context is used for its identification, it is necessary to consider the giepef the loci of solutions under the con-
straints imposed by the shift properties of dynamic systems [12]. It carsanpitising to discover that, in this respect,
the dynamic case can be seen as a subcase of the algebraic one and pravittusly mentioned shift properties
lead (in general) to a unique solution [13, 14, 15]. It can also be surgris show how this solution is linked to the
solution of the maximal corank problem in the algebraic case.

EIV schemes and real data All previous considerations refer to an exact fullfillment of the assumptiaisnd
the Frisch scheme (noise whiteness etc.) that could be satisfied, at theat, asymptotic conditions. In all practical
cases this cannot be achieved not even asymptotically because of asehieteof violations due to non linearity, non
stationarity etc. The development of Frisch identification proceduresresghus the introduction of suitable criteria
leading to the selection of a single model [16, 17, 18].

Bias Eliminated Least Squares and Instrumental Variable methdde Frisch scheme in the identification of dy-
namic processes enjoys some peculiarities like the congruence betweenddleamb the estimated noise variances
but does not constitute the only practical way for solving this problem. Aatabpealing method is based on the
elimination of the bias that would be present by applying least squaresS Bigthods constitute a large family of
fast algorithms that, even if affected by convergence problems, carggivd results [19, 20, 21]. The very general
applicability context of IV methods allows also their use in the solution of ElViiieation problems [22, 23, 24].
Despite their simple implementation and stimulating asymptotic properties these methadieeted by large esti-
mation covariance with limited sets of data [25, 26].

Maximum Likelihood approachesWhen the ratio of the noise variancesaispriori known or when the input can

be described by means of an ARMA process, it is possible, when the disisibution is known, to apply a ML
approach [27, 28, 29]. These approaches lead, in previous terteihe best achievable accuracy but can be affected
by problems of convergence to local minima.

Bibliography

[1] S. Van Huffel (editor).Recent Advances in Total Least Squares Techniques and Erre¥&riables Modelling
SIAM, Philadelphia, USA, 1997.

[2] S. Van Huffel and P. Lemmerling (editors)otal Least Squares and Errors—in—Variables Modelling: Analysis,
Algorithms and ApplicationsKluwer Academic Publishers, Dordrecht, The Netherlands, 2002.

38



[3] R. Frisch. Statistical confluence analysis by means of complete sigmnesystems. Pub. No. 5, Economic
Institute, Oslo University, 1934.

[4] R. E. Kalman. Identification from real data. In: M. Hazewinkel, H.@Gidoy Kan and D. Reidel (EdsQurrent
developments in the interface: Economics, Econometrics, MathemBtiedrecht, The Netherlands, pp. 161—
196, 1982.

[5] R. E. Kalman.Nine lectures on identificatiorLecture notes on Economics and Mathematical Systems, Springer—
Verlag, Berlin (to appear).

[6] B. De Moor and J. Vandewalle. The uniqueness versus the naquemess principle in the identification of linear
relations from noisy dataProc. of the 25th IEEE Conference on Decision and Contidhens, Greece, pp.
1663-1665, 1986.

[7] R. Guidorzi. Certain models from uncertain data: the algebraic c8ystems & Control Letteyd7:415-424,
1991.

[8] R. Guidorzi and M. Pierantoni. A new parametrization of Frisch schesh&ions.Proc. of the 12th International
Conference on Systems Scigngoclaw, Poland, pp. 114-120, 1995.

[9] E. Malinvaud. Méthodes statistiques deeEonongtrie, 3rd edition, Dunod, Paris, 1980.

[10] R. Guidorzi. Identification of the maximal number of linear relations frwisy dataSystems & Control Letters
24:159-166, 1995.

[11] K. G. Woodgate. An upper bound on the number of linear relationstifted from noisy data by the Frisch
scheme Systems & Control Letter24:153-158, 1995.

[12] S. Beghelli, R. Guidorzi and U. Soverini. The Frisch scheme in dyoaystem identification Automatica
26:171-176, 1990.

[13] M. Deistler. Linear errors—in—variables models. In: S. Bittanti (Efime series and linear systepiecture
notes in Control and Information Sciences, Springer—\Verlag, Berlin3pp67, 1986.

[14] B. D. O. Anderson and M. Deistler. Identifiability of dynamic errars-variables models.Journal of Time
Series Analysi$:1-13, 1984.

[15] P. Stoica and A. Nehorai. On the uniqueness of prediction erroelsddr systems with noisy input—output
data.Automatica 23:541-543, 1987.

[16] S.Beghelli, P. Castaldi, R. Guidorzi and U. Soverini. A robust datefor model selection in identification from
noisy data.Proc. of the 9th International Conference on Systems Enginedrag\Vegas, Nevada, pp. 480-484,
1993.

[17] R. Diversi, R. Guidorzi and U. Soverini. A new criterion in EIV idéication and filtering application®reprints
of the 13th IFAC Symposium on System Identificafwiterdam, The Netherlands, pp. 1993-1998, 2003.

[18] R. Diversi, R. Guidorzi and U. Soverini. Frisch scheme-basgarighms for EIV identification.Proc. of the
12th IEEE Mediterranean Conference on Control and Automatisadasi, Turkey, 2004.

[19] S. Sagara and K. Wada. On—line modified least—squares parastateaten of linear discrete dynamic systems.
International Journal of Contrql25:329-343, 1977.

[20] W. X. Zheng. Transfer function estimation from noisy input and atfata.International Journal of Adaptive
Control and Signal Processing2:365-380, 1998.

[21] W. X. Zheng. On unbiased parameter estimation of linear systems usig\ggmeasurement£ybernetics and
Systems34:59-70, 2003.

39



[22] T. Soderstdm. Identification of stochastic linear systems in presence of input ndisamatica 17:713-725,
1981.

[23] S. Van Huffel and J. Vandewalle. Comparison of total least spiand instrumental variable methods for
parameter estimation of transfer function modéfgernational Journal of Contrgl50:1039-1056, 1989.

[24] T. Soderstbm and K. Mahata. On instrumental variable and total least squaresagppofor identification of
noisy systemslnternational Journal of Contrgl75:381-389,2002.

[25] U. Soverini and T. 8derstbm. Identification methods of dynamic systems in presence of input r@isprints
of the 12th IFAC Symposium on System IdentificatBamta Barbara, CA, USA, 2000.

[26] T. Soderstdm, U. Soverini and K. Mahata. Perspectives on errors—in—variabtesation for dynamic systems.
Signal Processing32:1139-1154, 2002.

[27] M. J. Levin. Estimation of a system pulse transfer function in the mEsef noise. IEEE Transactions on
Automatic Contrgl9:229-235, 1964.

[28] M. Aoki and P. C. Yue. On a priori error estimates of some identificatieethods. IEEE Transactions on
Automatic Contral 15:541-548, 1970.

[29] K. V. Fernando and H. Nicholson. Identification of linear systems wiilut and output noise: the Koopmans—
Levin method.IEE Proceedings132:30—-36, 1985.

About the authors.

Roberto Guidorzi holds the chair of System Theory at the Universityab@ha since 1980. He has, besides, been
Director of the Computer Centre of the Engineering School of Bolognadusity from 1987 to 1992 and is, from
January 1997, Director of CITAM (Interfaculty Center for Advan@at Multimedia Technologies). He has been
visiting professor and invited speaker in European and American wsitiesrand has collaborated with several indus-
tries in the development of advanced projects, among them managemenisi@tgas pipeline networks, satellite
navigation systems, computerised injection systems, software for the iddiaifioAnatural gas reservoirs, tracking
and data fusion, early diagnosis in railway systems. He is the author of Z@dngublications dealing with subjects
of a methodological nature as well as applications of system theory metigiekldlis present research interests
concern errors-in-variables identification and filtering, blind chanqehbisation and the development of e-learning
environments.

Roberto Diversi was born in Faenza, Italy in 1970. He received tlairéa” degree in Electronic Engineering in
1996 and the Ph.D. degree in System Engineering in 2000, both from tkerkity of Bologna. Currently, he is an
associate researcher at the Department of Electronics, Computer &SearathSystems, University of Bologna. His
research interests include system identification, optimal filtering, signeépsing, fault detection.

Umberto Soverini was born in Bologna, Italy in 1959. He received thaiféa” degree in Electronic Engineering

from the University of Bologna in 1985 and the Ph.D. in System Engine@mnit§90. In 1992 he has been appointed
Research Associate at the Department of Electronics, Computer Sciah&ystems, University of Bologna where

he is currently Associate Professor. In 1999 he has been a visitingrcbse at the Department of Systems and
Control, Uppsala University. His research interests include stochasticagon theory, signal processing, system
identification and related applications to natural and industrial processes.

4.21 Model-based control in the errors-in-variables framework

Jens G. Linden Benoit Vinsonneau, Keith J. Burnham
Control Theory and Applications Centre, Coventry University, UKndenj @ovent ry. ac. uk

Errors-in-variables (EIV) modelling techniques have received sigmifiinterest in recent years and their per-
formance improvement, with respect to standard approaches, has bs#atiid for certain cases [7]. In contrast,
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however, comparably little work has been done in order to investigate thatbteenefits of applying EIV tech-
niques for the purpose of control. To address this deficiency, the aieis¢o combine EIV filtering with existing
control techniques in order to investigate the potential for improved cllmsgrlperformance in comparison to a con-
ventional approach. As a first step towards realising such an improvemean practical application, a simulation
study, which illustrates benefits of model-based control in the EIV framevi®presented.

