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Abstract. This paper reviews the conditional score and corrected score
estimation of the unknown parameters in nonlinear measurement error
(errors-in-variables) models. This includes the functional and structural
models. The connection among these methodologies and total least squares
(TLS) is also examined. A compendium of existing results as well as some
possible extensions are discussed.



1. Introduction

The ordinary regression models assume that the independent variables
are measured without error. However, in many situations, the independent
variables cannot measured precisely. When the measurement error is too
large to ignore, the estimators for the regression parameters are biased and
inconsistent. Measurement error (ME) models are important alternatives
for ordinary regression models, in which we assume that relation between
the independent variable y and independent variable &€ is known but one
cannot observe € directly. Instead, one observes x = & + 0, where 0 is the
measurement error with mean zero and is independents of &. If the &, are
unknown constants, the model is known as a functional model; whereas, if
the &, are independent identically distributed random variables, the model
is known as a structural model. We also assume that & is independent of
the measurement error 0 in the structural model.



More general terms suggested by Carroll, Ruppert and Stefanski (1995)
seem to be useful. The term functional modelling is referred to the situ-
ation in which the true (latent) variable & is either fixed or random, but
if it is random, then no, or at least minimal, distributional assumptions
are imposed on &. On the other hand, structural modelling refers to the
situation in which € is random, and distributional assumptions, usually
parametric, are made on the true variable &.

There are several general methodologies proposed in the literature to
estimate the regression parameters in nonlinear measurement error models.
We are interested in two of them. The first one is the conditional score
method that was proposed by Stefanski and Carroll (1987). The second
one is called corrected score method, which was proposed by Stefanski
(1989) and Nakamura (1990) independently.



Another important issue is the types of measurement error. We will follow
the definition made by Carroll et al. (1995) and define the nondifferential
measurement error meaning that x has no information of y other than
what is available in &. That is, the conditional distribution of y given (&, x)
depends only on &€ and hence 8 has nothing to do with the distribution of y.
In this case, x is called a surrogate. Putting in symbol, the nondifferential
measurement error means that f(y | x,&) = f(y | &), which leads to the
following two other equivalent expressions (Liang and Liu, 1991), namely,

x| &)= Jfly &) f(x]E),

or

x| &y) = [x]§),

where f denotes the appropriate density (mass) function. The measure-

ment 1s differential otherwise.



In this paper, we will review these two methods. In our view, they have
some fundamental difference in their assumptions that has been neglected in
the literature. We will also bring some recent developments to attention and
some possible extensions are discussed. Finally the connection between the
conditional score method and TLS (total least squares) is addressed.

1.1. GENERALIZED LINEAR MODELS

In this subsection, we briefly discuss the generalized linear models that will
be the focus on the conditional and corrected score estimation methods.
It should be pointed that the conditional and corrected score estimation
methods are not necessarily restricted to generalized linear models. We
will return to this point later.

An important class of nonlinear ME models is the generalized linear
models (GLM’s) (McCullagh and Nelder, 1989). These models have
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received considerable attention lately, partly because they are very usetul
in many disciplines such as biostatistics. These are important models and
deserves special attention. Assuming we observed (y;, x}) and x; are subject

to measurement error:
X; = Sz =+ 51'7

fore=1,...,n and y is a scalar and x is a p X 1 vector. The generalized
linear models considered in the present article are with “canonical links”,

so that y has density or mass function

fly | & 1) = exp{?

T —c(T)
¢

where 7 = B(1,&) = By + B'€ is called the natural (canonical)
parameter. The functions ¢(-) and h(-) are assumed to be known and

+h(y, 0}, (1)

¢ is called dispersion parameter. The regression parameter ' =
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(8o, B"), associated with the dispersion parameter ¢ is the unknown param-
eter to be estimated. Note that in some situations the dispersion parameter

¢ is known.
E(OL/T) =0,
E(0*L/07%) + E(OL/d1)° =0,
which give
E(y &) =d(r)=up,
and

var(y | &) = o' (1) = oV (),



2. Conditional Score Estimating Functions

In this section, we will investigate conditional score estimation method,
which was introduced Stefanski and Carroll (1987). Essentially, the condi-
tional score method is applied to a class of generalized linear measurement
models with canonical form when the independent variable is measurement
with error. The basic assumptions are, the measurement error 9 is normally
distributed and its variance 55 = @€2, where 2 is known. Note that X
could be less than full rank, which means that some of the components of
0 are measured without error. The latent variable & is fixed, that is, the
functional model is considered here.

