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Least Squares Problems Gauss Quadrature Rules

Ordinary/Data/Total least squares

Approximation problem
◮ Approximation problems for a linear system:

Ax ≈ b, A ∈ R
m×n, b ∈ R

m×1, m> n.

◮ Notations:
A and b given data
x solution to determine
T transpose
Tr[·] the sum of diagonal entries of matrix
‖·‖2 two-norm of vector
‖A‖F =

√

Tr[ATA] Frobenius norm of matrix
‖ · ‖ ≡ ‖·‖2 or ‖ · ‖F Euclidean norm
∆A and ∆b residual quantities
OLS/DLS/TLS ordinary/data/total least squares
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Least Squares Problems Gauss Quadrature Rules

Ordinary/Data/Total least squares

Statements and geometric equivalences

Table: Problem statements and geometric equivalent statements

Problem statement a Geometric equivalence

OLS

TLS

DLS

min
x,∆b

‖∆b‖2 s.t. Ax = b+∆b

min
x,∆A,∆b

‖[∆A,∆b]‖F s.t. (A+∆A)x = b+∆b

min
x,∆A

‖∆A‖F s.t. (A+∆A)x = b

min
x

‖Ax−b‖2
2

min
x

‖Ax−b‖2
2

‖x‖2
2 +1

min
x

‖Ax−b‖2
2

‖x‖2
2

aThe TLS/DLS equivalent statements are derived by means of the Lagrange method [GV96, DD93, JK05].

◮ Ordinary Least Squares (OLS): correcting with ∆b
◮ Data Least Squares (DLS): correcting with ∆A
◮ Total Least Squares (TLS): correcting with ∆A and ∆b
◮ TLS is also known as Errors-in-Variables modeling.
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SVD solutions

Singular value decomposition (SVD) approach

Table: Singular value decomposition approach

TLS: min
x

‖Ax−b‖2

‖x‖2 +1
DLS: min

x

‖Ax−b‖2

‖x‖2

1
σmin([A,b]) s.t. vTLS(n+1) 6= 0

vTLS(n+1) is the last component of vTLS.

σmin(P⊥
b A) s.t. bTAvDLS 6= 0

P⊥
b = I− 1

bTb
bbT

2 xTLS = −1
vTLS(n+1)

vTLS(1 : n) xDLS = bT b
bT AvDLS

vDLS

3 [∆ATLS,∆bTLS] = −[A,b]vTLSvT
TLS ∆ADLS = −P⊥

b AvDLSvT
DLS

4 ‖[∆ATLS,∆bTLS]‖F = σTLS ‖∆ADLS‖F = σDLS

1Equivalent singular value problem and feasibility condition. vTLS and vDLS are the right singular vectors

associated with the smallest singular values, respectively, of [A,b] and P⊥
b A. σmin ≡ the minimum singular value;

2SVD solution; 3Minimal residual in terms of singular vector; 4Norm of minimal residuals.
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Secular equation approaches

Secular equation approach

Table: Secular equation approach in the generic case

TLS: σ2
TLS = min

x

‖Ax−b‖2

‖x‖2 +1
DLS: σ2

DLS = min
x

‖Ax−b‖2

‖x‖2

1
AT(Ax−b) = σ2

TLSx

bT(b−Ax) = σ2
TLS

AT(Ax−b) = σ2
DLSx

bT(b−Ax) = 0

2 σmin(A) > σTLS σmin(A) > σDLS

3 bTb−bTA(ATA−σ2
TLS I)−1AT b = σ2

TLS bTb−bTA(ATA−σ2
DLS I)−1ATb = 0

4 xTLS = (ATA−σ2
TLSI)−1AT b xDLS = (ATA−σ2

DLSI)−1ATb

5 [∆ATLS,∆bTLS] =
rTLS[xT

TLS,−1]

‖xTLS‖2+1
∆ADLS =

rDLSxT
DLS

‖xDLS‖2

1Normal equations (for stationary points); 2Generic condition; 3Secular equation; 4De-regularized solution;
5Residuals in terms of solution x and r = b−Ax.
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Least Squares Problems Gauss Quadrature Rules

Secular equation approaches

When is the secular equation approach more
preferable than the SVD approach?

◮ The problem is sensitive: σTLS/DLS ≈ σmin(A)

◮ Least squares solution or de-regularized form is needed:
OLS provides a good initial guess of solution. The
de-regularized form can be easily calculated by adjusting
the amount of negative shift.

