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Total Least Squares - Review

Ax ≈ b

A fixed - LS

min
w,x

‖w‖2

s.t.
Ax = b + w

minimal perturbation
to rhs which makes
this linear system
consistent
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Total Least Squares - Review

Ax ≈ b

A fixed - LS A uncertain - TLS (TLS)

min
w,x

‖w‖2

s.t.
Ax = b + w

min
w,E,x

‖E‖2 + ‖w‖2

s.t.
(A + E)x = b + w

minimal perturbation minimal perturbation to both
to rhs which makes rhs and lhs matrix which
this linear system makes the system consistent
consistent (Golub, Van Loan (80))
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Another Formulation of the TLS

(Golub, Van Loan, 80)

(TLS) min
x,E,w

{‖E‖2 + ‖w‖2 : b + w = (A + E)x} =
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Another Formulation of the TLS

(Golub, Van Loan, 80)

(TLS) min
x,E,w

{‖E‖2 + ‖w‖2 : b + w = (A + E)x} =

= min
x

‖Ax − b‖2

‖x‖2 + 1
︸ ︷︷ ︸

A nonconvex optimization problem
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Another Formulation of the TLS

(Golub, Van Loan, 80)

(TLS) min
x,E,w

{‖E‖2 + ‖w‖2 : b + w = (A + E)x} =

= min
x

‖Ax − b‖2

‖x‖2 + 1
︸ ︷︷ ︸

A nonconvex optimization problem

The solution is expressed by the singular value decomposition of the
augmented matrix (A,b)
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Regularization of the TLS solution

Regularization of the TLS solution is required in the case whereA

is nearly rank deficient.

Applications: discretization of ill posed problems, image
deblurring , medical applications, signal restoration...In these
problems, TLS solution can be physically meaningless, hence
regularization is needed to stabilize solution.
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Regularization of the TLS solution

Regularization of the TLS solution is required in the case whereA

is nearly rank deficient.

Applications: discretization of ill posed problems, image
deblurring , medical applications, signal restoration...In these
problems, TLS solution can be physically meaningless, hence
regularization is needed to stabilize solution.

Regularization Methods

Addition of a quadratic constraint.([Golub, Hansen & O’leary,
1999], [Guo & Renaut, 2002, 2005], [Sima, Van Huffel & Golub,
2004], [Beck, Ben-Tal & Teboulle 2006], [Beck & Teboulle 2006])

Addition of a quadratic penalty to the objective function [Beck &
Ben-Tal 2005].

Truncation methods.([Fierro, Golub Hansen & O’leary, 1997],
[Hansen, 1994]).
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The RTLS problem

(RTLS): min

{
‖Ax − b‖2

1 + ‖x‖2
: ‖Lx‖2 ≤ ρ

}

L ∈ R
r×n(r ≤ n) has full row rank.
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The RTLS problem

(RTLS): min

{
‖Ax − b‖2

1 + ‖x‖2
: ‖Lx‖2 ≤ ρ

}

L ∈ R
r×n(r ≤ n) has full row rank.

The feasible set{x : ‖Lx‖2 ≤ ρ} represents a (possibly
degenerate) ellipsoid.

Popular choices forL: identity matrix, an approximation of first or
second order derivative.

A nonconvex optimization problem (the objective function is
nonconvex).
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Main Problem

Minimization of a ratio of indefinite quadratic functions over an
Ellipsoid

(RQ) min

{
f1(x)

f2(x)
: ‖Lx‖2 ≤ ρ

}

fi(x) = xTAix + 2bT
i x + ci, i = 1, 2

Ai = AT
i ∈ R

n×n,bi ∈ R
n, ci ∈ R,L ∈ R

r×n
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Main Problem

Minimization of a ratio of indefinite quadratic functions over an
Ellipsoid

(RQ) min

{
f1(x)

f2(x)
: ‖Lx‖2 ≤ ρ

}

fi(x) = xTAix + 2bT
i x + ci, i = 1, 2

Ai = AT
i ∈ R

n×n,bi ∈ R
n, ci ∈ R,L ∈ R

r×n

Assumption: the problem is well defined, i.e.,f2(x) > 0 for everyx
such that‖Lx‖2 ≤ ρ

Amir Beck – p. 7



Technion

First Subclass: GTRS Problems

Generalized Trust Region Subproblem (GTRS):f2(x) ≡ 1

(GTRS) min{xTA1x + 2bT
1 x + c1 : ‖Lx‖2 ≤ ρ}

A nonconvex problem.
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(GTRS) min{xTA1x + 2bT
1 x + c1 : ‖Lx‖2 ≤ ρ}

A nonconvex problem.