The following discussions are based on the work by Stefanski and Carroll
(1987) and Carroll, Ruppert and Stefanski (1995, Chapter 6).

Consider the generalized linear model defined by (1). The parameter of
interest is ¥ = (@', ¢), which can be estimated by solving the unbiased es-



timating equations (recall that ¢/(7) and ¢c”(7) are the mean and variance,
respectively)

Sy —dn)} ( . ) 0 2

if &; were known.

If we regard € as an unknown parameter and all other parameters are
assumed to be known, Stefanski and Carroll (1987) show that m = x +
Y550/ ¢ is a complete sufficient statistics for & Moreover, the conditional
distribution of y given 7 has the form of generalized linear model (1) with
& replaced by 7 and the following substitutions

T = o + 18/773
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he(y, 6, B'S58) = hly, ¢) — (1/2)(y/8)’B'LssB:

C*(T*7 Cb,,B/Z&SB) — Qb lOg [/ €$p{y7*/¢ =+ h*(y7 ¢,6,2556)}d,&(’y) ,

where the integral is a sum if y is discrete and an integral otherwise. In
other words, the conditional density or mass function is

YTx — C*(T*;f) 13/2556) + h.(y, ¢, ,3/2555)}

To find the unbiased estimating functions for the parameter ¥, we can

f(y | , \Ilv 255) — ele{

use (2)-(3) above with the change of the mean m, and variance v, by

0

m(Te, ¢, B'2558) = ¢/ (1) = 5—Ce)

0
01,2

¢U*(T*7 Qb, /8/25518) — ¢C:(T*) — ¢

10
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To be more precise, the estimators of ¥’ = (g, B, ¢) can be obtained by

solving
Z{yi_m*(ﬁkaqbw@/z(s&@)} <ﬂl_> = ( (5)
Ay - mln,9,808)) |
Z ¢ ?}*(7'*, ¢7 /8/255/6) ] B O’ (6)

[t is conceivable that solving (5)-(6) is much more difficulty than solving

(2)-(3).
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Example 1. (Stefanski and Carroll, 1987)
Linear functional model. If ¥ is normally distributed with mean 8y + B3'€
and variance ¢ = o2, then

m*(T*7 ¢7 18/25518) —

T+ .
1+ ¢ 18558

1
V(Te, &, B'2558) = 1+ o 18'Ss58

This example is basically for illustration purpose because the estimation in

linear model has been discussed widely and one does not need to use this
complicated method to find consistent estimator.

For simple functional model, it is easy to see that m = x + Sy /A, where
A\ = o2/0%, the ratio of error variances. Moreover, m, = A7./(A + 87) and
v, = A/ (A + 57). Then the estimating equations become

Z(yz — B0 — bir;) = 0,
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> (i — Bo— Bizi)(Azi + Biys) = 0,

“*‘ A+ B

Z 52 )‘(yi — o — 51%)2 _ 0.

The estimators of By and o? are easily obtained and they are the usual

method of moments estimators, namely,
. .9
i My — Bo — i)
A+ (2

To estimate the slope (1, the middle estimating equation is a quadratic

Bo=1y— Pz, o-=n

form of 81 and it yields the two solutions

5, Syy — ASze £ {(Syy — ASua)” + 4)\S§y}1/2

28y
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Unfortunately, the conditional estimation method does not indicate which
root is appropriate, unlike the maximum likelihood and /or generalized least
squares method. We will return to this point later in discussion section.