◮ The problem is large: The SVD of a large matrix is very
expensive. Instead, we can approximate the secular
equation in the large-scaled problem by Gauss quadrature
rules.
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Gauss quadrature theory

Riemann-Stieltjes integral
M = QΛΛΛQT , ΛΛΛ = diag(λi) 0 < λ1 ≤ λ2 ≤ . . . ≤ λn.

◮ M is symmetric positive definite. Q is orthonormal.

uT f (M)u = αααT f (ΛΛΛ)ααα =
n

∑
i=1

f (λi)α2
i = I [ f ]

◮ f (M) is an analytic function of M that is defined on (0,∞).
◮ ααα = QTu for an arbitrary vector u.
◮ Riemann-Stieltjes integral I [ f ]:

I [ f ] ≡
∫ b

a
f (λ )dα(λ ), α(λ ) =







0 if λ < a = λ1

∑i
j=1α2

j if λi ≤ λ < λi+1

∑n
j=1α2

j if b = λn ≤ λ
where the measure α(λ ) is piecewise constant.
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Least Squares Problems Gauss Quadrature Rules

Gauss quadrature theory

Bounds for Riemann-Stieltjes integral
The Gauss quadrature theory is formulated in terms of finite
summations:

∫ b

a
f (λ )dα(λ ) =

N

∑
j=1

w j f (t j)+
M

∑
k=1

vk f (zk)+R[ f ]

◮ Unknown weights: [w j ]
N
j=1, [vk]

M
k=1; Unknown nodes: [t j ]

N
j=1.

◮ Prescribed nodes: [zk]
M
k=1

The remainder term R[ f ] is given by

R[ f ] =
f (2N+M)(ξ )

(2N+M)!

∫ b

a

M

∏
k=1

(λ −zk)

[

N

∏
j=1

(λ − t j)

]2

dα(λ ), a < ξ < b.

Golub and Meurant [GM93] showed that the sign of the remainder term R[ f ]

can be adjusted by the prescribed nodes. Setting M = 1, we will use the

Gauss-Radau formula to get the bounds of (a part of) secular function.
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Gauss quadrature theory

Orthonormal polynomials

Define a sequence of polynomials p0(λ ), p1(λ ), . . . that are
orthonormal with respect to α(λ ):

∫ b

a
pi(λ )p j(λ )dα(λ ) =

{

1 if i = j
0 otherwise,

and pk(λ ) is of exact degree k. Moreover, the roots of pk(λ ) are
distinct, real and lie in the interval [a,b].
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Tri-diagonalization for orthonormal polynomials

Three-term recurrence relationship
If

∫

dα = 1, the set of orthonormal polynomials satisfies:

λ p(λ ) = TN p(λ )+ γN pN(λ )eN,

where

p(λ ) = [p0(λ ) p1(λ ) · · · pN−1(λ )]T ,

eN = (0 · · · 0 1)T ∈ R
N,

TN =















ω1 γ1

γ1 ω2 γ2
. . . . . . . . .

γN−2 ωN−1 γN−1

γN−1 ωN















.
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Least Squares Problems Gauss Quadrature Rules

Tri-diagonalization for orthonormal polynomials

Lanczos algorithm for quadratures
To obtain the tri-diagonal matrix and hence the Gauss-Radau rule, we will
use the Lanczos algorithm with p1 = u/‖u‖2 as a starting vector:

M ≈ PTN PT

Eigenvalue decomposition of TN:

TN = QΛΛΛQT

Function of matrix:

uT f (M)u ≈ uT f (PTN PT)u = ‖u‖2
2eT

1 Q f (ΛΛΛ)QT e1,

where e1 = (1 0 · · · 0)T ∈ R
N.

Thus, the eigenvalues of TN give us the nodes and the squares of the first
elements of the eigenvectors give the weights:

N

∑
j=1

w j f (t j) = ‖u‖2
2

N

∑
i=1

(Q1i)
2 f (λi)
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Inverse eigenvalue problem for Gauss-Radau rule

Inverse eigenvalue problem

To obtain the Gauss-Radau rule, we extend the matrix TN in such a way that

it has one prescribed eigenvalue z1.

