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Least Squares Problems
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Ordinary/Data/Total least squares

Approximation problem

» Approximation problems for a linear system:

Axx~b, AeR™" pbeR™! m>n.

» Notations:
Aandb given data
X solution to determine
T transpose
Tr[] the sum of diagonal entries of matrix
-1l two-norm of vector
|Alle = +/Tr[ATA] Frobenius norm of matrix
|-l=1-l,or|-|lg Euclidean norm
AA and Ab residual quantities
oLs/bLs/TLs ordinary/data/total least squares
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Least Squares Problems
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Ordinary/Data/Total least squares

Statements and geometric equivalences

Table: Problem statements and geometric equivalent statements

a Geometric equivalence

H Problem statement

i _ min||Ax — b2

oLS min||Ab]|, st. Ax=b+Ab . ||\‘A b\‘llz2

. X— 2

. _ mnN ——,—=

TLS min_ JI6A.8][[- St (A AA)X=b-+Ab e

DLS min | AA| - st (A+DA)X=b in 1AX—bll>
XA X3

aThe TLS/DLS equivalent statements are derived by means of the Lagrange method [GV96, DD93, JKO05].

» Ordinary Least Squares (OLS): correcting with Ab

» Data Least Squares (DLS): correcting with AA

» Total Least Squares (TLS): correcting with AA and Ab
» TLS is also known as Errors-in-Variables modeling.
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Least Squares Problems

SVD solutions

Singular value decomposition (SVD) approach

Table: Singular value decomposition approach

TLS: minAX P17 bl® pLS: min 1A%~ I
* IxIf+1 * I
N Omin([A,b]) st vrs(n+1)#0 Omin(PEA) st. bTAvp g#0
vrLs(n+1) is the last component of vy s. PE=1- b?lbbbT
2 XTLs = mVTLS(l in) XpLs = bTR\‘:ﬁVDLS
3 [AATLs, Abris] = —[A,blvrisVr s DApLs = —PyAVp sV s
4

[[[AATLs, Abrs]llF = Oris

[AADLs|IE = dpLs

1Equivalent singular value problem and feasibility condition. Vg and vp, g are the right singular vectors
associated with the smallest singular values, respectively, of [A,b] and PbiA. Omin = the minimum singular value;
23vD solution; 3Minimal residual in terms of singular vector; 4Norm of minimal residuals.
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Least Squares Problems
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Secular equation approaches

Secular equation approach

Table: Secular equation approach in the generic case

- JAx—b||” 2 - JJAx—b||”
TLS: 0fg=min‘—>—— DLS: 03 ¢ =min‘———
ol 1 e A 1|
1 AT (Ax—b) = 0% X AT(Ax—b) = 03, 5%
b (b—Ax) = 0% ¢ bT(b—Ax)=0
2 Omin(A) > 0715 Omin(A) > Opis

31l b’Tb—bTA(ATA-0Z ) 'ATb=0Z ¢ | bTb—bTAATA- 03 1) IATb=0

4 (AT 2 \—1pT AT > 1T
XTL8 = (A A— UTLSI) A'b XpLs = (A A— UDLSI) A'b
T o1 ol g XN
5 At « Abei o] — TS¥TLS" AAn « — DLS*DLS
[DAT s, Aby ] st DLS = Ty o2

INormal equations (for stationary points); 2Generic condition; 3Secular equation; 4De-regularized solution;
5Residuals in terms of solution x and r = b — Ax.
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Least Squares Problems
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Secular equation approaches

When is the secular equation approach more
preferable than the SVD approach?

» The problem is sensitive: Oy s/ps ~ Omin(A)

» Least squares solution or de-regularized form is needed:
OLS provides a good initial guess of solution. The
de-regularized form can be easily calculated by adjusting
the amount of negative shift.