Example 2. (Stefanski and Carroll, 1987)
Logistic measurement-error model. Note that ¢ = 1 in logistic regression

model. The conditional mean and variance are

m(Te, ¢, B'E558) = H(1. — B'X558/2);

’U*(T*, ¢7 18/255/B> — H<1>(7_* — 18/2556/2)7
where HW = H(1— H) is the logistic density function. Then the unbiased

estimating equation becomes

Z{yz — H(50 — 18/71'@' — 056/25518)} < ﬂl_? > — (.
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Again, there are multiple solutions to the equation above and they have to
solved numerically.

Generally speaking, the conditional score unbiased estimating equation
depends on the first two moments, namely equation (4), of y given 7 and
there are no closed forms of them except in some rare cases such as linear
and logistic measurement-error models. Therefore, numerical integration
or summation is needed to find these moments. Next example is a typical
case of such occasion.
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Example 3. (Stefanski and Carroll, 1987)
Poisson measurement-error model with ¢ = 1. Then

o

e 6, B'S558) = log S > (y)explyr. — y*B'T558/2) ¢

y=0
Carroll et al. (1995, p. 129) gave the formula to find the mean and vari-
ance, which are the first and second derivative of ¢, with respect to 7,
respectively. They are m, = s; and v, = s9 — s, where
Sy (y) eaplym — ¥’B'E553/2)
o0 —1 )
> o (Y1) exp(yr. — y2B'Sss8/2)

sjp=Ey |7) =
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2.1. DISCUSSION

The key feature of conditional score methodology is to observe that a com-
plete sufficient statistic for £, namely, w = x 4+ yX4553/¢, when all other
parameters are fixed. Then the distribution of y given 7 is independent of
&. This method applied to the logistic, Poisson, and gamma measurement-
error models with normal measurement error. The normality assumption is
not crucial, at least in theory, but this has not been shown in the literature.

However, the existence of the a complete sufficient statistic for & is crucial.
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3. Corrected Score Estimating Functions

The corrected score estimation method was introduced independently
by Stefanski (1989) and Nakamura (1990). The basic assumptions are, the
measurement error 0 is normally distributed and its variance ;s 18 known.
Note that Xss could be less than full rank, which means that some of the
components of & are measured without error. The latent variable & could
be fixed or random and no distributional assumption is imposed in the
latter case. In other words, this estimation method is a typical functional
modelling methodology.

The following is based on the work by Stefanski (1989), Nakamura (1990)
and Buzas and Stefanski (1996). Suppose that there exists an unbiased

estimating function such that

E(y;, &, 0) = 0. (7)

18



for all 4. Further, suppose one can find a ) such that

E{¢(yi,x:;0 | yi, &)} = ¥(yi, € 0) (8)

for all (y;, &;). Note that the conditional expectation in (8) is only respect
to the distribution of the measurement error . Because x; = &, + d; and

taking expectation with respect to &; and y; again, one has

E{4(yi, x5 0)} = 0. (9)

Equation (9) leads to solve the unbiased estimating function

> (i, xi;0) =0, (10)

and the resulting estimator is known as the corrected score estimator.

To obtain (7) is quite easy because one can use the maximum likelihood
score function or least squares in ordinary regression pretending that &,
are known. We will use the subscript ml, mm, and [s for @) and {b to
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denote the source, that is, the maximum likelihood induced, the method-of-
moments, and the least squares induced, respectively, of the estimator. The
main difficult is how to find ¢ that satisfies (8). Such ) might not exist at
all and it is not easy to find even it exists. On the other hand, the corrected
score estimation method provides a general methodology for functional
modelling. We now illustrate the corrected score estimation method via
following examples. By using the normal generating function, one can

show that the following three identities, namely (recall that 8" = (3, 8"))

Bfexp(fo-+ %) | €} = capl(Bo+ BE + 6'Susf)
E{xerp(5y + Bx) | € = (€ + SuBlerp(BE + 56/Suf).

E{xx'exp(By+ B'x) | €} = {55 + (€ + Z558)(€ + Zss8) texp(B'E + %5'2555),
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hold true when 0 is normally distributed with mean zero and variance Y.