In order to cope with the properties of closed-loop control systems, theeotional EIV setup (see [5] for in-
stance) is modified accordingly: the additive noise on the inputs is then eveditb model ‘unobserved inputs’ or
uncertainties with respect to the true inputs of the system (e.g. actuator misdehtch) rather than measurement er-
rors. This leads to a setup which is considered to be applicable to a wide samglustrial processes, whilst opening
up opportunities to adopt a behavioural model structure [4].

A single-input single-output discrete-time nonlinear system, exhibiting bdihear terms as well as a hammer-
stein nonlinearity is simulated. An ElV-extended Kalman filter (EIV-EKF) Mhich is an extension of the EIV-
Kalman filter (EIV-KF), developed in [2, 3], is applied in order to filter inpund output noise components from the
closed-loop system. In contrast to the EIV-KF, the EIF-EKF is able to wéhllinear time-varying (LTV) systems
and/or model mismatch, based on a linear default parameter set, the noisyensasts and the covariance matrix.
The nonlinear system is to be controlled using a model-based controllerinttkenental minimum variance type [1],
which balances between the tracking of the reference signal and a soootithl action. The controller is based on an
identified LTV model of the nonlinear system, which is evaluated by a sepadatgtive online estimation algorithm.
Moreover, due to the nature of tkestep ahead prediction scheme, the controller utilises the available/meagured in
and output signals. The estimation and control performance are asségsand without the usage of the EIV-EKF.
Preliminary results are encouraging, indicating improvement if the filtere@lksigme utilised. A Monte Carlo sim-
ulation is employed to show the consistency of the approach, hence deatiogstihe benefits of EIV techniques in
model based control.
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4.22 Frequency domain maximum likelihood estimation of linear dynamic
errors-in-variables models

R. Pintelon, and J. SchoukensVrije Universiteit Brussel, dept. ELEC, Pleinlaan 2, 1050 BrussellyiBe
E-mail: R k. Pi nt el on@ub. ac. be

This paper studies the linear dynamic errors-in-variables problem inghaéncy domain. First the identifiability
is shown under relaxed conditions. Next a frequency domain Gaussimuoma likelihood (ML) estimator is con-
structed that can handle discrete-time as well as continuous-time modelspamt(a) of the unit circle or imaginary
axis. The ML estimates are calculated via a computational simple and numerkdal [d&awvton-Gauss minimization
scheme. Finally the Cramr-Rao lower bound is derived.

Linear dynamic errors-in-variables (EIV) modelling is important in thosdiemjions where one is looking after
a better understanding of the underlying input-output relation of a psaeglser than making an output prediction
from noisy observations. One can distinguish between two cases: eithekd¢hation of the process can freely be
chosen, or one has to live with the operational (natural) perturbatibtie &xcitation can freely be chosen then it is
strongly recommended to use periodic excitation signals because it simplififgcsiatly the identification problem:
(i) nonparametric estimates of the disturbing noise (co-)variances ali@@dbia a preprocessing step, and (i) since
mutually correlated, coloured input/output errors are allowed, identificatié@edback is just a special case of the
general framework (see Pintelon and Schoukens, 2001). In thedease the excitation is often random and parts of
it may even be unmeasurable. This paper handles the second cagg@ngdbat the excitation is a stochastic process
with rational power spectrum. As will be shown in the sequel of the papesgbend case is much more complicated
than the first: besides the plant model one should also identify simultaneoasigtial, and the input/output noise
models.

Identifiability is a first key issue in EIV modelling: under which conditions on éReitation, the input/ output
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errors, and the process is the EIV problem uniquely solvable? Thisiguéss been studied in detail in econometrics
and an extensive literature is available (see Sderstrm, 2006 for anstixeaoverview). For example, Anderson and
Deistler (1984) handles the identifiability of scalar EIV problems with coloumgdt/output errors, while Nowak
(1993) covers the multivariable case. A second key issue is the numeailcalation of the EIV estimates. Several
algorithms have been proposed, each of them having their specifictagearand disadvantages (see Sderstrm, 2006
for an exhaustive overview). For example, spectral factorization isahgputational bottle neck of the statistically
efficient time domain maximum likelihood method (Sderstrm and Stoica, 1989), wWidleomputational simple
instrumental variable methods have low statistical accuracy (Sderstrm), Z20@@pt for Mahata and Garnier (2005),
all methods handle the discrete-time case and no algorithms for direct cargitioee EIV modelling are available.
In Mahata and Garnier (2005) a method is presented for identifying cantitime models from non-uniformly
sampled data in the presence of white input/output errors.

The contributions of this paper are:

1. the identifiability of general linear dynamic EIV models is shown under eglaonditions,

2. a(computational simple) frequency domain Gaussian maximum likelihood €stlghator is developed for the
general case of coloured and mutually independent input/output errors

3. the ML estimator can handle discrete-time as well as continuous-time modell{ag part(s) of the unit circle
or imaginary axis,

4. a numerical stable Newton-Gauss minimization scheme of the ML cost funsti@nived,

5. easy calculation of the Cramr-Rao lower bound.
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4.23 ldentifiability analysis for errors-in-variables problems
J. Schoukensand R. Pintelon, Vrije Universiteit Brussel

In this paper, an analysis is made of the identifiability problem of the errevasiables identification as a function
of the added prior information. The analysis is valid for continuous or eiisdime systems. The measured input and
output are disturbed by zero mean Gaussian distributed noise, that @meirabcolored and mutually correlated.

In this paper we study the identifiability using only 2nd order moments of the mpditoutput. The analysis is
done in the frequency domain, but the results are also valid for the time dam#ie. frequency domain, it is known
that the covariance matrix is asymptotically block diagonal, with one block pguéncy. For Gaussian signals and
noise the covariance matrices present all information that can be extfemtethe data.

Without making any prior assumption on the signals, plant model, or the disgungiise, the EIV problem is
not identifiable. It will be shown that by adding additional assumptions likaternoise/parametric plant or noise
model/no mutual correlation ..., identifiability can eventually be obtained. &k&lidea is to analyse the number
of independent constraints that can be extracted from the covarianideesas a function of the added constraints,
and these are compared to the number of unknown parameters. This ifoddifeerent combinations: parametric/
nonparametric plant/noise model; white/colored noise; mutual correlatedfatated input/output noise.
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4.24 Optimal Parameter Estimation from Shift-Invariant Subspaces

Richard J. Vaccaro, Department of Electrical Engineering, University of Rhode IslandgKiaon, RI, USA,
vaccaro@l e. uri . edu

Consider the following parameter estimation problems: (1) estimating frequedei®ping factors, amplitudes,
and phases from data consisting of a sum of real or complex exponewfgaiped sinusoids; (2) estimating state-
space models from matrix sequences (MIMO impulse responses); (3) esgjrdmections of arrival using a uniform
linear array of sensors. All of these problems share the following twpegtigs: (1) a certain matrix formed from
noise-free data has low rank, and (2) at least one subspace of this imahift invariant. When processing noisy data
by so-called “subspace-based” methods, the first property is explojtesing a rank-revealing factorization such
as the singular value decomposition (SVD) to get a subspace estimate sBetawise, the second property is not
satisfied, and the equation expressing shift invariance has no ekatidi3oThe usual approach is to solve the shift
equation in a least squares (LS) or total least squares (TLS) serrstheRhree problems listed above, the LS and
TLS solutions are not statistically optimal, and the variances of estimates obftiainethese solutions do not achieve
the CR bound.

In this paper we use a first-order subspace perturbation expansibteio an expression for the noisy subspace
projection matrix estimates obtained from an SVD of the data matrix, in terms of the-fiee subspace projection
matrix plus an additive perturbation term. This expression is used to calcuat@vhriance matrix of the additive
perturbation analytically, and the result is used to solve a single weightddstpssres problem for the underlying
shift-invariant subspace. We call this procedure Optimal Subspace Eetm{@®SE). Signal parameters are then
obtained by solving the shift egation using the OSE subspace estimate. rfdrecea of the estimated parameters
achieve the CR lower bounds for the problem over a range of signalise-natios.

This paper is related to previous work that has derived statistically optirhapsge methods for DOA estimation
problem (problem 3 mentioned above). [1, 2] derive an optimally weigh®®@RET algorithm, which improves the
performance of the original, least-squares ESPRIT algorithm, so thatatienges of the estimates reach the CR
bound. Another subspace-based approach for estimating DOAgdéx Viberg and Ottersten, is weighted subspace
fitting [3]. Yet another approach for optimal DOA estimation is the MODE algariti Stoica and Sharman [4]. The
common ingredient in all of the optimal algorithms cited here is a description oftheveft singular vectors of a
data matrix (or equivalently, the eigenvectors of a covariance matrixpextarbed by additive noise. All of these
algorithms were derived using an asymptotic (data length goes to infinitypfilst- expansion for the perturbed
singular vectors. This expansion appears in [5] based on resultSiriimger [6]. The expansion used in these papers
is valid when the noise in each column of the data matrix be statistically indepemtenisnotthe case in Problems 1
and 2 mentioned above. There is related work [7], which considers-freisenatrices that are not necessarily rank
deficient and derives first and second-order perturbation formitashe rank deficient case considered here, such
formulas have been derived in [8]. The biggest difference betwessethpproaches is that [7] derives a perturbation
expansion for individual basis vectors, while the SPE [8] expandsitire esubspace.