» The problem is large: The SVD of a large matrix is very
expensive. Instead, we can approximate the secular
equation in the large-scaled problem by Gauss quadrature
rules.
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Gauss Quadrature Rules
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Gauss quadrature theory

Riemann-Stieltjes integral
M=QAQ", A=diagA) 0<Ai1<A<...<An

v

M is symmetric positive definite. Q is orthonormal.

u f(Mu = a’ f(A)a = if(/\i)aﬁzl[f]

v

f(M) is an analytic function of M that is defined on (0, ).
a = Q'u for an arbitrary vector u.
Riemann-Stieltjes integral | [f]:

vy

0 ifA<a=A1

I[f]:/abf()\)da()\), a()\){ Shoya? A <A < A

z’j‘:lajz ifb=An<A

where the measure a(A) is piecewise constant.
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Gauss Quadrature Rules
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Gauss quadrature theory

Bounds for Riemann-Stieltjes integral
The Gauss quadrature theory is formulated in terms of finite
summations:

/bf(/\)da(/\) = %ij(t])‘i‘ %ka(zk)Jer
a =1 k=1

» Unknown weights: [WJ]J ! .MM ;; Unknown nodes: [J]J L1
» Prescribed nodes: [z]M ,
The remainder term R[f] is given by

2N+M
}\
==

Golub and Meurant [GM93] showed that the sign of the remainder term R[f]
can be adjusted by the prescribed nodes. Setting M = 1, we will use the

Gauss-Radau formula to get the bounds of (a part of) secular function.
Matrices and Moments: Least Squares Problems (11/52)
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Least Squares Problems Gauss Quadrature Rules
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Gauss quadrature theory

Orthonormal polynomials

Define a sequence of polynomials po(A), pi(A),... that are
orthonormal with respect to a(A):

i L
/a Pi(/\)PJ(’\)da()‘):{é I(Itlh;r\J/vise,

and px(A) is of exact degree k. Moreover, the roots of px(A) are
distinct, real and lie in the interval [a, b].
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Least Squares Problems Gauss Quadrature Rules
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Tri-diagonalization for orthonormal polynomials

Three-term recurrence relationship
If [da = 1, the set of orthonormal polynomials satisfies:

ApP(A)=Tnp(A) +Wpn(A)en,
where
P(A) = [po(A) pr(A) -+ pn-1(A)]T,
(0 ---01T eRN,

w Y
i e Y

—
=z
I

W-2 WN-1 W-1
W-1 N
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Least Squares Problems Gauss Quadrature Rules
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Tri-diagonalization for orthonormal polynomials

Lanczos algorithm for quadratures
To obtain the tri-diagonal matrix and hence the Gauss-Radau rule, we will
use the Lanczos algorithm with p; = u/||u||, as a starting vector:

M ~PTyNPT
Eigenvalue decomposition of Ty:
Tn =QAQ'
Function of matrix:
uTf(M)u~uT f(PTNPT)u = |ule] Qf(A)QT ey,

wheree; =(10--- 0)T e RN,
Thus, the eigenvalues of Ty give us the nodes and the squares of the first
elements of the eigenvectors give the weights:

Z wjf(tj) = [Jull Z(Qli)zf()\i)
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Least Squares Problems
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Gauss Quadrature Rules

Inverse eigenvalue problem for Gauss-Radau rule

Inverse eigenvalue problem

To obtain the Gauss-Radau rule, we extend the matrix Ty in such a way that
it has one prescribed eigenvalue z.

