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MOTIVATION
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Approximation problem

Ã nonzero n by k matrix, b̃ nonzero n-vector.

With no loss of generality n > k (add zero rows if necessary).

Consider an orthogonally invariant linear algebraic

approximation problem

Ã x̃ ≈ b̃, (ÃT b̃ 6= 0 for simplicity),

where ≈ typically means using data corrections of the prescribed type

in order to get the nearest compatible system.
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Examples

● when errors are confined to b̃ : LS

Ã x̃ = b̃ + r̃ , min ‖r̃‖2 ;

● when errors are contained in both Ã and b̃ : (Scaled) TLS

(Ã + Ẽ) x̃ γ = b̃ γ + r̃ , min ‖[r̃, Ẽ]‖F ,

for a given scaling parameter γ;

● when errors are restricted to Ã : DLS

(Ã + Ẽ) x̃ = b̃ , min ‖Ẽ‖F .
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Definition problem – a nonexistent solution

The data Ã , b̃ can suffer from

● multiplicities – the solution may not be unique;

● conceptual difficulties – when there are stronger colinearities

among the columns of Ã than

between the columnspace of Ã
and the right hand side b̃ ,

the TLS solution does not exist.

Extreme example: Ã not full column rank, but b̃ /∈ R(Ã).

It would be ideal to separate the information necessary and sufficient for
solving the problem from the rest.
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Revealing orthogonal transformation

We prove that this important separation step can always be achieved

via some orthogonal transformations providing a revealing block structure.

In this sense, any orthogonally invariant linear algebraic approximation

problem can be considered structured.

For simplicity of exposition, the presentation is mostly restricted to
(unscaled) TLS.

Except for very few exceptions specified below, this presentation assumes
exact arithmetic.
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Content

1. Golub and Van Loan analysis

2. Van Huffel and Vandewalle completion

3. When TLS solution does not exist

4. Core problem within Ã x̃ = b̃

5. Techniques, if time permits

6. Further work



C.C. Paige and Z. Strakoš 8

1. GOLUB AND VAN LOAN

ANALYSIS
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Basic TLS solution

Compatibility condition (Ã + Ẽ) x̃ = b̃ + r̃ is equivalent to

(

[b̃, Ã] + [r̃, Ẽ]
)

[

−1

x̃

]

= 0 .

Look for the smallest perturbation [r̃, Ẽ] of [b̃, Ã] which makes the last

matrix rank deficient. If the right singular vector corresponding to the

smallest singular value of [b̃, Ã] has a nonzero first component, then

scaling it so that the first component is −1 gives the basic TLS solution.
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Sufficient condition for existence

Theorem

If σmin (Ã) > σmin ([b̃ , Ã]), then the Algorithm GVL gives

the unique solution,

[b̃ , Ã] = Ũ Σ̃ Ṽ T =

k+1
∑

i=1

ũi σ̃i ṽ
T
i , ṽk+1 =

[

ν

w

]

,

x̃ = −
1

ν
w , [r̃ , Ẽ] = − ũk+1 σ̃k+1 ṽT

k+1 .

[Golub, Reinsch - 1970], [Golub - 73], [van der Sluis - 75],
[Golub, Van Loan - 80], [Golub, Hoffman, Stewart - 87] contain much
more, in particular,
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Golub and Van Loan founding paper

● Scaling of columns and weighting of rows;

● Minimum 2-norm solution;

● Scaled TLS solution → LS solution as γ ց 0;

● TLS sensitivity analysis;

● Enlightening comments on possible numerical difficulties.
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The minimum norm solution ( [b̃ , Ã] = Ũ Σ̃ Ṽ T )

σ̃j > σ̃j+1 = . . . = σ̃k+1 , V ′ = [ṽj+1 , . . . , ṽk+1] ,

U ′ = [ũj+1 , . . . , ũk+1] .

If eT
1 V ′ 6= 0, then take Q′, Q′T Q′ = Q′Q′T = I such that

(eT
1 V ′) Q′ = ν eT

1 ; set ṽ = (V ′ Q′) e1 =

[

ν

w

]

, ũ = U ′ Q′ e1.

The solution is given by

x = −
1

ν
w , [r̃ , Ẽ] = − ũ σ̃k+1 ṽT .
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Remaining difficulty

The condition σmin (Ã) > σmin ([b̃ , Ã]) is sufficient,

but not necessary:

If σmin (Ã) = σmin ([b̃ , Ã]) ,

then there might be a solution, or it can happen that

ṽk+1 =

[

0

w

]

and the TLS formulation does not have a solution.



C.C. Paige and Z. Strakoš 14

2. VAN HUFFEL AND VANDEWALLE

COMPLETION
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Nonpredictive collinearities

If eT
1 V ′ = 0, i.e. no column of V ′ has a nonzero first component,

then the corresponding directions in the columnspace of Ã bear no

information whatsoever about the “observation” or “response” b̃ . In other

words, the correlations between the columns of Ã are stronger than the

correlations between the columnspace of Ã and the vector b̃ .