The advantage of the non-iterative OSE algorithm, based on the sulmacdation expansion (SPE), is that it
can be used for all three problems mentioned above. The application oPtheoShe DOA estimation problem has
been done in [9]. In this paper, we show how the SPE is used to derfististdly optimal algorithms for problems 1
and 2. In addition, we use a different approach for solving the resultigighted least squares problems that has
advantages over the approach used in [9].
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4.25 On the role of constraints in system identification

Arie Yeredor, School of Electrical Engineering, Tel-Aviv Universigr i e@ng. t au. ac. i |

The general framework System identification is concerned with the estimation of parameters chariaci@urizun-
known system. The estimation is usually based on observations of the sygieasibly noisy) input(s) and output(s).
In the so-called “blind” system identification scenario, the estimation is basdidecobserved output(s) only, aided
by some general knowledge about statistical properties of the inpuati{s¢rithan by actual observations thereof.

Quite commonly, the discussion is limited to discrete-time systems, assumed to benidéaneinvariant (LTI),
stable and causal. As such, their input-output relation can alimydescribed as

y[t] = /ih[ﬁ}u[t —] VtelZ, (4.17)

whereult] is the input,y[t] is the output andh[¢] is the system’s impulse response. In the Multiple-Inputs, Multiple-
Outputs (MIMO) case, the inputs and outputs may assume a vector formehhagic form of the convolutive relation
remains the same:

ylt] = /SOH[K]U[ — ez, (4.18)

whereu[t] andy[t] denote (respectivel\}-dimensional andl-dimensional input and output vectors, adfl] denote
theL x M impulse response matrices.

Although such systems are fully described by their (generally infinite) impelsgonse, some prior knowledge
pertaining to their structure often allows to assume that they can also bébeesby a reduced (finite) set of pa-
rameters. For example, the Single-Input Single-Output (SISO) modél) (% often also modeled by a difference
equation,

Ibarring the usually uninteresting possibility of an additive constant.
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Np N,
aoy[t] = — > awyt—kl+ > bult — K], (4.19)
k=1 k=1

whereN, andN, are (respectively) the number of poles and zeros in this moded a%n[iao ara - an,boby -+ bn,] T
is the finite vector of unknown system'’s parameters.

Likewise, the MIMO model (4.18) is often described using a State-Spacelmod

X[t + 1] = AX[t] + Bult] (4.20)
y[t] = CX[t] + Dult],

wherex(t] is an “internal” (unobservedy-dimensional state-vector, aAdB, C andD are matrices of the appropriate
dimensions, which together comprise the finite set of unknown model pansfiete

Similarly, description of the MIMO system with a (matrix) difference equation ehaa of the SISO system with
a state-space model are also possible. We shall regard the SISO eaparéisular case of the MIMO case, except
where the distinction is necessary.

Identification via constrained optimization Assume that an observation interval of lendgtlis available. Typical
system identification approaches seek to minimize (or to maximize) some critehiarh) generally involves all of

the available output/input observatiovs= y[1]y[2] --- y[T]] andU 2 [U[1] u[2] --- u[T]] (which is absent in the
blind scenario), the unknown system parametgraind possibly some additional “nuisance parametexsdften
representing some underlying, unobserved signals. Optimization of thaarite sought with respect t8 and @,
yielding in turn the estimates of these parameters:

rginC(Y,U;Q,(p) = 0,0 (4.21)
)

Often, however, some constraints on eitBeip or both are introduced into the optimization (4.21). The motiva-
tion for incorporating these constraints can come from a surprisingly \zgety of perspectives on the problem.
The main goal of this paper is to review the different approaches thattdediferent types of constraints, each
with the associated motivations, and to outline the resulting optimization and estimagimaeahes, providing some
comparative study of the results.

Following are a few examples of useful constraints, with brief descriptidheomotivation and frameworks by
which they are applied.

e Constraints aimed at avoiding a trivial minimizer of the criterion. This is usuallyp&séc motivation for adding
constraints, where the associated optimization problem cannot yield d sskifiion without excluding trivial
solutions from the feasibility set.

e Constraints aimed at incorporating prior knowledge about the systemasuhbk locations of some of its poles
or zeros (in a fashion similar to [4], [2]), so as to improve the resulting estima@zuracy by effectively
reducing the number of degrees of freedom.

e Constraints aimed at imposing certain “natural” structures on some of thdssigmalves. This type of con-
straints usually involves the nuisance paramegerather than the parameters of inter@sEor example, in the
Structured Total Least Squares (STLS, e.g., [@}¢an consist of the estimated noiseless signal matrix, whereas
the constraints confine the elements of that matrix to obey a certain strucamkdHToeplitz, etc.).

e Constraints aimed at mitigating the bias induced by additive output noise (4,47][916]) or by the use of
an inconsistent criterion [18].

e Constraints aimed at guaranteeing the stability of the resulting estimated sy$t¢®h [5
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Most of these constraints would take the form of “equality constraintsheha f(6,¢) = 0 (wheref(-) is an
associated vector function), but some may also involve forms of inequalitieshasic approaches for optimizing the
criteria under the associated types of constraints (Lagrange multiplietispief multipliers, Successive projections,
Linear programming) will also be reviewed and graphically illustrated, whppdicable.
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4.26 Principal component, independent component and parallel factor analysi
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This talk is an introduction to Independent Component Analysis (ICA) amdllel Factor Analysis (PARAFAC),
the way they are related and their links with Principal Component Analysi8&YAZCA is now a standard technique
for the analysis of two-way multivariate data, i.e., data available in matrix formateMer, principal components
are subject to rotational invariance. By imposing statistical independeativer than uncorrelatedness, the solution
becomes unique. This is ICA. On the other hand, PARAFAC is a techniquedtiiway data analysis, based on
the decomposition of the data tensor in rank-1 terms. PARAFAC is uniquer umittk conditions on the factors.
ICA decomposes a higher-order cumulant tensor in rank-1 terms. HEDBeuniqueness stems from PARAFAC
uniqueness. PCA is often used as preprocessing, leading to PARARAGthogonality constraints.

4.27 Applications of TLS and related methods in the environmental scieres

Jost A. Ramos Department of Electrical and Computer Engineering, Indiana UnivePsitgue University - Indi-
anapolisj ar anos@ upui . edu

Rainfall-Runoff and Signal Separation Problems:Converting rainfall into runoff is a highly nonlinear process
due to the soil-water interaction that starts when rainfall reaches the dyréwditional variables to consider are
evaporation, transpiration, losses due to vegetation and land use, adifferent flow processes that take place in
a watershed. For instance, baseflow is a much slower process thamdgadar and surface flow. Given records of
rainfall and runoff data, one can build an accurate state-space maheas

Xer1 = A+ Buc+wg
Yk = CX+Duy+ Vg,

where at timek, U, Yk, andxy are, respectively, the rainfall, runoff, and the state of the system.@odels have been
used in real-time forecasting scenarios for flood control purposesipiyever, the above model does not take into
account the nonlinearities of the rainfall-runoff process. Most lumpétfall-runoff models separate the baseflow
and groundwater components from the measured runoff hydrograph &tempt to model these as linear hydro-
logic reservoir units. Similarly, rainfall losses due to infiltration as well asratihstractions are separated from the
measured rainfall hyetograph, which are then used as inputs to the liygraildgic reservoir units. This data pre-
processing is in essence a nonlinear signal separation problem vairdied! is separated into infiltration and excess
rainfall, and the measured hydrograph into surface flow and grouedfew as shown in Figure 1. These are then
used to build separate linear models such as

X1 = Ag+Bgup
Yo = CoXi+Dgly,
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Xer1 = A+ Bsug
yﬁ = Cs)ék + DSUE,

where

Uy = U+ US Niluk B Nilyk
Yo=Yt ¥R o k;)

In the separation process, a TLS approach is used since the infiltratioesgris an exponential signal. Thus, the
classical NMR fitting techniques [2, 3, 5] are used.

Physical Parameter Extraction Problems:When modeling physical processes such as the rainfall-runoff inter-
action, where water flows into different compartments, one is faced wittysiqati parameter extraction problem.
This is quite evident in black-box system identification where an unknown sitpiteansformation matrix destroys
the physical meaning of the problem. Here we show that such similarity tremafion can be recovered as a post
identification TLS problem. That is, suppose the identified state-spacersysatrices ard A,B,C,D}, while the
physical parameter matrices are those of a system with three compartmembsvasrs Figure 2. The the parameter

matrices for both the physical and identified models are shown in Table 1.

The two systems are related by a similarity transforma‘t‘lohe.,T_A_T*1 =AT B=B, an_dC_T*1 =C. Asonecan
see, this system of equations is nonlinear, but if we rewrite the$dasAT, TB = B, andC = CT, then we convert
the problem into a linear one. It turns out that the solution can be framed agheogonal complement problem of
the formx™ o7 = Op.q, Wherep andq are problem dependent dimensiorsontains all the elements of tlematrix
plus some of the parameters from thenatrix, ande’ is a matrix obtained from the identified model parameters, i.e.,

{A,B,C}. We will generalize the above results and show an example of a two-tagkogsmodel.

Other Applications and Related Methods:We will also discuss applications of TLS in hyperspectral analysis,
variogram fitting of spatial processes, and Chemometrics applications intliereemental sciences.

Table 1. Physicalunknown and identified model parameters.

Physical Model Identified Model
—ko1 K12 0 _ a;1  a;p a3
A= kot —kio—ka2 k23 Ac= | a1 agaps
0 K32 —ko3 — ko3 ag1 Az  ags
10 B b1y bi2
B=|0 0 Be= | b1 b2
|1 00 ~ _ | Ci1 Ci2 Ci3
C_[O 0 1} CC—{CH Co22 Czs]
00 — 00
°=6 o] %= o]
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4.28 Recursive total least squares not using SVD

Dan Pachner, Jirka Roubal, Pavel Trnka Department of Control Engineering , Faculty of Electrical Engineering,
Czech Technical University, Technicka 2, 166 27 Prague 6, Czephlfiic,
{pachner, roubalj, trnkap}@ontrol.felk.cvut.cz

Introduction  The standard approach to the Total Least Squares TLS problem sdkitle SVD de-composition
algorithm [2]. The SVD solution is well known and reliable numerical tool lyigemplemented in Matlab. None-
the-less, for some applications like adaptive control, which may also bel lmsa TLS model, the SVD matrix
decomposition can be unnecessarily complex. In our contribution, weopeop simplified TLS problem solution
approach, which replaces the SVD hy the QR decomposition.