Lemma
The extended tri-diagonal matrix

Faaa= [ TN Wen
N+ = M\le-lr\-l W1

has z as an eigenvalue, where Wy 1 = 1 + dn, and dy is the
last entry of & such that

(Tn—21)8 = Wien. 1)

Matrices and Moments: Least Squares Problems (15/52)



Least Squares Problems Gauss Quadrature Rules
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Inverse eigenvalue problem for Gauss-Radau rule

Proof of the extended tri-diagonal matrix lemma

Proof.
We can verify that z is an eigenvalue of Ty.1 by investigating
the following relation to get (1):

Tnyad = 210,
where d is a corresponding eigenvector. O
Now, T’N+1 gives the weights and nodes of the Gauss-Radau rule such that
ZWJ P)+vaf(z) = ul’e] f(Tnia)er
The remainder is

- f@N+1)(g) b N _ 2
R[f]—HU”zm/a(A*Zl) L]jl(/\ t,)] da(A).
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Application to solving secular equations
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Secular equations
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Common function of matrix

Secular functions
Recall the secular equations:
TLS:  yrs(A)=b"b—b'AATA-A1)"IATh—A =0,
DLS:  (ns(A)=b"b—b"AATA-AI1)*ATb=0.
> Yns/ms(A) is referred to as secular function.
» A: an estimate of the minimum squared TLS/DLS distance.
» generic condition: A < g (A) for (ATA—A1)~1

Thus, in the domain of 0 < A < g2, (A), we need to evaluate a
matrix function of A which is common in 4.5 and Yp,s:

PA) =b"AATA—-A1)"1ATH

Matrices and Moments: Least Squares Problems (19/52)



Secular equations CGQ Comparative study (with David Gleich) Example Conclusion
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Common function of matrix

Bounds of a common function
Now we evaluate the bounds of the scalar quantity ¢:

¢=g'fi(M)g, M=ATA-2AI, g=A"b,

where f1( ) = 1. Then, the quadrature rule

Wn1(z) = ||o%e fl (Tn.1) e is described in terms of the remainder:

2
i@ =163+ 1076 @2 [ —zll —n-)] da(A).

f(lZNJrl) §)

We note that rror = —(&)"@N+2) <0, A <a< & <h. Thus, we have

the bounds:

N+ 1(Q) < I[f] < Ni1(la); da<a<b<ip

Matrices and Moments: Least Squares Problems
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Secular equations
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Common function of matrix

Comments on bounds

v

f1(x) is well defined on the proper interval (a, b) such that

the sign of the derivative function ffN”)(E) is not changed

with the interval £ € (a, b).

Since /||A]|1]|Allo > b, we may use {p = \/||A||1]|A]|e-

However, the lower bound of a (the smallest eigenvalue of
M) is not easily obtainable. {j is determined very roughly.

This explains why the upper bound of 1[f1] is usually
poorer than the lower bound.

Matrices and Moments: Least Squares Problems
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Secular equations
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Common function of matrix

Lanczos process with a shift for efficiency
» The tri-diagonalization is independent of the shift.
» Tri-diag([g, M]) = Tri-diag([g, M + A 1])
» M+A1)QN=Qn(TN+AT) & MQn=0OnTn
Then we re-define the extended matrix 'fNH as

I l_<TN)\|N‘W\IQ\I>
+1 = M\lel-l\-j ‘ W )

where Ty and y are calculated by Tri-Diag of [g, ATA], (not
[9, M]), and w is determined so that Jy1 has a prescribed
eigenvalue z;. Thus, w=z +dy, wWhere dy is the last entry of
d such that

(TN—(21+)\)IN)d:y,f,a\|.
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Secular equations
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Common function of matrix
Finally, we have the quadrature for bounds:
- 2 2 -
Ou1(z1) = [lgll°] f: (Ins1)er = || %6l (In+a) e
Once we solve a tri-diagonal Jn 1y = & for y, we have
- 2 2
M-+1(z1) = [l €]y = [|g]*ys-
For later interpolation, we need to evaluate the derivatives of the matrix
function @(A) w.r.t. A by approximating with f% (x)=x"2and f;lg x) =x"3
" 2 2 -
¢ = [lg]*el f1 Onva) e = gl el (Int1) ey,
i 2 2 -
¢ =2|gl*e1 f 1 (Insa)er =2 g]°e; (Ins1) e
By solving Jy11h =Y., we have
- 2 2 i 2 - 2
¢ =llglI”vl®, ¢ =2[glY" (Onra)ty =2[ig]*y"h.
A symmetric, tri-diagonal, and positive definite system requires O(N) flops

[GV96] to be solved.