Lemma
The extended tri-diagonal matrix

T̂N+1 ≡
(

TN γNeN

γNeT
N ŵN+1

)

has z1 as an eigenvalue, where ŵN+1 = z1 + δN, and δN is the
last entry of δδδ such that

(TN −z1I)δδδ = γ2
N eN. (1)
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Least Squares Problems Gauss Quadrature Rules

Inverse eigenvalue problem for Gauss-Radau rule

Proof of the extended tri-diagonal matrix lemma
Proof.
We can verify that z1 is an eigenvalue of T̂N+1 by investigating
the following relation to get (1):

T̂N+1d = z1 d,

where d is a corresponding eigenvector.

Now, T̂N+1 gives the weights and nodes of the Gauss-Radau rule such that
N

∑
j=1

w j f (t j)+v1 f (z1) = ‖u‖2eT
1 f (T̂N+1)e1.

The remainder is

R[ f ] = ‖u‖2 f (2N+1)(ξ )

(2N+1)!

∫ b

a
(λ −z1)

[

N

∏
j=1

(λ − t j )

]2

dα(λ ).
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Part II

Application to solving secular equations
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Common function of matrix

Secular functions
Recall the secular equations:

TLS: ψTLS(λ ) = bTb−bTA(ATA−λ I)−1ATb−λ = 0,

DLS: ψDLS(λ ) = bTb−bTA(ATA−λ I)−1ATb = 0.

◮ ψTLS/DLS(λ ) is referred to as secular function.
◮ λ : an estimate of the minimum squared TLS/DLS distance.
◮ generic condition: λ < σ2

min(A) for (ATA−λ I)−1

Thus, in the domain of 0≤ λ < σ2
min(A), we need to evaluate a

matrix function of λ which is common in ψTLS and ψDLS:

φ(λ ) = bTA(ATA−λ I)−1ATb
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Common function of matrix

Bounds of a common function
Now we evaluate the bounds of the scalar quantity φ :

φ = gT f 1
x
(M)g, M = ATA−λ I, g = ATb,

where f 1
x
(x) = 1

x . Then, the quadrature rule

φ̂N+1(z1) = ‖g‖2eT
1 f 1

x
(T̂N+1)e1 is described in terms of the remainder:

φ̂N+1(z1) = I [ f 1
x
]+‖g‖2(ξ )−(2N+2)

∫ b

a
(λ −z1)

[

N

∏
j=1

(λ − t j)

]2

dα(λ ).

We note that
f (2N+1)

1
x

(ξ )

(2N+1)! = −(ξ )−(2N+2) < 0, λ < a < ξ < b. Thus, we have
the bounds:

φ̂N+1(ζb) < I [ f 1
x
] < φ̂N+1(ζa), ζa < a < b < ζb.
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Common function of matrix

Comments on bounds

◮ f 1
x
(x) is well defined on the proper interval (a, b) such that

the sign of the derivative function f (2N+1)
1
x

(ξ ) is not changed

with the interval ξ ∈ (a, b).
◮ Since

√

||A||1||A||∞ > b, we may use ζb =
√

||A||1||A||∞.
◮ However, the lower bound of a (the smallest eigenvalue of

M) is not easily obtainable. ζa is determined very roughly.
◮ This explains why the upper bound of I [ f 1

x
] is usually

poorer than the lower bound.
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Common function of matrix

Lanczos process with a shift for efficiency
◮ The tri-diagonalization is independent of the shift.
◮ Tri-diag([g, M]) ≡ Tri-diag([g, M+ λ I])
◮ (M+ λ I)QN = QN(TN + λ I) ⇔ MQN = QNTN

Then we re-define the extended matrix T̂N+1 as

JN+1 ≡
(

TN −λ IN γN eN

γN eT
N w

)

,

where TN and γN are calculated by Tri-Diag of [g, ATA], (not
[g, M]), and w is determined so that JN+1 has a prescribed
eigenvalue z1. Thus, w = z1 +dN, where dN is the last entry of
d such that

(TN − (z1 + λ )IN)d = γ2
N eN.
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Common function of matrix

Finally, we have the quadrature for bounds:

φ̂N+1(z1) = ‖g‖2eT
1 f 1

x
(JN+1)e1 = ‖g‖2eT

1 (JN+1)
−1 e1.

Once we solve a tri-diagonal JN+1y = e1 for y, we have

φ̂N+1(z1) = ‖g‖2eT
1 y = ‖g‖2y1.