Recursive Total Least Squares in a Rotating System of Co-Ordinas In our contribution, we propose an itera-
tive TLS problem solution. At every iteration stage, an OLS (ordinarytls@sares) problem is solved. At the next
iteration, the dependant variable is rotated to the direction perpendicular fmstrstage model hyper-plane. Whereas
with the ordinary least squares the error distances are measured aefigeal direction, the TLS solution minimizes
the squared distances along the direction perpendicular to the modetgigper We propose the iterative scheme
based on that direction update. We will show the sum of squared distambesminimized by both OLS and TLS
models are the same only the constraint is different: either the length of ttar wéenodel parameters has to be one
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or the last vector co-ordinate has to be one. There is one interestingquamsce of this observation: the two OLS and
TLS optimization problems would yield the same vector of parameters if it would hagpened the OLS optimiza-
tion problem would result in a vector of the last co-ordinate equal to onihid case all model parameters would be
zero except of the last one. In other words, if one calculates the OL®Impadameters and the result happens to be
such vector of all zeros except of the last one, there is no need tdatelthe TLS model parameters because the
result would have been exactly the same. The reason is the vector ofgiara satisfies both constraints at the same
time. Our algorithm is based on this idea. The geometric interpretation of thealati@m is the following one: At
each iteration, the OLS problem supposes a special dependant vayiakla linear combination of the TLS problem
data 'k such that this linear combination is perpendicular to the model hyper-plametfre previous iteration. It
also supposes the independent variables to be an ortho-normal bassspoévious iteration hyper-plane. Thus, the
distance, which has to be measured along the direction perpendicular todleehyper-plane, is measured along the
direction perpendicular to the last known OLS model hyper-plane. Both @hblem solution and the rotation matrix
update can be achieved via the QR matrix decomposition. Thus, our TLEpreblution approach replaces the SVD
matrix decomposition with a series of the QR decompositions. We will demonstrateuthiéerative algorithm can
easily be generalized to the mixed TLS problems. A proof of convergeiliceenprovided.

Adaptive TLS and State Space Models In our contribution will show this TLS problem solution is convenient
for the adaptive TLS models and the recursive subspace system idgiificThe reason is the dependant variable
direction update requires only a low number of iterations for slowly varyingehpdrameters. Thus, exactly one
matrix QR decomposition has to be performed instead of the SVD decompositiachkatowly varying TLS model
parameters. We will show this algorithm can easily be combined with the stafwigedting techniques known from
the adaptive control theory [3]. To demonstrate this, we will show howtating line which rotates round the clock
like a clockwork hand, can be tracked by the algorithm, see the Figureelcldbkwork hand position is measured
under noisy conditions and the rotation pivot position is unknown. NextiNeshow that our algorithm can be used
with a subspace identification approach related state space model identifieatiosive algorithm [1] and with an
ARX model structure related multi-step predictor identification.
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4.29 On arecursive state space model identification method
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Introduction  Most of our linear model identification applications were based on the Bayparadigm. The Bayesian
statistical approach is based on the subjective belief measure [3]. §tatiks statistical background, the Bayesian
identification methods can easily combine the experimental data with the priomation about the process model.

This technique proved to be very rewarding in all our applications. In nsasgs, the experimental data do not bring
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Figure 4.1: The clockwork hand tracked by the adaptive TLS and OL&tsod

enough information to build a reasonable process model [5]. In prattiees can be found many prior informa-
tion examples. For instance the process settling time is between 1 and 5 minutesdbss DC gain is exactly 1
(for a conveyer) etc. Quite often the low frequency information abouptbeess model can be drawn from a first
principles considerations (laws of physics, chemical laws), whereaiidgihefrequency behaviour must be identi-
fied experimentally. Because for most processes, the fast trandiectisedre usually governed by too complicated
theoretical laws.

Since the subspace identification methods have emerged in 1990’s [1]néei@een an obvious gap between
Bayesian approach and the new methods. Whereas the new subspdifieatien proved to be very robust and
reliable, the Bayesian methods could easily provide the process paramegetainty in terms of their conditional
probability density function, and to combine the prior information with the dateottier Bayesian approach advan-
tage has been it naturally provides recursive system identification methibid$ are linked to the sufficient statistics
calculations.

Since then, it has been our goal to understand the subspace identifinatioods in view of the Bayesian approach.
We set the goal to find the new method Bayesian interpretation. We hope thigrwidih the subspace identification
methods with the standard Bayesian advantages as mentioned.

State Space Model Identification in the Bayesian Paradigm In our contribution, we will demonstrate how the state
space linear system model parameters can be estimated within the Bayeaaigmalt will be shown the state space
model is naturally derived if the multi-step prediction conditional probability issadered instead of the one step-
ahead prediction as usual. Thus, the state space model paraeRr€, D can be understood as the multistep
prediction probability parameters. In our recursive identification methedcansider the following conditional co-
variance matrix

Pr = cov(yi 4 uh ). (4.22)

wherey is the process output ands the process input on the future horizgn It will be shown that the covariance
matrix Pg eigenstructure is related to the process model order. Defining a mead@nposed row-wise from the co-
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variance matrix eigenvectors related to the non-zero (statistically) eigesyahe futurey values are decomposed to
a sum of initial conditiorx response and the future controls forced response

CA D
2
Ny L —N A t)+N cB ° 1 4.23
t+Tr — . X( )+ : i u[+T|:' ( . )
CATF CA¥ 1B ... CB D

In our algorithm, we use the equation (4.23) to define process state fuhbBaft), which can picked to be our
model representation of the process state. Kei®the system observability matrix as in (4.23). In our contribution,
it will be shown the conditional probability distribution function related to theacmnce matrix in (4.22) has to be
modified to force the model causality. In other words the process owfldthiave to be independent on the future
controlsu(k+ j), j > 0. Techniques known from the Bayesian information fusion can be uskdde the process
model causality.

The state representati?dOX(t) is calculated using the following conditional probability

p ( ti%—p |U{i—::'—': ) u%—Tp’y{—Tp) ) (424)

whereTp means the past horizon. Once the state representation is evaluated, thenatoidesA, B, C, D are found
to be parameters of the following conditional probabilities.

P(NOXH)[NOXt — 1), u(t - 1)), P(Y(t)INOX1), u(t)). (4.25)

It will be shown all the conditional probability functions evaluations can edgsmed recursively using a nu-
merically robust orthonormal matrix triangularizations, known from reearkeast squares methods. The matix
calculation can either be based on the SVD matrix decomposition algorithm, orifieddeast squares algorithm [2].

Advanced distributed parameters process control [4] require a low dioreal model that can be provided by our
algorithm. the use of our algorithm will be demonstrated on a glass furndae Tas example involves the prior
information incorporation to the state space model parameters.
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4.30 Comparison of the joint output method and the sample maximum likelihood
method in errors-in-variables identification
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Introduction In errors-in-variables (EIV) identification, both the Joint Output (JO}hué [1] and the Sampled
Maximum Likelihood (SML) method [2] are attractive estimators because theyhandle general noise conditions
and give high accuracy. In the JO approach, the EIV system is regjaasl a multivariable system with a two—
dimensional output vector and three mutually uncorrelated white noiseesouBy converting the model into the
innovations form, a maximum likelihood JO(ML) method can be applied to giveistant parameter estimates. The
SML method is a frequency-domain identification approach where the ersatiance matrices of the disturbing
noise is replaced by the sampled covariance matrices, which are calculatea fsmall numberM) of indepen-
dent, repeated experiments. Compared to the frequency domain Maximuilihagkdemethod assuming known noise
variances, the loss in efficiency of SML({# — 2) /(M — 3), which is not large even for smay.

An essential assumption for the JO(ML) method is that the noise free inmaldig stationary with rational
spectrum, so that it can be described as an ARMA process. In the JO@éthod, the input and output noises are
also assumed to be described as ARMA processes with a small set of paariibe SML method works under
arbitrary true input signals and noise conditions, but with another impoassumption: the noise-free signal is
periodic. In general, both the JO(ML) method and the SML method can givé gstimates but work under different
experimental situations. If there is a condition suitable for both approasiésh method can give better estimation
accuracy? It is of interest to investigate the relation between JO(ML) Bhdrethods.

In this paper, we compare these two methods by simulation under differses,csuch as, assorted dynamic
systems with different orders, different input signals, white or colongdit output noises, varied signal-to-noise
ratios (SNR) etc. Based on these results, more complicated theoreticalrismmpanight be attempted in the future.

Results and discussion AssumeNM periodic data are available, whelké is the number of periods ard is the
number of data points in each period. Also assume that in each period tleefre@snput signal is a realization of a
stationary process.

The JO(ML) method uses all data points and assumes that the input sigmAlRMA process but does not exploit
that the data are periodic. However, the SML method uses the periodimition but disregards that the input signal
is an ARMA process. For comparison, we also give the Cramer-Rao looverd based on known input-output noise
variances and the period information but no assumptions on the input si§eal§2].