Example 4

Linear measurement error model that is described as follows.

x; = &; + 0, yi = Bo + B'E, + &4,

with ¢+ = 1,...,n. The well-known “method-of-moment” estimator in
linear ME model can be treated as a corrected score estimator. Using least
squares to regress y on £ will result in the unbiased estimating function

b1y, €:0) = (y — B — B'€)(1,€).
[t is easy to verify that

{pls(ya X, 0) — (y o 60 _ /B/X)(la X)/ + 2556(07 1),

is the corrected score function satisfying (8). In this case, the estimator
can be treated as either a least squares induced or method-of-moments
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estimator. Note that no distributional assumption needs to be imposed on
the measurement error 9.

The example above is interesting because Nakamura (1990, p. 131) used
normally distributed d to obtain the same estimator, although Nakamura
pointed it out that the normality assumption of 4 is not necessary. Buzas
and Stefanski (1996, p. 2) directly pointed that (9) is the corrected score
function for the naive estimating function (7), which implicitly suggests
that least squares, not likelihood being used.
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Example 5 (Nakamura 1990)
Poisson regression with canonical link. Assuming & is fixed, the log-

likelihood based on (y, &) is

1(6) =) {—exp(By+ B'E) + il B, B)(1,&) — log i},

Because E(y | &) = exp(By + B'€) and the maximum likelihood score
derived from (y, &) is

VoY, & 0) = {y — exp(By + B'€)}(1,¢).

Using the first two identities proved by Nakamura (1990), the corrected
score function becomes

~

By, 50) =y — cap(Bo + Bx — 5'SusB)

~

Bl B) = vx — (x — SysB)eap(fo + Bx — 36'Susf)
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~

Finding the corrected score function ) is not difficult if the original
score function 1 depends on & only through &, exp(B'€) and &exp(B'E)
by invoking the three identities above. There is more to say about this.
Shklyar and Schneeweiss (2005) showed that

E{J(x)\x.0) | €} = exp(5 8B E{f(x+ Bpp) | €}, (11
where A(x, 0) = exp(y+8'x), and f is an arbitrary function for which the
expectation above exists. Therefore, if the v function is a function involved
with A function, then there is a good chance to find the corresponding
corrected function 1. The reason for assuming normal measurement error
is quite obvious via equation (11).
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Example 6 (Cheng and Schneeweiss, 1998)
Polynomial measurement error model. The model can be described as

follows.

=& +0, Y=L+ B&+ Bl .+ Bl + e,
where 1 = 1,...,n and £ is a positive integer. We assume that &; are fixed.
If not, we can condition on &;. If &, 72 =1, ...,n, were observable, one can

simply use ordinary least squares and minimize

2
> Wi Bo— & — ... = Biél)
Taking derivatives with respect to the 8’s leads to the unbiased estimating

equations

D (il = Botl — BT = Bl — = Bl =0,
for 5 = 0,1,..., k. The equations above are the 1 function in (7). The
question is to find the corresponding 7. The problem is to find ¢;, such that
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E(t;) = & forr = 0,1,2,...,2k. The solution for finding t;. was first
suggested by Chan and Mak (1985) and then more completely by Cheng
and Schneeweiss (1998). The resulting estimator is called adjusted least
squares (ALS) estimator in Cheng and Schneeweiss (1998). However, it
can be viewed as a corrected score induced by least squares.

Stefanski (1989, p. 4338) proved that a corrected score function does
not always exist. The necessary condition for the existence of a corrected
score function is that the underlying estimation function has to be an en-
tire function in the complex plane and it does not allow any singularities
in the complex numbers. Stefanski (1989, p. 4350) also showed that the
corrected score function induced by the maximum likelihood of the lo-
gistic regression model with probability mass function p(y = 1 | §) =
{1+ exp(—pFy — [’3’5)}_1 possessing singularities. Consequently, the cor-
rected score function induced by (corrected) log-likelihood for the logistic
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model does not exist.

3.1 DISCUSSION AND FURTHER DEVELOPMENT

In this subsection, we will briefly discuss the extensions of corrected
score estimators, based on the work of Buzas and Stefanski (1996), see also
Carroll et al. (1995, Chapter 6).