For later interpolation, we need to evaluate the derivatives of the matrix

function φ(λ ) w.r.t. λ by approximating with f 1
x2

(x) = x−2 and f 1
x3

(x) = x−3:

φ̂ ′ = ‖g‖2eT
1 f 1

x2
(JN+1)e1 = ‖g‖2eT

1 (JN+1)
−2 e1,

φ̂ ′′ = 2‖g‖2eT
1 f 1

x3
(JN+1)e1 = 2‖g‖2eT

1 (JN+1)
−3 e1.

By solving JN+1h = y., we have

φ̂ ′ = ‖g‖2‖y‖2, φ̂ ′′ = 2‖g‖2yT(JN+1)
−1y = 2‖g‖2yTh.

A symmetric, tri-diagonal, and positive definite system requires O(N) flops

[GV96] to be solved.
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Common function of matrix

Lemma (Monotonicity of bound sequences)
Along with Lanczos processes, a sequence of bound estimates
of φ = gT f 1

x
(M)g with full-rank symmetric M ∈ R

n×n and

f 1
x
(x) = 1

x is generated by Gauss quadrature rules. Then the

estimated sequence φ̂N+1 is necessarily monotonic.
In other words, given each prescribed node ζa or ζb such that

ζa < σmin(M) < σmax(M) < ζb,

the lower and upper bound sequences for I [ f 1
x
] satisfy

· · · < φ̂N(ζb) < φ̂N+1(ζb) < · · · < I [ f 1
x
] < · · · < φ̂N+1(ζa) < φ̂N(ζa) < · · · .

Note that the complete Lanczos processes yield the exact evaluation:

φ = ‖g‖2eT
1 f 1

x
(Tn−λ In)e1.
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Newton methods

Interpolating the root of secular equations
We approximate the common function φ(λ ) by using Lanczos processes
combined with Gauss quadrature rule, where we proceed the processes until
the upper- and lower- bounds of φ(λ ) match within a tolerance.
Suppose λk is the current estimate of the minimum distance. In order to
interpolate the root of the secular equation ψ(λk), we need to evaluate the
followings:

ψTLS(λk) = ‖b‖2−λk−φ(λk), ψDLS(λk) = ‖b‖2−φ(λk).

ψ ′
TLS(λk) = −1−φ ′(λk), ψ ′

DLS(λk) = −φ ′(λk).

ψ ′′
TLS(λk) = −φ ′′(λk), ψ ′′

DLS(λk) = −φ ′′(λk).

Then, consider one-point interpolating methods to obtain λk+1 such that

ψ(λk+1) = 0.

Note that roots of secular equation consist of the stationary points of the geometrically equivalent cost function. We

want to find the smallest root λk+1 ∈ [0, σ2
min(A)) from the definition of TLS/DLS problem. However, we can not

achieve it without using additional information on the locations of poles such as σ2
min(A) ≤ min j ∑i |ai j |2 and

σ2
max(A) ≤ ‖A‖1 · ‖A‖∞ . In the following sections, we will discuss how to use bisection and the upper-bound of the

smallest pole.
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Newton methods

Variations of Newton’s method take the form:

λk+1 = λk−
ψ(λk)

ψ ′(λk)
·Ck,

where Ck denotes a convergence factor [Gan78, Gan85] according to
methods such as the Newton’s method, the Halley’s variation, and simple
rational approximation in the following Table .

Table: Variations of Newton’s method

Newton’s SRAa Halley’s

Interpolating function h(λ) ≈ ψ(λ) h(λ) = c0 +c1 λ h(λ) = ‖b‖2− c1
c2−λ h(λ) = c0−

c1
c2−λ

Convergence factor Ck 1
‖b‖2−ψ(λk)

‖b‖2 1/

(

1− ψ(λk)ψ′′ (λk)

2(ψ′ (λk))2

)

Rate of (local) convergence Quadratic Quadratic Cubic

Convergence regionb Narrow Wide Wider

Algebraic interpretationc g(λ) = ψ(λ) g(λ) = 1− ‖b‖2

‖b‖2−ψ(λ )
g(λ) =

ψ(λ )√
ψ′(λ )

aSimple Rational Approximation
bGlobal convergence in root-finding of secular equations
cEquivalently, solve g(λ) = 0 by Newton’s method.
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Seeking the smallest root

Mixing with bisection
Whenever we detect that the root estimate is larger than σ2

min(A), we bisect
the estimate to assure that it is less than σ2

min(A). The monotonicity of the
sequence of estimate bounds of Gauss quadratures (GQ) is utilized based on
the following scenario:

1. With the initial guess of root, we obtain the sequence of bounds of
secular function by means of GQ.

2. If the sequences are not monotonic, we conclude that the root estimate
is larger than the squared smallest singular value of A. Then the root
estimate is cut by half, and go to Step 1 with the modified estimate of
root.