During the comparisons, the standard deviation (std) of each method latdated from their theoretical co-
variance matrices of the estimation parameters, which have been provedvid! Ineeet their relevant Monte-Carlo
simulations. Details on these formulas can be found in [1], [4], [3] and [2]

Firstly, we analyze the effect of different order systems with white inpdtvehite output noise. Comparison results
shows that for low order systems, the estimation accuracy of SML and LDOtdthod are quite similar. See Figure
1. While for high order systems, for those regions where the signalitz-matios (SNR) is poor, the std of JO(ML)
method is larger than that of the SML method. The smaller the SNR, the more diki;ighenomenon becomes.
New comparison results under the same condition are shown except aleipgriodic information to JO(ML) by
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simple averaging the data over the M periods. The difference of JO(MILBML estimation results in the low SNR
area has disappeared. According to these results, it seems that uspegititec information is important for high
dynamic system especially when SNR is low. Furthermore, different inguiaks have been tried for various systems.
The results show that for high order systems the input signal is more imptrtanfor low order systems.
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Figure 4.2: Spectrum of noise free signals and noises (up), and cismpaf standard deviation of JO(ML) and SML
(down) for a second order system white measurement noise.

Several examples with colored measurement noises were also tried. iVhesirgilar results as for white noise
cases, i.e., if the periodic information has not been considered, the stel &8{ML) method is similar to that of the
SML method except at the very low SNR regions, where the estimation umtgrd JO(ML) is larger than that of
SML. This phenomenon is more pronounced for high order dynamic systems
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4.31 A fast algorithm for solving the Sylvester structured total least squags prob-
lem

Bingyu Li and Lihong Zhi , Key Lab of Mathematics Mechanization, AMSS, Beijing 100080 China,
{l'i by, I zhi }J@mrc.iss.ac.cn

Given two univariate polynomial$, g € R[x] with deq f) = m and degg) = n. For a positive integek with
k < min(m,n), we wish to find perturbations f, Ag with deg A f) < mand degAg) < n, which solve the following
approximate GCD problem:

‘min |afl3+]agll3 suchthat degced f+af,g+Ag)) >k (4.26)
A9

SupposeS(f,g) is the Sylvester matrix of andg, thek-th Sylvester matrixs is a submatrix ofS obtained by
deleting the lask — 1 rows of Sand the lask — 1 columns of coefficients of andg separately irS. We know that
deggcd(f,g)) > kif and only if dim NullspacéS) > 1 [3].In [9, 8, 5, 6, 1, 10] structured total least squares(STLS)
algorithms have been applied to solve the approximate GCD problem (4.286)mfementation of STLS which
does not exploit the displacement structure of Sylvester matrix has its catyégubic in the degrees of the input
polynomials. In [8, 9], a fast implementation based on Structured Total Neasn (STLN) [12, 11] for constructing
a Sylvester matrix of given lower rank was proposed. It has a quadnatizint of complexity in the degrees of the
input polynomials. However, due to the large penalty used in STLN, wethaygply the generalized Schur algorithm
in [4, 2] to operate on an ill-conditioned matrix. In the following, we describpew fast algorithm which generalizes
the method in [7] to solve the Sylvester structured total least squares iproble

Supposes = [bk, Ax], whereby is the first column of§, and Ay is a matrix consisting of the remaining columns
of S. The Sylvester-structure preserving perturbaffanEy] of S can be represented by a vectar R™ "2 which
contains the unknown coefficients of polynomials of degra@sdn. We solve the equality-constrained least squares
problem:

min||z||2, subject tor (,x) = bic-+hi — (Ac+Ei)x = 0. (4.27)

The above minimization problem can be transformed into unconstrained optimibgtibe Lagrangian:

L(z,x,A) =0.52"z— AT (bx + hx — Ax — Exx). (4.28)
Construct a Sylvester structured matdxsuch that
Xz = Exx — hy = [hy, Ey] [ _Xl } (4.29)

Apply the Newton method on the Lagrangiamand yields:
AZ |t1><t1 0t1><t2 Xl;r Az T
J'A
AX = Ot2Xt1 Ol2Xt2 AI +EII AX - [ gl’—i(_Z X) } ’ (4'30)
AA xk Ak+ Ek Osxs AA ’

wheret; = m+n+2,tp = m+n—2k+1,s=m+n—k+1,J = [X, A« + Ex], andg is the gradient of the objective
function in (4.27).
SinceM is not strongly regular [7], a permutation matRxs considered to transforil as:
o |t1><t1 XJ Ot1><t2
M=PMP" = | X Osxs Ax+Ex |.
Otzxtl A;I(- + ElI 0t2><t2

The Schur complement & w.r.t. the blocKi, x1,, is:

. X XT E
:[AIXJEEI Aa::tzk]. (4.32)

M

(4.31)
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Theorem 3 M is a strongly regular matrix of displacement rank at m8stith respect to the displacement defined
byM — FMFT, where
F— Zm+nfk+l
Zm—s—n—2k-|-1 ’

here Z is a lower shift matrix of order i.

By applying the generalized Schur algorithm with: n— k+ 1 negative steps amd+ n— 2k+ 1 positive steps,
we obtain the.DLT factorization ofvi stably. Consequently, the solution to (4.30) can be obtained®itBm+ 2n—
3k+2)?) flops. We update = z+ Az, X = X+ AX, A = A + AA until ||az||, < tol, which is a given tolerance.

We have implemented the fast algorithm in Maple and applied it to compute thexappte GCD of univariate
polynomials. The experiments show the efficiency and stability of the nevalig@tithm compared with that of the
STLN based fast algorithm [8, 9].
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4.32 Computational aspects of the geographically weighted regression

Andrzej Ma ckiewicz and Barbara Mackiewicz, Institute of Mathematics, Technical University of PoanBoland;
macki ewi @ol . put. poznan. pl; Institute of Socio-Economic Geography and Spatial Management, Adam
Mickiewicz University in Pozna, Polandpasi c@nu. edu. pl

Geographically Weighted RegressidBW R is a new and powerful method for the analysis of spatially varying
relationships [2]. At the beginning of such an analysis it is assumed thaawe definedn differentdata pointsin
a given region of the country. Eactth data point is uniquely defined by a pair of coordingtgsv;). We give this
location a valuey; of the dependent variableand valuesi (1 < k < n—1) of independent variables.

Let us consider alobal regression modekritten asy; = [y + zﬂ;iﬁkxik, where the dependent variabjeis
regressed over a set of independent variakle$hen, the classical regression equation can be written in a matrix
form as an overdetermined (and usually not compatible) system of linaatiens

y=Xp, (4.33)

whereX € R™" is not necessarily sparsgc R™ and 3 = (B, .., Bn-1) is the vector of parameters (constant over
space) to be estimate@W Rextends this traditional regression framework by allowing local rather gitamal pa-
rameters to be estimated so that kheal modelfor each individual-th location (called théth regression pointis
rewritten asy; = Bo(u;, Vi) + ZL‘;%Bk(ui,vi)xik, whereS«(ui, Vi) is the value of a continuous functigd(u,v) at this
location. So, in this method we want to determine a marix (S (u;,Vvi)) € R™" which consists ofn sets of local
parameters. The parameters in eati row of the above matri® are determined from a weighted, overdetermined
linear system

Wy = WX, (4.34)

where a matriX\f = diag(Wi1, Wiz, ..., Wik, ..., Wim) IS anm x m spatial weighting matrix and 2 wi > 0 is the weight
given to data poink in the calibration of the model for regression painThe weightw;; is usually calculated from

the formula
1/dj\?
Wip=expl =5 v ) |

whered;; is the distance between regression poantd data poinf, and the parametdr(calledbandwidtt) is chosen

so that weighting matricedf are well conditioned. Hence, data points closer to the regression peimteighted
more heavily in the local regression than are data points farther away tegvession points are close to each other,
then the two corresponding weighted systems (4.34) are almost identicsthaunldl have very similar solutions. The
spatial variation of each particular parameter estimate is analyzed graphitctilyend of the process and compared
with the behavior of the global solution of the system (4.33). In many applitatius approach is much better suited
to reality than an ordinary linear regession (related to the system 4.33).

Theoretically the system (4.33) and each of the systems (4.34) can bd separately as drSproblem. As these
systems are usually very big, this approach is hardly acceptable froroitiggutational point of view. Moreover, the
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matrices involved are often ill-conditioned and some kind of regularization beugerformed in order to assure con-
tinuity of each parameter estimate over the region considered. To saventipaitedion time the authors of tH&W R
method had recommend (in [2]) a normal equations approach as a methbdicé éor solving the systems (4.34)
involved. This paper presents an alternative approach, still fast bt stable numerically. The new algorithm uses
(only once) properly chosen Householder [3] postmultiplications in olétri-orthogonalizé [5] the coefficient
matrix X. It is proved (on the basis of the Implic@ Theorem and Krylov subspace methods) that these transforma-
tions provide an elegant way of extracting a well-conditiogederal coresubproblem both for the problem (4.33),
and the correlated weighted problems (4.34). Next, a modified version GNHRE Salgorithm is used to solve all of
the weighted problems in the specidendrite liké order (determined by the spatial distribution of the data points).
As the special and effective preconditioning technigue is implemented, arslirtion of one system is used to start
the next iteration process, the whole matBixs determined quickly and fulfils the desired expectations. Sensitivity
analysis is included.