Nonetheless, can be efficiently solved for large-scale problems
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First Subclass: GTRS Problems

Generalized Trust Region Subproblem (GTRS):f2(x) ≡ 1

(GTRS) min{xTA1x + 2bT
1 x + c1 : ‖Lx‖2 ≤ ρ}

A nonconvex problem.

Nonetheless, can be efficiently solved for large-scale problems
(Moré & Sorensen 83, Moré 93, Stern & Wolkowicz 95, Ben-Tal
& Teboulle 96 Fortin & Wolkowicz 04).

A key subproblem inTrust Region Algorithmsfor unconstrained

minimizationproblems

min{f(x) : x ∈ R
n} ⇒ x

k+1 ∈ argmin
‖x−xk‖2≤∆

gk(x)
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Second Subclass: RTLS Problems

Regularized Total Least Squares Problem (RTLS):
f1(x) = ‖Ax − b‖2, f2(x) = ‖x‖2 + 1

(RTLS) min

{
‖Ax − b‖2

‖x‖2 + 1
: ‖Lx‖2 ≤ ρ

}

A nonconvex problem (although both the denominator and
nominator are convex functions).
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The iterative scheme of Sima, Van Huffel and Golub

Optimality conditions:x∗ is a global optimal solution if and only if

x∗ ∈ argmin{f2(x)(f(x) − f(x∗)) : ‖Lx‖2 ≤ ρ},

(

f(x) ≡
f1(x)

f2(x)

)
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The iterative scheme of Sima, Van Huffel and Golub

Optimality conditions:x∗ is a global optimal solution if and only if

x∗ ∈ argmin{f2(x)(f(x) − f(x∗)) : ‖Lx‖2 ≤ ρ},

(

f(x) ≡
f1(x)

f2(x)

)

Fixed Point Iterations:

xk+1 ∈ argmin{f2(x)(f(x) − f(xk)) : ‖Lx‖2 ≤ ρ}

Equivalently:

xk+1 ∈ argmin{f1(x) − f(xk)f2(x) : ‖Lx‖2 ≤ ρ}

Each iteration involves the solution of a nonconvex GTRS.
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Solving the GTRS problem

(P ) : min{xTBx − 2dTx : ‖Lx‖2 = ρ}

Two solution approaches:

Formulation as aQuadratic Eigenvalue problem:

(λ2I + 2λW + W2 − ρhhT )u = 0,

whereW = L−TBL−1,h = L−Td.
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Solving the GTRS problem

(P ) : min{xTBx − 2dTx : ‖Lx‖2 = ρ}

Two solution approaches:

Formulation as aQuadratic Eigenvalue problem:

(λ2I + 2λW + W2 − ρhhT )u = 0,

whereW = L−TBL−1,h = L−Td.

A dual approach:
The dual problem:

(D) max{−dT (B + λLTL)−1d − λρ : λ ≥ −λmin(L
−TBL)}

Strong duality:val(P)=val(D).
Amir Beck – p. 11
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The iterative scheme of Sima, Van Huffel and Golub

Designed to solve (RTLS) and not (RQ).

In the caser < n, the initial vector is carefully chosen.

Proof that any limit point of the generated sequence satisfiesfirst
order optimality conditions. No proof of global convergence.

Numerical experiments: convergence in at most 5 iterationsto a
high accuracy vector.

The numerical experimentssuggestthat the algorithm converges
to a global optimum

Question 1:Does the algorithm converge to a global optimum for
(RTLS)? (RQ)?

Question 2:What is the reason for the small number of iterations?
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A Globally Convergent Algorithm

Dinkelbach’s principal for fractional programming (67)

F (α) = min{f1(x) − αf2(x) : ‖Lx‖2 ≤ ρ}

F is a decreasing function ofα.
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A Globally Convergent Algorithm

Dinkelbach’s principal for fractional programming (67)

F (α) = min{f1(x) − αf2(x) : ‖Lx‖2 ≤ ρ}

F is a decreasing function ofα.