3. Otherwise, we interpolate the root of secular equation by using the
estimate of the secular function and its derivatives.

4. If the new root estimate is close to the previous one within a tolerance,
then we calculate the de-regularized solution, and stop the algorithm.
Otherwise, go to step 1.

Although the violation of monotonicity is only a necessary condition, our numerical simulation works well.
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Seeking the smallest root

Stabilizing with the estimated smallest pole
◮ Although the bisection scheme almost always achieves the smallest

root, it may suffer from a ‘bi-stability’ problem which means the
estimates are alternating between two values.

◮ To get around this, we employ the estimation of the smallest pole by
modifying the previous scenario. If we detect the current estimate of
root is larger than σ2

min(A), we cut the estimate by half and set the
upper-bound of the smallest pole to the current estimate of root as well.

σ̂2
min(A) = λk, λk+1 =

1
2

λk.

Then, when we interpolate the next estimate of root, we take a
harmonic sum between the Newton-based step δk =

ψ(λk)
ψ ′(λk)

·Ck and the
distance from the upper-bound of the smallest pole estimation.

λk+1 = λk +
1

−1
δk

+ 1
σ̂2

min(A)−λk

= λk−δk +δ 2
k /(δk +λk− σ̂2

min(A))
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Solving TLS and DLS by quadrature and CG method

CGQ as a secular equation approach

1. Find the smallest root of secular equation for TLS or DLS.
1.1 Evaluate the bounds of secular function by Gauss-Radau

quadrature rule.
1.2 Interpolate the zero of the function by a variation of Newton

method.
1.3 Determine a proper interval for the smallest zero by

bisection and harmonic-summation with the upper-bound of
the smallest pole.

2. Solve a de-regularized system with a shift of the smallest
root.

◮ Solve the symmetric, positive-definite system by the
conjugate gradient (CG) method,

◮ Or, solve the tri-diagonal system with shift.
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Alternative implementations

Alternative implementations

◮ Reuse of Lanczos vectors with sufficient memory
◮ Regeneration of Lanczos vectors with knowledge of

tri-diagonal entries
◮ Avoiding of explicit multiplication of ATA
◮ Shifting into Lanczos bi-diagonalization
◮ Using backward perturbations

Matrices and Moments: Least Squares Problems (30/52)



Backward perturbations for linear least squares I

min
x

‖b−Ax‖2, A : m×n, b : m×1.

ξ : arbitrary vector, calculated.

x̂ = ξ +e; x̂ = A+b.

ξ = (A+ δA)+b.

ρ = b−Aξ .

µ(ξ ) = min
δA

‖δA‖F .

µ(ξ ) = min{‖ρ‖2
‖ξ‖2

,σmin(A,B)}
(Karlson, Waldén & Sun)

B =
‖ρ‖2

‖ξ‖2
(I − ρ ρT

‖ρ‖2
).



Backward perturbations for linear least squares II

µ̃2(ξ ) = ρTA(αATA+ β I)−1ATρ

α = ‖ξ‖2
2, β = ‖ρ‖2

2

µ̃(ξ ) ∼ µ(ξ )

lim
ξ→x̂

µ̃(ξ )

µ(x̂)
= 1

(Grcar)
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Large-scale TLS algorithms

Björck’s algorithm
Solve the system of nonlinear equations

[

ATA ATb
bTA bTb

][

x
−1

]

= λ
[

x
−1

]

,

or equivalently, the system
[

f (x,λ )
g(x,λ )

]

=

[

−ATr −λx
−bT r + λ

]

=

[

0
0

]

with r = b−Ax using a Rayleigh-quotient iteration (RQI).
This algorithm will always converge to a singular value/vector
pair, but we might not get λ = σ2

n+1. Björck suggested one initial
inverse iteration (i.e. λ = 0) to move closer to the desired λ ,
and then apply the RQI procedure.
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Large-scale TLS algorithms

Björck’s algorithm details
After some manipulations, Björck’s algorithm greatly simplifies.
The following presentation emphasizes the computationally
intensive steps.