This approach has been used successfully used for land priceiamaiysland. Possible new applications to signal
and image processing (infd_Sapproach) are mentioned. Computer programs (written in Fortran 95 attabyhaill
be delivered on request by the authors.
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4.33 A cumulant statistic—based method for continuous—time errors—in—vaaibles
model identification

Stephane Thil, Hugues Garnier, Marion Gilson
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Universie Henri Poinca, Nancy 1, BP 239 — 54506 Vandoeuves-Nancy Cedex — France
firstnane. | ast name@r an. uhp-nancy. fr

Continuous-time errors-in-variables system identificaton

In this paper the continuous-time errors-in-variables model
depicted in the opposite Figure is considered. Uo(t) Go(p)=EolP
Errors-in-variables (EIV) models, where uncertainties or
measurement noises are present on both input and output ob-
servations, play an important role when the identification pur-
pose is the determination of the inner laws that describe the
process, rather than the prediction of its future behavior. Nu-
merous scientific disciplines use such EIV models, including(tk) u(ty) (t) y(ty)

time series modeling, array

signal processing for direction-of-arrival estimation, blind channekdization, multivariate calibration in analytical
chemistry, image processing, or environmental modeling [9].

Furthermore, in many areas of science and engineering, the identifiachttymodels should be physically mean-
ingful. As a result, there is a need for modeling approaches that are ajdkddalirectly from the sampled data ef-
ficiently parameterized (parsimonious) continuous-time models that havepblgsical interpretations. The attention
in the system identification community was almost completely focused on the ditianetenodel identification tech-
niques until recently. The last decade has indeed witnessed consgdéeablopment in continuous-time approaches
to system identification from sampled data (see [5] and [8, 3] for morexteeterences).

The goal of this paper is to present an approach for continuous-timelimgpd®at can take into account colored
measurement noise in both input and output observations. Many methaglbden proposed to solve the EIV prob-
lem in discrete-time, whereas in continuous-time it is relatively unexplorecovénview of the main discrete-time
methods can be found in [6]. Regarding the continuous-time, an appneadieen recently proposed in [4], assuming
the noises contaminating the data to be white.

Unless we impose certain assumptions on the signal and noise models, it imaeh-khat the general EIV
model is not uniquely identifiable from second order statistics [1]. Althdbghproblem can be overcome by adding
supplementary conditions, EIV models suffer from this lack of identifiabilitysTnotivates the approaches based on
higher-order statistics.

Yo(t)

Y

<

Higher-order statistics The proposed methods are based upon the third-order cumulants; the pnoénties are
quickly recalled. Some statistical assumptions on the noise-free input sigdabn the noises are necessary: the
probability density function of the input signal is assumed to be non-symmefniexeas the noises are assumed to
be symmetrically distributed. The differential equation of the system is thefisadiy the third-order cumulants [2]

Con(12:72) = G(P.)Conn(T1 T2) = 203 Canl 71,2 (4.35)
whereCyyy, Cyyy are the third-order (cross-)cumulants &@dp, 8) is the parametrization of the real system. The
noise-cancellation property of the third-order cumulants implies that equ@tidh) is (asymptotically) noise-free,
consequently the simple least-squares method gives consistant estimateseHavhen only a finite data record is
available, errors appear in both left- and right-hand side of equatioh)(4.3
To obtain estimates of the parameter vector, two possibilities are then cousidere
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Linear regression. To estimate the parameter veciy the linear regression theory can be applied to equation
(4.35). Minimizing the following equation error

e1(11,72) = A(P)Cuy T1,T2) — B(P)Cuud T1,T2) (4.36)

two criterion-based estimators are derived: the simple LS estimator and thesTib&tor.

Non-linear regression: the Steiglitz-McBride algorithm. From equation (4.35) can also be derived by mini-
mizing the following output error

€(T1,T2) = CuyT1,T2) — igg;cuuﬁl,rz) (4.37)

This output error is non-linear in the parameters. To avoid the recoursentdinear optimization, following the

work of J.M.M. Anderson in discrete-time [2], the Steiglitz-McBride [7] aligfum is used. An equation error is
consequently defined, converging towards the output error (4.37) iiteeative fashion. Another criterion-based
estimator is then defined.

The state variable filter. One of the key points in continuous-time system identification is how to handle time-
derivation. Here the cumulants time-derivatives are needed and to estieratéhstate variable filter [10] is utilized:

in a first step the derivatives of the input/output signals are estimated, teauthulants derivatives are computed
from these estimates.
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4.34 New errors-in-variables unscented Kalman filter algorithms with @hance-
ments

Benoit Vinsonneay David P. Goodall, Keith J. Burnham
Control Theory and Applications Centre, Coventry University, bKyi nsonneau@oventry. ac. uk

The errors-in-variables (EIV) filtering problem has only recently bieemulated and solved [4] for systems that
are assumed to be linear and time invariant (LTI). EIV algorithms derivesiigle input single output (SISO) systems
are described in [1]. Extensions to the multiple input multiple output (MIMOgd@s/e been proposed in both the
stochastic [2, 3] and deterministic [9] contexts. Based on one of the gedpalgorithms in [1], termed here the EIV
Kalman filter (EIV-KF), a parallel development proposed in [10] hasredeel the approach to encompass linear time
varying (LTV) systems. This is achieved with a new EIV extended Kalman f{i&v/-EKF), which estimates a set
of compensating parameters within an extended state. As well as handling\theake, the EIV-EKF algorithm has
been shown to provide a superior performance over the EIV-KF forThease when the system parameters are not
known exactly.

Unfortunatelly, the performance of the EIV-EKF decreases when apiglia system which exhibits severe nonlin-
earity, due probably to the limitations imposed when utilising the linearisation steppngtiztion stage of both state
and error covariance; noting that only the first order terms of the Tagloes are described accurately. A solution to
such a problem, that has been proposed in ‘classical’ Kalman filtering, iske us® of an unscented transformation
(UT) [5, 6, 7, 8]. Essentially, the UT provides a method of capturing théstts of a random vector which undergoes
a nonlinear transformation [8]. For non-Gaussian inputs, approximadi@eccurate to at least the second order, with
the accuracy of the third and higher moments being determined by the chdigperparameters.

Prompted by the potential advantages of adopting a UT approach, the piestents the results of a recent study
utilising a new EIV-UT-KF algorithm. Whilst the work presented may be bestideed as ‘work-in-progress’, the
novelty of the results and timeliness of the work is considered to be ideal ilokMbrkshop. When applied to a
nonlinear system having an assumed structure and known paramegdiminary results of a Monte Carlo analysis
have shown that a developed EIV-UT-KF algorithm provides improveroeait the existing EIV-KF and EIV-EKF
algorithms.
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4.35 Algorithms for data fitting in error-in-variables models with line ar and quadratic
constraints
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Yaron A. Felus, Surveying Engineering Department, Ferris State University, Big-Rapig19307-2291,
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Fitting a surface to a given set of measurements is an essential functiendimeers and geodesists, also known
as trend analysis [7],[1],[4]. This technique uses Least-Squaresadj8stment to estimate the parametesdf a
polynomial surface within a linear modsl £ A¢ +e) that includes the vector of observed attribute valygsavector
of normally distributed errors, and a matrix of variable8, constructed from the geographical locations. However,
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in this linear model the matrix of variablésis considered as fixed or error-free. This is not the case in many pthysic
situations where errors exist both in the vector of attributes (y) and in tbgrgphical locations matrixA). The
Total Least-Squares (TLS) approach as applied to the Error-inlaganodel is the proper method to treat problems
where all the data are affected by random errors. The traditionabagipito solve the TLS problem [2],[6] utilizes
the Eckart-Young-Mirsky theorem to derive the best estimatg] ffor the augmented matrix by setting the minimum
eigenvalue of the Singular Value DecompositionAfy] to zero.

A different approach to solve the TLS problem is based on the Eulerabgg theorem [4],[3] and follows an
optimization process that minimizes a target function. In this contribution, the-Eafgange approach is first used
to solve an enhanced TLS problem that includes linear constraints asgollow

y—e=(A-E)-¢, rk[Al =m< n,
Ko=K-&, rk[K]=1<m, (4.38)
E{[E.€]} =0, D{vedE,g}=3%®I,, C{E,e}=0,

whereE is anxmrandom error matrixz.o = ag- Im+1 is a(m+1)x (m+1) matrix with an unknown variance component
(08), K and kg arelxm matrix, resp.x1 vector of known values describing the constraimtsis the number of
parameters) the number of independent observations, lattet number of constraints. Den@g= vedE) ~ (0, g3
In®1y); then the TLS Lagrange target function for model (4.38) is expresged b

D (e en A, 1, &) :=e'eteren+2A (y—AE —e+EE)—2u' (kg— KE&) = stationary (4.39)

whereA and u denote thenx 1, resp. k1 vectors of Lagrange multipliers. Using this target function, the following
nonlinear normal equations are obtained:

ATA ATy KT & &
YA Yy Kk || -1 |=]| 1|V (4.40)
K k V-l ] o

where? = (y—A-&)T - (y—A-&)/(1+&T - ); all estimated parameters are marked with a Baor(a hat ). Four
algorithms have been developed to solve this TLS problem with linear coristr@mne which is slow but guaranteed
to converge, two which are fast but may only converge with good staréihgs, and a hybrid approach. A numerical
example of fitting a surface to a set of surveyed points is used to demortiigatemputational efficiency of the
algorithms and the accuracy improvement over the traditional model.