α∗ is the optimal value if and only ifF (α∗) = 0.

Outer Bisection Algorithm (Beck, Ben-Tal, Teboulle, 06)

Initialization: αl, αu - lower and upper bounds onα∗.
while αu − αl > ǫ repeat
αh = αu+αl

2

If F (αh) > 0 thenαu = αh, elseαl = αh

Amir Beck – p. 13
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Analysis of the Outer Bisection Algorithm

The algorithm and analysis relate to the (RQ) problem
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Analysis of the Outer Bisection Algorithm

The algorithm and analysis relate to the (RQ) problem

Each iteration requires the solution of a GTRS problem.

An ǫ-global optimal solution is obtained afterO(log(1/ǫ))
iterations.

Acceleration of the algorithm is made by using the following
simple fact:

for each feasiblẽx one hasα∗ < f(x̃)

Extension: Nonconvex feasible set{m ≤ ‖Lx‖2 ≤ M}. Usage of
thehidden convexityproperty of problems of the form:

min{xTBx − 2dTx : m ≤ ‖Lx‖2 ≤ M}

Amir Beck – p. 14



Technion

Image Deblurring Example

Problem: estimate a32 × 32 two dimensional image obtained
from the sum of three harmonic oscillations:

x(z1, z2) =

3∑

l=1

ai cos(wl,1z1 + wl,2z2 + φl),

(

wl,i =
2πkl,i

n

)

,

where1 ≤ z1, z2 ≤ 32, kl,i ∈ Z
2, and ai, φl given parameters.

The image is blurred by atmospheric turbulence blur which results
with a highly noisy image (see Fig. B).

We ran algorithms and show the results for:
• RLS with standard regularization (L = I).
• RLS withL as a discrete approximation of the Laplace operator,
which is standard in image processing .
• TTLS and our algorithm RTLSC.
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Results for Regularization Solvers: RLS

(A) True Image (B) Observation
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(C) RLS withL = I (D) RLS with Laplace operator
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Results for Regularization Solvers: TTLS and RTLSC

(A) True Image (B) Observation
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(E) TTLS (F) Our Algorithm: RTLSC
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First three iterations of algorithm RTLSC

(A) True Image (B) Observation

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

Amir Beck – p. 18



Technion

An Empirical Observation and Some Questions...

Thousands of simulations suggest thatboth methods converge
very quickly to a global minimum

Can the iterative scheme of Sima et al. be proven to converge to
the global minimum of RTLS? RQ?
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An Empirical Observation and Some Questions...

Thousands of simulations suggest thatboth methods converge
very quickly to a global minimum

Can the iterative scheme of Sima et al. be proven to converge to
the global minimum of RTLS? RQ?

What is the theoretical rate of convergence of the iterative scheme?

Does there exists a more general/unifying theory behind such
algorithms and their good performance?

Hidden convexity...

Amir Beck – p. 19
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Underlying Assumption

Assumption:

∃η ≥ 0 :

(

A2 b2

bT
2 c2

)

+ η

(

LTL 0

0 −ρ

)

≻ 0. (1)
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Underlying Assumption

Assumption:

∃η ≥ 0 :

(

A2 b2

bT
2 c2

)

+ η

(

LTL 0

0 −ρ

)

≻ 0. (2)

Implies that the problem is well-defined (f2(x) > 0 for everyx
such that‖Lx‖2 ≤ ρ).

Automatically satisfied for the RTLS problem (η = 0).

Satisfied for the GTRS problem ifr = n.

A º B ⇔ A − B PSD

A ≻ B ⇔ A − B PD

Amir Beck – p. 20
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Attainability of the minimum

The minimum is not always attained.For example,

min
x1,x2

{

f(x1, x2) =
5 − 4x1 + 2x2

1 + x2
2 + x1x2

1 + x2
1 + x2

2 + x1x2

: x2
1 ≤ 1

}

.
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{

f(x1, x2) =
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1 + x2
2 + x1x2

1 + x2
1 + x2

2 + x1x2

: x2
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The infimum is 1.
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Technion

Attainability of the minimum

The minimum is not always attained.For example,

min
x1,x2

{

f(x1, x2) =
5 − 4x1 + 2x2

1 + x2
2 + x1x2

1 + x2
1 + x2

2 + x1x2

: x2
1 ≤ 1

}

.