1. Solve the least squares system in A,b for xLS.
2. Perform one inverse iteration (solve ATAx(0) = xLS) to get

the initial x(0).
3. While not converged... solve two systems in

(ATA−λ I)x = b to iterate to x(k+1), but if we detect ATA−λ I
is negative definite, decrease λ and repeat the iteration.

Björck suggests using the PCGTLS algorithm to solve each
linear system with the Cholesky factor R or ATA as a
preconditioner. Inside the CG procedure, we detect ATA−λ I is
negative definite and use the CG vectors to compute a new
value of λ .
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Large-scale TLS algorithms

Notes on our implementation of Björck’s algorithm

◮ Instead of using PCGTLS with the Cholesky factor of ATA,
we use a matrix-free approach for large scale m> 800and
apply the unpreconditioned CGTLS algorithm. The
tolerance used in the CG method is 10−12.

◮ To compute the initial least squares solution, we use the
LSQR algorithm.

◮ We detect convergence when λ changes by less than
10−12 or the normalized residual increases (theory states
the normalized residual always decreases).

◮ After we detect convergence, we run one more iteration of
the algorithm to ensure that we compute an x “for” the λ .
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Large-scale TLS algorithms

Details of the matrix moments based algorithm

◮ Algorithm 2 uses the Golub-Kahan bidiagonalization of A
and applies the moment algorithm to T = BTB instead of
computing T directly from the Lanczos process on ATA.

◮ Algorithm 1 restarts the Lanczos process at each iteration.
◮ Algorithm 2 never restarts the bidiagonalization process

and simply continues the process at each iteration.
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Comparison of large-scale TLS results

Problems
◮ Jo’s problems, 15×8 and 750×400
◮ Björck’s problem 1: 30×15 matrix
◮ Large scale problems with 10000×5000and

100000×60000matrices.

The large scale problems were generated using random
Householder matrices to build the SVD of

[

A b
]

in product
form. Each large-scale matrix was available solely as an
operator to all of the algorithms. The singular values of

[

A b
]

are
σi = log(i)+ |N(0,1)|,

where N(0,1) is a standard normal random variable.
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Comparison of large-scale TLS results

Parameter choices
Algorithm 1 Algorithm 2

λ (0) = 0 λ (0) = 1 λ (0) = ρ λ (0) = 0 λ (0) = 1 λ (0) = ρ

1
newton 6 4 5 6 4 5

sra 5 5 5 5 5 5
halley 5 5 6 5 5 6

2
newton ++ ++ – *8 *8 *7

sra ++ – ++ *12 *24 *7
halley ++ ++ ++ *14 *23 *6

3
newton – – – *20 *7 *10

sra – – – *20 25 *64
halley – – – *55 55 *12

4
newton – – – *15 *11 *11

sra ++ – – *15 *25 *14
halley – – – *20 *57 *11

5
newton 100 – – ++ ++ ++

sra 100 -5 – ++ ++ –
halley 100 – – ++ ++ –

* wrong root; ++ correct w/o convergence; – no convergence
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Comparison of large-scale TLS results

Convergence
TEST ALG ITERS ERROR T IME LANZ.

jo björck 6 1.0×10−14 0
(15,8) Alg 1 5 4.4×10−16 0

σ2 = 5.6×10−1 Alg 2 5 3.3×10−14 0 12
jo björck 7 8.5×100 0.2

(750,400) Alg 1 >100 8.5×10−14 52.5
σ2 = 1.8×101 Alg 2 23 5.0×10−1 0.7 163
large-scale björck 8 1.1×10−16 0.5
(10000,5000) Alg 1 >100 1.0×10−3 36.1

σ2 = 1.9×10−1 Alg 2 55 8.3×10−16 1.5 152
large-scale björck 5 3.9×10−17 5.1

(100000,60000) Alg 1 >100 5.5×10−7 324.9
σ2 = 3.5×10−3 Alg 2 57 5.3×10−8 14.6 155

björck björck 7 2.6×10−19 0
(30,15) Alg 1 >100 σ2 0.3

σ2 = 9.9×10−12 Alg 2 18 2.9×104 0 33
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Numerical data generation
The numerical data are generated as follows [GvM91]. Let the error-free data matrix