In some physical cases, the problem has quadratic constraints in additiom linear constraints, for example
when fitting an ellipsoidal surface through a list of measured points. Theematical model in this case is:

y—e=(A-E)-¢,
Ko=K-¢&, ET.M-& =a? (4.41)
E{[Eve]}:oa D{Vquae]}:ZO@J'n, C{E,e}:O,

using the same notations as before. Here M is a gimem non-negative definite, symmetric matrix, amélis a given
constant. The TLS Lagrange target function for model (4.41) is:

P(eenA, i, Hp, &) :=€eTeterent+ 24T (y— A& —e+EE) — 2] (Ko—KE&) — i (a? — ETME) = stationary

(4.42)
leading to the following nonlinear normal equations:
ATA+T1,M ATy KT g &
yTA yy—-a?m, k§ || -1|=| -1V (4.43)
K Ko V-l Hy Hy
in conjunction with the modified secular equation:
a? = (ATy—K'H) " (ATA+ M = 0+ 1) - M- (ATA+TM — 0 1) H(ATYy — KT 1y ) (4.44)

65



Using equations (4.43) and (4.44), an algorithm to solve the TLS problemlinégar and quadratic constraints
is derived and tested on a numerical example. The accuracy and commaitatiiciency of the newly developed
algorithm is described, as well as some other open questions related toriva awestigation.
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4.36 Inverse iteration for total least squares interpretted as combinatn of least
squares problem and rotation of coordinates

Otakar éprdlik, Department of Control Engineering , Faculty of Electrical Engineef@zgch Technical University
in Praguesprdl ol@ontrol . fel k.cvut. cz
Zdenék Hurak, Center for Applied Cybernetics, Pragaze,hur ak@- a- k. cz

Inverse iteration method is one of the most powerful methods for computieciee eigenvectors (see for instance
[1], section 7.6.1). It can also be used for finding numerical solution to ledat squares problem (TLS) (see for
instance [2], section 5.3). Recently, some new algorithms appeared in liee(age for instance [3] being presented
at this workshop) that approach the numerical computation of TLS protikeiterative algorithm in which at eac

The statement of the total least squares problem is: For a given ovenitetd system of linear equatioAs ~ b
whereA € R™" andm > n, find x € R" satisfying(A+ AA)x = b+ Ab and minimizing|| [AA; Ab] ||e. It is well known
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that under certain technical assumptions this minimizing vectam™be found in the direction of the right singular
vector of D = [AA; Ab] corresponding to the least singular value.

Singular vector od corresponding to the least singular value can be computed iterativelyditidireigenvector
of DTD corresponding to its eigenvalue closest to zero by the inverse iterationdnétbage of QR factorization of
D enables recursification of the algorithm. The following iteration can be foliowe

)z(k—l)] [)“((k)] - —9k

T & — pTpek — -7

RpRo6 D'D6 [ 1 1 PO
n+1

whereRp denotes the triangular factor Bfandxt® denotes TLS solution estimatekdh iteration. Further, it can be

derived fromR;* viewed as an inverse of a block matrix that

) _ gy Roneanil pap ot
X X+ 105 .30 Ry"Ry X (4.45)

wherexX denotes solution of least squares ddis the triangular QR factor oA. If the algorithm is initiated by
%0 = 0, result of the first iteratior'? is equal to the solutior 6f ordinary least squares problem.

The core idea of TLS solved iteratively with the help of LS followed by rotatibooordinates is that under certain
circumstances solutions to LS and TLS coincide. Aligning the coordinatersystan enable use of the LS algorithms
for solving the TLS task. An intuitive idea is to rotate the original coordinattesy at each step such that the new
system is aligned with the solution of LS problem from the previous step.

Recall that the size of the augmented vector of TLS solution estiff&tén kth iteration is(n+ 1). In the first
iteration the ordinary LS solution is assignec@l(é), next an orthonormal basis pfdimensional subspace orthogonal
to the solutiord is derived. Therf+ 1)th basis vector of the new coordinate systemn(# ()th column of rotation
matrix Q1)) is colinear withd®).

In each other iteration the data rotation is accomplished by mutliplicatid lof Q) from the right. Standard
LS problem is then solved fd@**Y) and estimate to the TLS problem is then obtained by rotation and normalization
with respect to the last component

DQ®W g+l ~ 0 (k1) — Q) G(k+1) {k+1) _ -tk
et [T
DK+

whereQ® is derived from® in the same way a®) from 6(1). The normalization 08 should be incorporated
in the iterative scheme to provide numerical stability.

Consideringx® equals zero vector in the inverse iteration scheme, both algorithms stas{WithX. At the k-th
step, the inverse iteration algorithm gives (with nonsingDiaD)

x) glk=1) : — o
4| (D'D)"! _4 |»while the combination of LS and rotation yiel

209 <0
(k=1)
iEC
where columns 0@V form an orthonormal basis @™V, last column ofQ*~Y is colinear with[x*~1; —1]T,
andxt¥ is the solution of LS solved in the new coordinate fra@ik 1.

With solution of LS in the new coordidate frame expressed using the fatdiegd below (4.45) the LS/rotation
iteration became "
X T 1 k=1 0
) eroe [

VectorQ-1[0; —1]T is taken as the negative of the last columi@df V), which is colinear witjx<-1; —1]T due
to the construction o. Inverse iteration and combination of least squares and rotation ofinatedrame are thus
equivalent.

We have shown inverse iteration scheme produces solutions of LS prebleed in a coordinate frame with the
last basis vector colinear with the result of previous iteration and transfibback to the original coordinate frame.
Results of iterations of the algorithm presented in [3] are the same as redniterge iteration scheme initiated with
all-zerox(@. The proven equilavence of the two algotithms — inverse iteration and combfead rotation — can
perhaps bring some
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4.37 Estimation in a multivariate errors-in-variables model with unknown noise
variance ratio

Alexander Kukush, Kiev National Taras Shevchenko University,
E-mail:al exander _kukush@ni v. ki ev. ua

Consider a modehX = B, whereA € R™" X € R™P, andB € R™P. The model means the following. For
the true values, we hav&X = B, whereA, B, X are non-random matrices. We obsefve- A+ A andB = B+ B,
whereA,B are random matrices. We want to estimztevith fixed n and p and increasingn. This general model
includes static models if the rows @&, B] are independent, and dynamic models if the matrideB] and[A, B| are
structured. Common assumption is that the covariance structiifeBifis known up to a scalar factor, which leads
to Elementwise—Weighted TLS Problem in the static case and to Structured Db&frin the dynamic case, see
Kukush and Van Huffel (2004) and Kukush et al. (2005b).

In the present paper we assume ti#aB] is partitioned into two uncorrelated block81, D,] of sizesm x n; and
mx Ny, andEDI Dy = )\,?\/\4(, k= 1,2, whereW are known positive semidefinite matrices aRﬁjare two unknown
positive scalars. In dynamic setting this means that both input and outpetvariances are unknown.

To construct a consistent estima6ve use a clustering assumption. The idea is due to Wald (1940), who studied
a scalar model. We suppose that there are two copies of initial PAgklX = B(k), k= 1,2, whereA(k) € R™*" X €
R™P andB(k) € R™*P. DenoteDy = [A(k),B(k)] and letd;j (k), 1 <i <my, 1< j < n+ pbe the entries dby, and
D = [di(K),...,dm(k)]. We list the conditions for consistency.
(i) Edij(k)=0,foralli,j,k.
(i) 36>0Vi,j,k:E|d;j(k)|*"? < const
(i) Each of the sequencesi(1),i > 1} and{d;(2),i > 1} is finite dependent.
(iv) 3n,1<m<n4+p—1Vi>11<j<n, m+1<l<n+p k=1,2:Edj(k)dy(k)=0
(V) D(K) = [D1(k), D2(K)],D1(K) of sizemx ny, with ED] (k)D2(k) = 0, andD] (k)Dj (k) = APWj(K), j = 1,2, k=

1,2, whereW; (k) are known positive semidefinite matices, aﬁfbare two unknown posmve scalars.
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(vi) For true matrices||A(k)||r/m < const for allmy > 1, k=1,2.

(Vi) [iminf my.m—e 01(A (1)A(L)/mL—A' (2)A(2)/m2) > 0, whereoy (c) is the smallest singular
value ofC.

Let Xex := [XT, —Ip]T = [X],XJ]T, X1 € RM*P.
(viii) liminf m, e tr (X[ (W;(1)/my)X;) > 0, for j = 1,2.
(ix) W;(1)/m —W;(2)/mp — 0, asmy,mp — oo, j =1,2.

=T

(X) liminfy e Amin(A" (K)A(K) /my) > 0, for k= 1,2.

First we define the estimate af := (A2, A2). ForA := (A1,A;) € Ry x R, introduce

AMWi(k) O
0 AMb(K)

D(k) = [A(k), B(K)],

W (A)=DT(k)D(K) — [

and letuy(A) < pk(A) < ... < ppk(A) be thep smallest eigenvalues 8% (A ) with the corresponding orthonormal
eigenvectorsy(A),..., fpk(A), Lpk(A) be the span ofy(A), ..., fok(A). The objective function is

2 2

_ 2 i 2
QM) = k;i;u.k(/\)JrCH SinO(A)||*.

Herec > O is a fixed constant ar@(A ) is a diagonal matrix of canonical angles betwegf(A ), Lp2(A ), and sirD(A)
is the diagonal matrix with diagonal elements the sines of these angles smdsamn Sun (1990). For a fixed
posmve sequenceeq}, such thatey — 0, asgq — o, an estimaton = (/\1,)\2) A (my,mp) satisfies the inequality

QM) < inf Q(A)+ &, q:= min(my, my).
M.A2>0
Now introduce a compound matri, = [DT(1),DT(2)]T,We;j := W (1) +W;(2), j = 1,2, and

H:=D]D.— AWer 0
¢ 0 AWMk

LetL (H) be the subspace spanned by the firsigenvalues of coArresponding to the smallest eigenvalues. An
estimatorX is defined by the equality,(H) = spanzi,. .., Zp), where[XT — 1,7 = [21,...,2,).