Matrices and Moments: Least Squares Problems
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Secular equations
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Common function of matrix

Lemma (Monotonicity of bound sequences)

Along with Lanczos processes, a sequence of bound estimates
of ¢ = g" f1(M)g with full-rank symmetric M € R™" and

fi(x) = )—1( is generated by Gauss quadrature rules. Then the

estimated sequence @1 is necessarily monotonic.
In other words, given each prescribed node {; or ¢, such that

{a < Omin(M) < Omax(M) < &,

the lower and upper bound sequences for |[f1] satisfy

< (%) < Buallo) < <Mfa) <o < uia(la) < (Ga) <o

Note that the complete Lanczos processes yield the exact evaluation:

0= g%l f(Tn—Aln)er

Matrices and Moments: Least Squares Problems (24/52)



Secular equations
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Newton methods

Interpolating the root of secular equations
We approximate the common function @(A ) by using Lanczos processes
combined with Gauss quadrature rule, where we proceed the processes until
the upper- and lower- bounds of ¢(A) match within a tolerance.
Suppose A is the current estimate of the minimum distance. In order to
interpolate the root of the secular equation {(Ax), we need to evaluate the

followings:
Wris(M) = [Ib]* = A — @A), Yous (Ak) = [b]1% — @(Ak).
LI"{'LS( ) -1- ‘P/ Ak LIJE)LS(AK) = *‘P/()\k)
wTLS()‘k) (P’( k) ‘aUE)/LS(Ak) - _QU”()\k)A

Then, consider one-point interpolating methods to obtain Ax1 such that

W(Akﬂ) =0.

Note that roots of secular equation consist of the stationary points of the geometrically equivalent cost function. We
want to find the smallest root g1 € [0, %m(A)) from the definition of TLS/DLS problem. However, we can not
achieve it without using additional information on the locations of poles such as o2 (

0Zax(A) <||Al1 - Al In the following sections, we will discuss how to use bisection and the upper-bound of the

A) < min; 5, |a;j|2 and

smallest pole. X
Matrices and Moments: Least Squares Problems (25/52)



Secular equations
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Newton methods

Variations of Newton’s method take the form:

A

where Cy denotes a convergence factor [Gan78, Gan85] according to
methods such as the Newton’s method, the Halley’s variation, and simple

rational approximation in the following Table .

Table: Variations of Newton’s method

| | Newton’s | SRA2 | Halley's
Interpolating function h(A) ~ ¢(A) || h(A)=co+c A h(A) = [b]? — CZL}A h(A) = co— C;EA
[Ib]Z—w(Ay) ( w(Amw”(Ak))
C factor G 1 1/(1-
onvergence factor Cyg o] / 20 0n)
Rate of (local) convergence Quadratic Quadratic Cubic
Convergence regionb Narrow Wide Wider
z
Algebraic interpretation® A)=yA A)=1— — bl A) = 44
9 p 9(A) =) 9(d) Bl?—o) o) = o

aSimpIe Rational Approximation

bGlobal convergence in root-finding of secular equations

CEquivaIentIy, solve g(A) = 0 by Newton’s method.

Matrices and Moments: Least Squares Problems
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Secular equations
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Seeking the smallest root

Mixing with bisection
Whenever we detect that the root estimate is larger than o2, (A), we bisect
the estimate to assure that it is less than g2, (A). The monotonicity of the
sequence of estimate bounds of Gauss quadratures (GQ) is utilized based on

the following scenario:

1. With the initial guess of root, we obtain the sequence of bounds of
secular function by means of GQ.

2. If the sequences are not monotonic, we conclude that the root estimate
is larger than the squared smallest singular value of A. Then the root
estimate is cut by half, and go to Step 1 with the modified estimate of
root.