As = UsΣΣΣsVT
s , where Us = Im−2usuT

s
uT

s us
and Vs = In−2vsvT

s
vT

s vs
are Householder matrices and

ΣΣΣs = diag(σk) is a m-by-n diagonal matrix with [σ1, · · · ,σn] = [
√

n, · · · ,1]. The vectors us

and vs consist of pseudo-random numbers generated by a function ‘randn’ providing
uniformly distributed random numbers in MatlabTM. An error-free observation vector bs

is computed by bs = Asxs. The error-prone data A and b are generated with a given
deviation σn as follows:

randn(′state′,108881);% seed for random number
us = randn(m, 1);
vs = randn(n, 1);
As = UsΣΣΣsVT

s ;
xs = (1./(1 : n))′;% [1, 1/2, · · · , 1/n]T

bs = Asxs;
σn = 0.3;
b = bs+σn ∗ randn(m, 1);
A = As+σn ∗ randn(m, n);
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CG-based algorithms

CG-based algorithms
We can categorize algorithms in the following example as below.

Table: CG-based algorithms for solving secular equation.

CGQ-BS-KP CGQ-BS CG-BS-KP CG-BS

Gauss Quadrature rules Used Used Not Not

Bisection Used Used Used Used

Upper-bound of the smallest pole Used Not Used Not

The previous CG-based approaches in [GJK06] or [BHM00] employ matrix-vector
multiplications to evaluate the secular function and derivative from the intermediate
solution x(λ) such that

(ATA−λ I)x(λ) = ATb.

Then the secular functions and derivatives are obtained as follows.

ψTLS(λ) = ‖b‖2−bTAx(λ)−λ ψDLS(λ) = ‖b‖2−bTAx(λ)

ψ ′
TLS(λ) = −‖x(λ)‖2−1 ψ ′

DLS(λ) = −‖x(λ)‖2
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Small problem

Secular function plots with A ∈ R
15×8
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(b) DLS secular function plot
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Small problem

Convergent curves in TLS with A ∈ R
15×8
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(a) Variations of CGQ with the bisection
and the smallest pole estimation.

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Iterations

S
q

u
a

re
d

 d
is

ta
n

ce

TLSCGQ−Newton (6), || x||=1.4197
TLSCGQ−SRA (5), || x||=1.4197
TLSCGQ−Halley (5), || x||=1.4197

(b) Variations of CGQ with the bisection only.
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Small problem

Convergent curves in DLS with A ∈ R
15×8
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Large problem

Convergent curves in TLS with A ∈ R
750×400

0 5 10 15
0

5

10

15

20

25

Iterations

S
q

u
a

re
d

 d
is

ta
n

ce

TLSCGQ−Newton−KP (15), || x||=17.1011
TLSCGQ−SRA−KP (9), || x||=17.1011
TLSCGQ−Halley−KP (6), || x||=17.1011

(a) Variations of CGQ with the bisection
and the smallest pole estimation.

0 5 10 15 20
0

5

10

15

20

25

30

Iterations

S
q

u
a

re
d

 d
is

ta
n

ce

TLSCGQ−Newton (20), || x||=1.3863
TLSCGQ−SRA (20), || x||=1.3863
TLSCGQ−Halley (20), || x||=1.3863

(b) Variations of CGQ with the bisection only.

0 5 10 15
0

5

10

15

20

Iterations

S
q

u
a

re
d

 d
is

ta
n

ce

TLSCG−Newton−KP (12), || x||=17.1011
TLSCG−HS−KP (12), || x||=17.1011

(c) CG with two different interpolations,
the bisection and the smallest pole estimation.

0 5 10 15 20
0

5

10

15

20

25

Iterations

S
q

u
a

re
d

 d
is

ta
n

ce

TLSCG−RQI (20), || x||=6.1351
TLSCG−HSI (20), || x||=17.1011

(d) CG with two different inverse iterations,
and the bisection only.

Matrices and Moments: Least Squares Problems (47/52)



Secular equations CGQ Comparative study (with David Gleich) Example Conclusion

Large problem

Convergent curves in DLS with A ∈ R
750×400
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Conclusion

Conclusion
◮ The presented Conjugate Gradient (CG) with Quadrature

(CGQ) approximates secular functions by means of Gauss
Quadrature (GQ) rules.

◮ The previous CG based approaches are exhaustively
calculating intermediate solutions to evaluate secular
functions.

◮ Interpolating the smallest root by variations of Newton
method with stabilized modification:

◮ Bisection to assure of the convergence to the smallest root.
◮ Approximating with rational function of the estimated

smallest pole to get around bi-stability problem.
◮ CGQ does not pursue the intermediate solution until the

root estimate converges.
◮ The overall computational complexity can be reduced by

adjusting accuracy of GQ.
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