The infimum is 1.

The infimum not attained since

f(x1, x2) = 1 +
(x1 − 2)2

1 + x2
1 + x2

2 + x1x2

> 1.
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Attainability of the minimum

Attainability Condition:Either the feasible set if compact or

λmin(M1,M2) < λmin(F
TA1F,FTA2F),

where

M1 =

(

FTA1F FTb1

bT
1 F c1

)

,M2 =

(

FTA2F FTb2

bT
2 F c2

)

andF is ann × (n − r) matrix whose columns form an orthonormal
basis for the null space ofL.

Weak inequality is always satisfied.

(B-, T-, 06) The minimum is attained under the above assumption.
Mathematical tools: recession function and sets.

A generalization of the attainability condition for the
unconstrained TLS problem :σmin(A,b) < σmin(A). Amir Beck – p. 22
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Reformulation as a Nonconvex Quadratic Problem

Under the attainability condition, (RQ) can be homogenized:

min
z∈Rn,s∈R

{ϕ1(z, s) : ϕ2(z, s) = 1, ϕ3(z, s) ≤ 0} ,

where

ϕi(z, s) = zTAiz + 2bT
i zs + cis

2, i = 1, 2,

ϕ3(z, s) = ‖Lz‖2 − ρs2.
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Reformulation as a Nonconvex Quadratic Problem

Under the attainability condition, (RQ) can be homogenized:

min
z∈Rn,s∈R

{ϕ1(z, s) : ϕ2(z, s) = 1, ϕ3(z, s) ≤ 0} ,

where

ϕi(z, s) = zTAiz + 2bT
i zs + cis

2, i = 1, 2,

ϕ3(z, s) = ‖Lz‖2 − ρs2.

S-Lemma of Polyak (98):under some mild conditions the following are
equivalent for three symmetric matricesR1,R2,R3:

(i) yTR2y = a2,y
TR3y ≤ a3 ⇒ yTR1y ≥ a1.

(ii) ∃α ∈ R, β ∈ R+ : R1 º αR2 − βR3, αa2 ≥ a1 + βa3
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Semidefinite formulation of (RQ)

Under the attainability condition:

max
β≥0,α,λ∈R

λ

s.t.

(

A1 b1

bT
1 c1

)

º α

(

A2 b2

bT
2 c2

)

− β

(

LTL 0

0 −ρ

)

,

α ≥ λ.
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Semidefinite formulation of (RQ)

Under the attainability condition:

max
β≥0,α,λ∈R

λ

s.t.

(

A1 b1

bT
1 c1

)

º α

(

A2 b2

bT
2 c2

)

− β

(

LTL 0

0 −ρ

)

,

α ≥ λ.

Under the attainability condition, problem (RQ) is equivalent to a
singleconvex semidefinite problem.

The SDP problem can be solved efficiently via interior point
methods.

The solution of (RQ) can be extracted from the solution of the
semidefinite formulation.
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Hidden Convexity

The class of problems (RQ) belongs to a small but prestigious classes of
nonconvex problems that can be reformulated as convex problems.
Nonconvex problems that can be transformed into convex problems:

GTRS problems:min{xTA1x + 2bT
1 x + c1 : ‖Lx‖2 ≤ ρ}

Nonconvex homogenous quadratic programming with two
quadratic constraints (Polyak, 98):

min{xTQ0x : xTQ1x ≤ ρ1,x
TQ2x ≤ ρ2}

Nonconvex quadratic optimization problems with two quadratic
constraints over the complex domain (Beck & Eldar, 2006):

min{f0(z) : f1(z) ≤ 0, f2(z) ≤ 0, z ∈ C
n},

wherefi(z) = z∗Aiz + 2ℜ(b∗
i z) + ci Amir Beck – p. 25
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Back to the fixed point algorithm...

Under the attainability condition,

The iterative scheme of Sima et al. converges to a global optimum
for the general problem (RQ).

Superlinear rate of convergence

An ǫ-global optimal solution is obtained after at most
O(

√

log(1/ǫ)) iterations.

⇒ three globally convergent algorithms for solving (RQ).
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