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Total Least Squares

Noisy linear system Ax ≈ b

A is a given m×n matrix (m ≥ n)

b is an m-dimensional given vector

Total Least Squares finds the nearest compatible system

TLS: min
∆A,∆b,x

‖
[
∆A ∆b

]
‖2

F s.t. (A+∆A)x = b +∆b

Solution method: Rank reduction of
[

A b
]

by one.

TLS is classically solved using the SVD of
[

A b
]
= UΣV>.

 the right singular vector in V corresponding to the smallest singular
value gives the TLS solution xTLS :=−v1:n,n+1/vn+1,n+1.
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Total Least Squares

Possible problems

non-uniqueness: non-unique smallest singular value

multicollinearities: linearly dependent columns in A

non-genericity: non-existence of the solution x (e.g., when b is
orthogonal to the left singular subspace corresp. to smallest
singular value of A)

Modifying the TLS method

It is possible to identify each problematic situation (by inspecting the
SVDs of A and

[
A b

]
) and to add extra constraints such that a

unique minimum norm TLS solution xTLS is found.
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Ill-posed linear algebraic systems.

When Ax ≈ b originates from an ill-posed problem[
A b

]
is ill-conditioned

there is no clear gap between singular values of
[

A b
]

singular vectors corresponding to decreasing singular values
contain increasing number of sign changes

b can be almost orthogonal onto singular subspaces of A
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Example: TLS solution of an ill-posed problem

Example

A0x0 ≈ b0 – a slightly incompatible
ill-posed system

A0 – a smooth integral kernel

x0 – discretized smooth function

Singular values of the data matrix[
A0 b0

]
= U0Σ0V>

0

U>
0 b0  close-to-nongenericity
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Example: TLS solution of an ill-posed problem

Example

A0x0 = b0, an m×n exact system

x0 – a discretized smooth function[
b A

]
=

[
b0 A0

]
+noise

x – TLS solution of Ax ≈ b

Singular values of the data matrix[
A b

]
= UΣV>

 almost equal smallest s.v.

U>b
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Truncated Total Least Squares

Truncated TLS
let k ≤ n be a truncation level

compute the nearest rank k approximation of
[

A b
]
,[

Ak bk
]
, using the SVD

solve in the TLS sense the ‘truncated’ problem Ak x ≈ bk .

Truncation goals

noise removal, numerical stabilization . . .

Note

In the SVD of
[

Ak bk
]

there can be multiple singular values. In
particular, the smallest nonzero singular value can be multiple. Thus,
non-uniqueness and non-genericity issues can occur!
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Example: effect of truncation levels
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Example: effect of truncation levels
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Example: effect of truncation levels
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Example: effect of truncation levels
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Truncation during bidiagonalization

Bidiagonalization of
[

b A
]

Fierro et al. proposed a Golub-Kahan bidiagonalization algorithm
instead of the SVD-based method for Truncated TLS

motivation: partial bidiagonalization provides (suboptimal) lower
rank approximation

Paige & Strakoš studied the properties of the bidiagonalization of[
b A

]
for well-posed problems, partial bidiagonalization yields core
problems that can avoid non-uniquness, non-genericity issues for
TLS!

Diana Sima, Sabine Van Huffel Level choice in truncated total least squares



Bidiagonal form of the core decomposition.

P> [ b AQ ] =

[
b1 A11 0
0 0 A22

]
, [ b1 A11 ] =


β1 α1

β2 α2
· · ·

βp αp
(βp+1)


where αiβi 6= 0 and βp+1 is zero for compatible systems Ax = b.