The first extension of corrected score estimation is to the class called
mean and vartance models, which also called quast-likelthood and vari-
ance function (QVFE) models described by Carroll and Ruppert (1988) and
McCullagh and Nelder (1989). Because it is mathematically complicated,
we omit it and refer the reader to Buzas and Stefanski (1996).

Buzas and Stefanski (1996) also suggested a potentially useful exten-
sion of the method to nonnormal, additive measurement error models.
Suppose that x = &€ + 9, and its moment of generating function of 4,
ms = E{exp(t'd)}, exists for some t and is known. For normal errors
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it has shown that the corrected score is a function of terms of the form
exp(jBy + 78'x — %jQB’E&;,B), for nonnegative integer 5. Note that for
normally distributed 8, m;(t) = E{exp(5t'Esst)} and thus

exp(j By + jB8'x — %]25,2555)

= exp(j B + jB'X)/exp(%jQB’Z&;B) = exp(j P+ jB'x)/ms(j B0 + jB).
The extension for general error distributions is to replace all terms of the
form exp(jfo + jB'x — 55°8'258) by exp(jfo + j8'%)/ms(j50 + 7 B).
The key issue is that one has to know the moment generating function of 9.
Augustin (2004) found the exact corrected log-likelihood function for Cox’s
proportional hazards model using this assumption. However, the extension
proposed by Buzas and Stefanski (1996) has not been fully explored yet.
Recently, Novick and Stefanski (2002) proposed a new method of comput-

ing corrected score function and the resulting unbiased estimating function
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is called Monte Carlo corrected score function. In principle, as long as the
estimating v function is an entire function in the complex plane and suit-
ably smooth, the Monte Carlo corrected score approach works well. The
theory needs some knowledge of complex variable analysis that is not fa-
miliar with many statisticians. Moreover, the Monte Carlo corrected score
method has some robust property. When the measurement error is not
normal, it provides bias-reduced estimator.

Nakamura (1990) introduced the corrected score estimation by consid-
ering the log-likelihood function of a given ME model. Suppose that the
log-likelihood function is denoted by I(y, x; @), and if there exists a function

~

[(y,x;0), called a corrected log-likelihood, and it satisfies

E{l(yi,xi;0 | yi, &)} = U(y:, &;; ), (12)

for all @ in the parameter space. If the expectation and partial derivative
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with respect to @ are interchangeable, then it gives

B{O (00 | . €)) = oo 6:0) (13
Comparing the equation above with (8), the corrected score function is
just ol /00. Therefore, there are two ways to define the corrected score
estimate, one is the maximizer of the corrected log-likelihood, the other
is the solution to the corrected score function. Nakamura (1990, p. 128)
chose the latter one. Note that there are some differences between these two
definitions. First of all, the maximizer of the log-likelihood might not exist.
Secondly, even the maximizer exists, usually there are some restrictions on
the data, as it happens frequently in the maximum likelihood estimator in
general parametric models. On the other hand, solution to the corrected
score function does not require such restrictions. From the viewpoint of
large sample properties, if the maximizer exists, then the two definitions
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are the same because the restrictions are satisfied when the sample is large
enough and the model is correct.

It should also be noted that, no matter which definitions one uses, the
corrected score estimator induced by likelihood is not the same as the true
maximum likelihood estimator in general. The corrected score estimator in-
duced by corrected log-likelihood only requires to specity some distribution
assumption, such as normality on the measurement error 6. Moreover,
the latent variable & could be either functional or structural because of
conditioning on y and &. In the latter (structural) case, no distributional
assumption is imposed on the latent variable either. Therefore, it is clear
that the corrected score estimator is quite different from the maximum
likelihood estimator in general.
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Example 7 (Example 4 continued)

Both Stefanski (1989) and Nakamura (1990) used corrected score estima-
tion in linear ME (functional) models. The corrected log-likelihood (when
£ is fixed) is, omitting the constants,

Zl Vi, Xi; 0) = Z{ — B'x,)" — B'Ss8).