3. Otherwise, we interpolate the root of secular equation by using the
estimate of the secular function and its derivatives.

4. If the new root estimate is close to the previous one within a tolerance,
then we calculate the de-regularized solution, and stop the algorithm.
Otherwise, go to step 1.

Although the violation of monotonicity is only a necessary condition, our numerical simulation works well.
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Secular equations
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Seeking the smallest root

Stabilizing with the estimated smallest pole

» Although the bisection scheme almost always achieves the smallest
root, it may suffer from a ‘bi-stability’ problem which means the
estimates are alternating between two values.

» To get around this, we employ the estimation of the smallest pole by
modifying the previous scenario. If we detect the current estimate of
root is larger than g2, (A), we cut the estimate by half and set the
upper-bound of the smallest pole to the current estimate of root as well.

1
Ur%nn( ) = Aks Ak+1 = EAk-

Then, when we interpolate the next estimate of root, we take a
harmonic sum between the Newton-based step & = w, Ck and the
distance from the upper-bound of the smallest pole estlmatlon

Ak+1:Ak+_:|_;_Ak76k‘|‘é</(5k‘|‘Ak m|n( ))

& 01121|n<A> —A

Matrices and Moments: Least Squares Problems (28/52)
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L
Solving TLS and DLS by quadrature and CG method

CGQ as a secular equation approach

1. Find the smallest root of secular equation for TLS or DLS.

1.1 Evaluate the bounds of secular function by Gauss-Radau
guadrature rule.

1.2 Interpolate the zero of the function by a variation of Newton
method.

1.3 Determine a proper interval for the smallest zero by
bisection and harmonic-summation with the upper-bound of
the smallest pole.

2. Solve a de-regularized system with a shift of the smallest
root.

» Solve the symmetric, positive-definite system by the
conjugate gradient (CG) method,
» Or, solve the tri-diagonal system with shift.

Matrices and Moments: Least Squares Problems (29/52)
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Alternative implementations

Alternative implementations

v

Reuse of Lanczos vectors with sufficient memory

» Regeneration of Lanczos vectors with knowledge of
tri-diagonal entries

Avoiding of explicit multiplication of ATA
Shifting into Lanczos bi-diagonalization
Using backward perturbations

v

v

v
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Backward perturbations for linear least squares |
mXing—AxHZ, A:mxn, b:mx1
&: arbitrary vector, calculated.
£=¢&+€ X=A"h
&= (A+0A)"b.
p=b—A¢.
H(&) = min|oA]e.

H(E) = min{ &2, Orin(A, B)}
(Karlson, Waldén & Sun)

Ioll,,, PPT
B=—"—<( — —).
HASRER



Backward perturbations for linear least squares Il

F2(€) = pTA@ATA L BI) AT

a=|El5 B=lpl

f(é) ~ué)
- pé)
m u(x) =1

(Grcar)



Comparative study (with David Gleich)
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Large-scale TLS algorithms

Bjorck’s algorithm
Solve the system of nonlinear equations

ATA ATb] [ x [
b'TA b'b| |-1] " |-1]’

or equivalently, the system

f(x,A)] _[-ATr—Ax] [0
i) = |3 =g
with r = b— Axusing a Rayleigh-quotient iteration (RQI).
This algorithm will always converge to a singular value/vector
pair, but we might not get A = ,$+1. Bjorck suggested one initial
inverse iteration (i.e. A = 0) to move closer to the desired A,
and then apply the RQI procedure.
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Comparative study (with David Gleich)
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Large-scale TLS algorithms

Bjorck’s algorithm details
After some manipulations, Bjorck’s algorithm greatly simplifies.
The following presentation emphasizes the computationally
intensive steps.
1. Solve the least squares system in A b for x, 5.
2. Perform one inverse iteration (solve ATAX? = x ) to get
the initial x(©.
3. While not converged... solve two systems in
(ATA—A1)x = b to iterate to xX**V, but if we detect ATA— Al
is negative definite, decrease A and repeat the iteration.
Bjorck suggests using the PCGTLS algorithm to solve each
linear system with the Cholesky factor Ror ATA as a
preconditioner. Inside the CG procedure, we detect ATA— Al is
negative definite and use the CG vectors to compute a new
value of A.