Theorem 4 Under the conditions (i) to (xﬁ — A%and||X — X||r — 0, as m,m, — o, a.s.

The results are applicable to system identification, with a turnover point in fhug data. Simulation examples
are discussed. Another estimator is proposed in Markovsky et al. J20@6 estimator is easier to compute, but its
asymptotic properties are unclear. In case where nothing is known edsariance structure of the error matf& I§],
at least clusterst = np, are needed to estima¥econsistently. The most of results are joint with Prof. S. Van Huffel
and Dr. I. Markovsky (K.U.Leuven), see Kukush et al. (2005a) idiagkovsky et al. (2006).
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4.38 Rank{R1,Ry,R3) reduction of tensors based on the Riemannian trust-region
scheme

M. Ishteval*, L. De Lathauwer?!, P.-A. Absil®, R. Sepulchré, S. Van Huffel',

LESAT/SCD, Katholieke Universiteit Leuven, BelgiuRGNRS, ETIS, Gergy-Pontoise, France,
3INMA, Université catholique de Louvain, Belgiurfiylontefiore Institute, Universitde Lige, Belgium,
“Mariya. | sht eva@sat . kul euven. be

Introduction. Higher-order tensors are generalizations of vectors (order 1) atrecesa(order 2) to three or more
dimensions. They have various application areas, such as highersbatistics, independent component analysis,
biomedical engineering, and wireless communications. The mdde= 1,2,...) vectors of a tensor are its columns,
rows, etc. The dimension of the vector space spanned by the muedetors is called the moderank. This is a
generalization of the column and row rank of a matrix. Contrary to the caseices, different moda-ranks are
not necessarily equal to each other.

We look for the best rankR;, Ry, R3) approximation of third-order tensors. In the matrix case, the best lok-ran
approximation can be obtained from the truncated Singular value decompdSt®). However, in the tensor case,
the truncated Higher-order SVD (HOSVD) [2] gives a suboptimal lomkrapproximation of the tensor, which can
only be used as a starting value for iterative algorithms.

Problem formulation. For a real third-order tensoy € R't*'2*!s_find qtensotaf € R'v*12xIs that minimizes the
least-squares cost functidiie?) = ||.«7 — <7|| ? under the constrains rapl’ ) < Ry, rank(</) < Ry, ranks(.« ) < Ra.
This minimization problem is equivalent to (see [3]) the maximization of

(U, V, W) = || x1UT xaVT xaWT||? (4.46)

over the orthonormal matricés € R R v € Rl2xRe W ¢ RlsxRs,

Riemannian trust-region schemeThis is an iterative algorithm for minimizing a cost function, consisting of the
following steps (see [1]):

— compute an update to be applied to the current iteraten solves a trust-region subproblem;

— evaluate the quality of the model;

— accept or reject the new iterate;

— update the trust-region radius.

Riemannian trust-region based rank{Ry, Ry, R3) approximation of a tensor. The functiong has the invariance

property:
g(u, vV, W) =g(uQ®, vQ@ wqQ®),
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whereQ() are orthogonal matrices. Thughas a unique projectiom
g(UORl, VORZ, WORg) = G(U, V, W)

In our algorithm, we express the tensor approximation problem as minimizingo#tdunction—g on a proper
manifold (a product of three Grassmann manifolds). We apply the Riematragtrregion scheme, using the trun-
cated conjugate-gradient method for solving the trust-region subprobeking use of second order information
about the cost function, superlinear convergence is achieved. §vaprsome simulation results concerning the
stability of the algorithm.
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4.39 On core problem formulation in linear approximation problems with multiple
right-hand sides

Iveta Hnétynkova, Martin PleSinger, Zderek Strakos.

Institute of Computer Science, Academy of Sciences of the Czech Refbdid/odarenskou @i 2, 182 07 Praha 8,
Czech Republic

hnet ynkova@s. cas. cz, nmata@s. cas.cz, strakos@s.cas.cz

Consider an orthogonally invariant linear approximation probkx= b. In [10] it is proved that the partial
upper bidiagonalization of the extended matbixA] determines @ore approximation problemAx; ~ by, with the
necessary and sufficient information for solving the original problemergiby by and A;;. The transformed data
b1 andA;1 can be computed either directly, using Householder orthogonal tramafions, or iteratively, using the
Golub-Kahan bidiagonalization [4]. The bidiagonalization is stopped atitstezfro bidiagonal element. It is shown
how the core problem can be used in a simple and efficient way for solifegemt formulations of the original
approximation problems. The proof in [10] is based on the singular valeengeosition of the matrixA. In [5], [6],
the core problem formulation is derived from the relationship between thebddahan bidiagonalization and the
Lanczos tridiagonalization [7], see [1], and from the well-known proee of Jacobi matrices. For a rewiev see the
lecture [9] presented at this workshop.

In this contribution we concentrate on extension of the idea of core profdemulation to linear approxima-
tion problems with multiple right-hand sides. Here a concept of a (minimally dimeedjapproximation problem
containing the necessary and sufficient information for solving the ofigirdlem seems more complicated. The
analysis should start from the singular value decomposition, and compusatoid be based on the block (banded)
Lanczos bidiagonalization, see [8, Section 2.3], [2], [3].
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We will discuss several examples illustrating difficulties which have to bdwedn order to get a general multi-
ple right-hand sides core problem formulation.
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6 Location

All sessions with oral presentations will take place inalielitorium Arenberg, Arenberg Castle, Kasteelpark Aren-
berg 1, 3001 Heverlee. (There are no parallel tracks for this wogk¥The poster session is scheduled for room
00.62 in the department of electrical engineering (ESAT). See the mapg aetbthe route description on

http://ww. esat . kul euven. ac. be/ i nf o/ route. en. php

The region of the Arenberg castle.

ThERS e O R . i“"'{

ORI T Geel Huis S SR

1,&: .ﬁ«_renbn?ﬁrg castle 4 ﬁ.’.’;‘:ﬂ.“;*#.' an ‘*.--'t'lm-'"& -

al e A ,‘pﬁ" A 1
o D) N = |

1
| T A b ar cus s Y
S e W)

r

= H hﬁ-

4 L I |
T % l.!.lliw,l} b, R ."'-::';-__
B\ e A s

e
: ___1..-.-'1.Q-:|rin:u|tura| and Applied =
——— Biological Sciences
Pl ~ Electrical e

. _.._i',--.:- - it Metalurgy and %Englneering T e e i e

e Materials Engineering

LS

77



‘ = X () 30 @ i * g &) Sﬂ.g
BT X 0 =,

J 8 &£ <8 e 2%
i 17 1% 8%

| i 2 3 B " iz Ro
I N fgEb o8B
3 = S —

ae : (t ﬁ =1

ol L 1]

e

S
%
L\l
E\Y
‘\
kS

2

Mn"-'_m
_—‘--..___J-
S e 297
Swmmea
1S




Monday, August 21

Session |: Regularized total least squares

09h00-09h45 G. Goluh Matrices and moments: perturbation for least
09h45-10h30 A. Beck The regularized total least squares problem
11h00-11h30 D. Sima Level choice in truncated total least squares
11h30-12h00 A. WatsonRobust counterparts of errors-in-variables problems

Session Il: Nonlinear measurement error models

13h30-16h15 C.-L. ChengOn the conditional score and corrected score estimation in nonlinear MElsnod
16h15-15h00 H. Schneeweis€omparing the efficiency of structural and functional methods in ME models
15h30-16h00 Shalabh On the estimation of linear ultrastructural model when error varianceshakgrk
16h00-16h30 G. Garg Consistent estimation of regression coefficients in ME model under exaat liastrictions

Tuesday, August 22

Session IlI: Numerical methods for total least squares

08h30-09h15 Z. Strak®, Bidiagonalization as a fundamental decomposition of data in linear approxmmabblems
09h15-10h00 A. Bjorck, A band Lanczos algorithm for least squares and total least squatdems

10h30-11h00 X.-W. ChangMinimal backward perturbations for data least squares problems

11h00-11h30 D. Titley-Peloquin Characterizing matrices consistent with given approximate solutions
11h30-12h00 M. Schuerman€n the equivalence between TLS and maximum likelihood principal companalysis

Session IV: Geometric fitting

13h30-14h30 K. Kanatanj Hyperaccuracy for geometric fitting
14h30-15h15 I. Markovsky Low-rank approximation and its applications for data fitting
15h15-16h00 A. Kukush Estimation in a multivariate errors-in-variables model with unknown noisawvee ratio

Session V: Total least squares applications in computer addpra

16h30-17h00 L. Zhi, An STLS algorithm for approximate greatest common divisors of multivapialgnomials
17h00-17h30 J. Winkler Structured matrix methods for the computation of rank reduced Sylvestak matr

Wednesday, August 23

Session VI: Errors-in-variables system identification

08h30-09h30 T. Sderstdm, Errors-in-variables methods in system identification

09h30-10h15 R. Guidorzj Some issues on errors-in-variables identification

10h30-11h00 J. Linden Model-based control in the errors-in-variables framework

11h00-11h30 R. Pintelon Frequency domain maximum likelihood estimation of linear dynamic EIV models
11h30-12h00 J. Schoukenddentifiability analysis for errors-in-variables problems

Session VII: Total least squares applications in signal proessing

13h30-16h15 A. YeredoyOn the role of constraints in system identification

16h15-15h00 R. VaccargOptimal parameter estimation from shift-invariant subspaces
15h00-15h45 L. De LathauwerPrincipal component, independent component and parallel factiys@éna
15h45-16h30 J. RamosApplications of TLS and related methods in the environmental sciences