Properties of the core bidiagonal reduction (Paige & Strakoš)

A11 is minimally dimensioned

A11 has only distinct and nonzero singular values

A22 need not be bidiagonalized.

solving the reduced bidiagonal problem A11x1 ≈ b1 with the TLS

algorithm and transforming back to the full solution x = Q

[
x1

0

]
gives the minimum norm TLS solution of Ax ≈ b.
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Truncation during bidiagonalization

Truncation algorithm based on bidiagonalization

1: k = 0, u0 = b, v0 = 0
2: repeat
3: k = k +1
4: compute the k th bidiagonalization step of

[
b A

]
:

αivi = A>ui −βivi−1, βi+1ui+1 = Avi −αiui

5: compute value of a truncation criterion at k
6: until k = n +1 or truncation criterion is satisfied
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Methods for choosing the truncation level

L-Curve

the norm of truncated solution ‖xk‖2 is plotted against norm of
residual error

∥∥[
b A

]
−

[
bk Ak

]∥∥
F

for various k ’s

the k corresponding to the corner is chosen
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Methods for choosing the truncation level
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Methods for choosing the truncation level

Cross Validation

involves repeatingly splitting the rows of
[

A b
]

into estimation
and validation sets

computing from each validation data the TTLS solution for various
k levels

evaluating the residual error on the validation data

choosing the best level on the averaged validation tests

simplification of this scenario is not possible, thus the classical CV is
not efficient and not implementable online, during bidiagonalization
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Methods for choosing the truncation level

Generalized Cross Validation
Regularization for a nonlinear model:

GCV : min
k

residual sum of squares of the model k fit
(number of degrees of freedom in model k)2

We think of the errors-in-variables model

(A+∆A)x = b +∆b, ∆A, ∆b and x unknown,

as a nonlinear model, because of the bilinear term ∆A · x .
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GCV computation

GCV : min
k

residual sum of squares of the model k fit
(number of degrees of freedom in model k)2

Residual sum of squares – expressed using the bidiagonal reduction:

RSS =
∥∥[

b A
]
−

[
bk Ak

]∥∥2
F

=
∥∥[

b A
]∥∥2

F
−

∥∥∥[
b(k)

11 A(k)
11

]∥∥∥2

F
+σmin

([
b(k)

11 A(k)
11

])2

For each k , the RSS computation requires the sum of squares of the
α , β elements in the current bidiagonal matrix and the smallest s.v. of

the (k +1)× k bidiagonal matrix
[

b(k)
11 A(k)

11

]
.
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GCV computation

GCV : min
k

residual sum of squares of the model k fit
(number of degrees of freedom in model k)2

number of degrees of freedom = total number of noisy variables -
effective number of parameters = m(n +1)−peff

k

peff
k is the trace of the influence matrix that makes the link between the

reconstructed model and the noisy data:

peff
k = Tr

∂vec
[

bk Ak
]

∂vec
[

b A
] =

1
2

Tr


A(k)

11

>
A(k)

11

(σ ′′)2 − Ik +8(v ′′1 )2xk
1 xk

1
>

−1 ,

For each k , the number of degrees of freedom computation requires
the inversion of k × k tridiagonal + rank-one matrix.
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Summary

Truncated Total Least Squares in ill-posed linear systems

bidiagonalization is used for efficient computations and online
optimal truncation level selection

choice of truncation level: adapted several classical methods
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Similarities and differences between Truncated TLS and
Core TLS

Truncated TLS discards smallest n− k singular values of[
b A

]
, but keeps the repeats of large singular values, if any.

Core TLS discards n−p singular values of A, which are only
zeros and repeats.

Note
For ill-posed problems, the large singular values are in general distinct,
gradually decreasing.

Algorithmic note

Fierro et al. proposed a Lanczos bidiagonalization algorithm for
Truncated TLS that is identical to the bidiagonalization proposed by
Paige & Strakoš for Core TLS.

back

Diana Sima, Sabine Van Huffel Level choice in truncated total least squares



The TTLS corrected model for truncation level k

[
bk Ak

]
=

[
b A

]
−

(AxTTLS,k −b)
[
−1 xTTLS,k

>]
‖xTTLS,k‖2 +1

.

back
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