Matrices and Moments: Least Squares Problems
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Comparative study (with David Gleich)
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Large-scale TLS algorithms

Notes on our implementation of Bjorck’s algorithm

» Instead of using PCGTLS with the Cholesky factor of ATA,
we use a matrix-free approach for large scale m> 800and
apply the unpreconditioned CGTLS algorithm. The
tolerance used in the CG method is 10~%2.

» To compute the initial least squares solution, we use the
LSQR algorithm.

» We detect convergence when A changes by less than
10-*? or the normalized residual increases (theory states
the normalized residual always decreases).

» After we detect convergence, we run one more iteration of
the algorithm to ensure that we compute an x “for” the A.

Matrices and Moments: Least Squares Problems
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Comparative study (with David Gleich)
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Large-scale TLS algorithms

Details of the matrix moments based algorithm

» Algorithm 2 uses the Golub-Kahan bidiagonalization of A
and applies the moment algorithm to T = B"B instead of
computing T directly from the Lanczos process on ATA.

» Algorithm 1 restarts the Lanczos process at each iteration.

» Algorithm 2 never restarts the bidiagonalization process
and simply continues the process at each iteration.

Matrices and Moments: Least Squares Problems (37/52)



Comparative study (with David Gleich)
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Comparison of large-scale TLS results

Problems

» Jo’s problems, 15x 8 and 750x 400

» Bjorck’s problem 1: 30x 15 matrix

» Large scale problems with 10000x 5000and

100000x 60000matrices.

The large scale problems were generated using random
Householder matrices to build the SVD of [A b in product
form. Each large-scale matrix was available solely as an
operator to all of the algorithms. The singular values of

[A b
are
where N(0,1) is a standard normal random variable.

Matrices and Moments: Least Squares Problems (38/52)



Comparative study (with David Gleich)
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Comparison of large-scale TLS results

Parameter choices

Algorithm 1 Algorithm 2
A0=0 XO=1 2O=p || 20 =0 A@=1 A@=p

newton 6 4 5 6 4 5

1 sra 5 5 5 5 5 5
halley 5 5 6 5 5 6
newton ++ ++ - *8 *8 *7

2 sra ++ — ++ *12 *24 *7
halley ++ ++ ++ *14 *23 *6
newton - - - *20 *7 *10
3 sra - — — *20 25 *64
halley - — — *55 55 *12
newton - - - *15 *11 *11
4 sra ++ — — *15 *25 *14
halley - — — *20 *57 *11
newton 100 - - ++ ++ ++

5 sra 100 -5 — ++ ++ -
halley 100 - - ++ ++ -

* wrong root; ++ correct w/o convergence; — No convergence

Matrices and Moments: Least Squares Problems (39/52)



Comparison of large-scale TLS results

Comparative study (with David Gleich)
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Convergence
TEST | A [ ITERs | ERROR | TIME | LANZ.
jo bjérck 6 10x10° 14 0
(15,8) Alg 1 5 4410716 0
02=56x10"1 | Alg 2 5 33x10° 0 12
jo bjérck 7 8.5x 10° 0.2
(750,400 Alg 1 | >100 | 85x10°%* | 525
02=18x10 Alg 2 23 50x 101! 0.7 163
large-scale bjoérck 8 11x10°16 0.5
(100005000 Alg 1 | >100 | 1.0x10°% | 36.1
02=19x101 | pnig 2 55 83x10716 | 15 152
large-scale bjoérck 5 39x10° %7 5.1
(10000060000 | Alg 1 | >100 | 55x107 | 324.9
02=35x103 | Alg 2 57 53x10°8 | 14.6 155
bjérck bjérck 7 26x10°1° 0
(30,15) Alg 1 | >100 g2 0.3
02=99x10%2 | a1g 2 18 2.9x 10* 0 33