The resulting estimator is the same as that in Example 4, which is induced
by least squares. It is also the maximum likelihood estimator (with some
restrictions) when & is also normally distributed (Fuller, 1987, Cheng and
Van Ness, 1999). Note that these restrictions are automatically satisfied
when the sample is large and the ME modelling is correct.

It is worth noting that Nakamura (1990) (implicitly) assumed the func-
tional model, that is, the latent variable € is non-stochastic, in finding the
corrected log-likelihood function. In other words, the log-likelihood func-
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tion [(y,x; @) assumes that & is being fixed in the first place. If not, the
original log-likelihood function [ will be quite different as it depends on the
distribution of €. For instance, the &€ is normal in the example above, then
the corrected log-likelihood function is not the same as that in Example
7. If the latent variable & is random, it will greatly complicate the search
for corrected log-likelihood function. However, one can modify the defini-
tion of corrected log-likelihood to be the one that satisfied (16) with the
log-likelihood function [(y, x; @) replacing by the conditional log-likelihood
function [(y,x; 0 | &). Then the problem vanishes.

Corrected score estimation method was treated in a broader manner by
Stefanski (1989). That is, the corrected score estimator is the solution to
the unbiased estimating function (10). It is not necessarily induced by
the score function, which comes from likelihood function. Certainly like-

lihood function is an important and natural source but by no means the
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only source. Nonlinear least squares is a reasonable source, for example.
Nakamura (1990, p. 128 and 129) twice pointed it out that corrected score
function is an unbiased score (estimating) function but the converse is not
necessarily true but he did not explore the other sources. In Nakamura’s pa-
per, corrected score function is just the derivative of corrected log-likelihood
function and is an unbiased estimating function. It is somewhat different
from the broad meaning recognized by Carroll et al. (1995, Section 6.5)
and Buzas and Stefanski (1996). We use the term corrected score function
to stand for unbiased estimating function satisfying (7) and (8).

Finally, it is worth noting that corrected score estimation is not restricted
to any particular distribution of the measurement error . The normality
assumption is just for convenience. On the other hand, there is no results
available for any other distributed d except the suggestion by Buzas and
Stefanski (1996), as discussed earlier. It is because, in order to construct the
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corrected score function, one needs to evaluate the conditional expectation
(8) and it seems to be inevitable that one must specify the distribution of
0, at least to some certain degree.. It would be of some interest to explore
corrected estimation to certain family of distributions, such as exponential
family. This work has not yet been done.
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4. Concluding Remarks

Both conditional score and corrected score are functional methods, that is,
the latent variables &, are either fixed or random, but there is no distri-
butional assumption imposed on it in the latter case. However, they differ
in many aspects. First, conditional score method needs the existence of
a complete sufficient statistics. Although the normality assumption of the
measurement d does not seem to be crucial, it is not easy to find a complete
sufficient statistics in general.

On the other hand, corrected score method seems more variable because
it can be induced by least squares, method of moments, log-likelihood
function, etc. Moreover, the Monte Carlo corrected score method greatly
expands the applications of this methodology.

Generally speaking, conditional score and corrected score apply to differ-
ent models with very few exceptions, such as Poisson regression model. If
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one compares these two estimation methods on Poisson regression model,
one will find the corrected score has a closed form expression whereas the
conditional score has infinite series that requires more heavy computations.
Stefanski (1989) found that conditional score estimator is more efficient for
Poisson model in some practical cases.

When the latent variable & does have a specific distribution, such as
normal, then it will be interesting to compare the functional method with
other methods that use the knowledge of the distribution of the latent
variable. Some work has been done this aspect. Kukush, Schneeweiss and
Wolf (2004) compared the corrected score estimator and structural quasi-
score estimator in the Poisson model. The latter is based in conditional
mean-variance, taking the distribution of the latent covariate into account.
They found that the corrected score is preferred, unless the error variance
is large, because the corrected score method is insensitive to the latent
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variable assumption.

The link between the conditional score method and total least squares can
be seen via the (simple) linear ME model. The conditional score estimator
coincide with the TLS estimator, see Example 1. However, such connection

is not clear for nonlinear model. It needs some further investigation.
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