Matrices and Moments: Least Squares Problems
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Numerical data generation

The numerical data are generated as follows [GvM91]. Let the error-free data matrix
T T
As=UsZV!  where Us= Iy — 23?‘:]55 and Vg=1,— 2VSVS are Householder matrices and
S
2 =diag(ok) is @ mby-n diagonal matrix with [0y, - crn] =[v/n,---,1]. The vectors us
and vs consist of pseudo-random numbers generated by a functlon ‘randn’ providing
uniformly distributed random numbers in Matlab™. An error-free observation vector bs

is computed by bs = Agxs. The error-prone data A and b are generated with a given
deviation o, as follows:

randr(’staté, 108881); % seed for random number
us = randr(m, 1);
vs = randr(n, 1);

As=UsZV{;

Xs= (L/(1:M);% [1, 1/2, -, 1/n]T
bs = Asxs,

o, =0.3;

b = bs+ on * randn(m, 1);
A = Ag+ ogn* randr(m, n);
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CG-based algorithms

We can categorize algorithms in the following example as below.

Table: CG-based algorithms for solving secular equation.

| cGQ-BS-KP | CGQ-BS | CG-BS-KP | CG-BS

Gauss Quadrature rules Used Used Not Not
Bisection Used Used Used Used
Upper-bound of the smallest pole Used Not Used Not

The previous CG-based approaches in [GJK06] or [BHMO00] employ matrix-vector
multiplications to evaluate the secular function and derivative from the intermediate
solution x(A) such that

(ATA=A1)x(A)=ATb.
Then the secular functions and derivatives are obtained as follows.
Yrs(A) =Ibl|* ~bTAx(A) ~A Yors(A) = [b]* ~bTAX(A)
Yrs(A) = —Ix()|? -1 Wos(A) = =Ix()|I?
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Small problem

Secular function plots with A € R15%8

TLS secular functiony (A) DLS secular functiony, ()
20, 20y
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(a) TLS secular function plot (b) DLS secular function plot
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Small problem

Convergent curves in TLS with A € R15<8
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g g
g ). g 0.
& 5,
0.
3 2 3
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(a) Variations of CGQ with the bisection (b) Variations of CGQ with the bisection only.

and the smallest pole estimation.
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(c) CG with two different interpolations, (d) CG with two different inverse iterations,
the bisection and the smallest pole estimation. and the bisection only.
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Small problem

Convergent curves in DLS with A ¢ R1><8
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(c) CG with two different interpolations, (d) CG with two different inverse iterations,
the bisection and the smallest pole estimation. and the bisection only.
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Large problem

Convergent curves in TLS with A ¢ R7°0x400
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(c) CG with two different interpolations, (d) CG with two different inverse iterations,
the bisection and the smallest pole estimation. and the bisection only.

Matrices and Moments: Least Squares Problems (47/52)



Secular equations CGQ Comparative study (with David Gleich) Example Conclusion
o

000000 o 0000 (o]
[e]e] [e]e] 000 000 (o]
[e]e] oe
I

Large problem

Convergent curves in DLS with A € R750x400
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Conclusion

» The presented Conjugate Gradient (CG) with Quadrature
(CGQ) approximates secular functions by means of Gauss
Quadrature (GQ) rules.

» The previous CG based approaches are exhaustively
calculating intermediate solutions to evaluate secular
functions.

» Interpolating the smallest root by variations of Newton
method with stabilized modification:

» Bisection to assure of the convergence to the smallest root.

» Approximating with rational function of the estimated
smallest pole to get around bi-stability problem.

» CGQ does not pursue the intermediate solution until the
root estimate converges.

» The overall computational complexity can be reduced by

adjusting accuracy of GQ.
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