[Van Huffel, Vandewalle – 91]:

Eliminate some unwanted directions in the columnspace of Ã
(nonpredictive colinearities) uncorrelated with the vector b̃ .
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Nongeneric TLS concept

Consider the splitting

[b̃ , Ã] =

q
∑

i=1

ũi σ̃i ṽ
T
i +

k+1
∑

i=q+1

ũi σ̃i ṽ
T
i ,

where q is the maximal value of i such that eT
1 ṽi 6= 0.

The nongeneric TLS formulation uses the additional restriction:

(Ã + Ẽ) x̃ = b̃ + r̃ , min ‖ [r̃ , Ẽ] ‖F subject to

[r̃ , Ẽ] [ṽq+1 , . . . , ṽk+1] = 0 .
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Theory

Theorem

The (minimum norm) nongeneric TLS solution always exists and is unique.

The whole construction is linked with the basic condition

σmin (Ã) > σmin ([b̃, Ã]) .

The fact that the condition is sufficient but not necessary complicates

both the theory and computation.
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Computation

Any decision as to whether the problem is generic or nongeneric

can be made only in the process of computation and it is based on

the intermediate computed results.

Moreover, the computation does not remove all directions in the column

space of Ã uncorrelated with the vector b̃ ,

nor all redundant information.
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WHEN THE TLS SOLUTION

DOES NOT EXIST
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Fundamental block structure

Consider
[

b A
]

=

[

b1 A11 0

0 0 A22

]

,

so that the problem Ax ≈ b can be rewritten as two independent

approximation problems

A11 x1 ≈ b1 ,

A22 x2 ≈ 0 ,

with the solution x =

[

x1

x2

]

.



C.C. Paige and Z. Strakoš 21

A meaningful solution

But A22 x2 ≈ 0 says x2 lies approximately in the null space of A22,

and no more. Thus, unless there is a reason not to, we can set x2 = 0.

Now since we have obtained b with the intent to estimate x,

and since x2 does not contribute to b in any way,

the best we can do is estimate x1 from A11 x1 ≈ b1.
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Well justified restriction on A11, b1

We need only consider the case where Ax ≈ b is incompatible.

Then A11x1 ≈ b1 is also incompatible.

We will show later that we can get:

● A11 is a (p + 1) × p matrix with no zero or multiple singular values,

● b1 has nonzero components in all left singular vector subspaces

of A11. That is if A11 = U11Σ1V
T

11
, then UT

11
b1 has no zero entry.

As a consequence we will have the desired basic condition:

● σmin (A11) > σmin([b1, A11]) .
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SVD – based analysis

The SVD of [b, A] is the direct sum of the SVDs of [b1, A11]
and A22 . Indeed,





b1 A11 0

0 0 A22



 =





U1 Σ1 V T
1 0

0 U2 Σ2 V T
2



 ,

then extend the singular vectors by zeros.
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Standard TLS theory

Since σmin (A11) > σmin([b1, A11]) ,

● σmin (A22) > σmin ([b1, A11]) implies σmin (A) > σmin ([b, A])

and the algorithm of Golub-Van Loan finds the unique solution.

● σmin (A22) = σmin ([b1, A11]) implies σmin (A) = σmin ([b, A]) ;

σmin ([b, A]) is multiple, but eT
1 V ′ 6= 0 . Consequently, the unique

minimum norm solution follows in a standard way.

● σmin (A22) < σmin ([b1, A11]) implies σmin (A) = σmin ([b, A])

and eT
1 V ′ = 0. The problem is considered by GVL unsolvable.

The nongeneric TLS concept of VHV has to be applied.
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The if and only if condition

With the block structure above, the basic TLS concept and its minimum

norm extension does not have a solution iff

σmin(A22) < σmin([b1, A11]).

The nongeneric TLS concept projects out (by imposing the additional

condition) “the part of the block” A22 with singular values below

σmin([b1, A11]). Then it solves the projected problem using

the standard (minimum norm) TLS concept.

The nonexistence of the TLS solution is illustrated on a simple example.
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Example

[b , A] =





b1 A11 0

0 0 A22



 =







1 1 0

0 1 0

0 0 ω







SVD of [b1 , A11] =
[

0.8507 -0.5257

0.5257 0.8507

] [

1.618 0

0 0.618

] [

0.5257 -0.8507

0.8507 0.5257

]T

● If ω ≥ σmin([b1, A11]) = 0.618 , then all is fine.

● If ω < σmin([b1, A11]) = 0.618 , then we see the trouble:
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Conceptual difficulty revealed

Take any z , define r1 = b1 − A11 z .

Then for any θ > 0 , (denoting v2 , u2 the singular vectors

corresponding to σmin (A22) ≡ σ2 , here v2 = 1 , u2 = 1 ,

σmin (A22) = ω )





b1 A11 r1 θ−1 vT
2

0 0 A22 − u2 σ2 vT
2













−1

z

v2 θ









≡





b1 A11 r1θ
−1

0 0 0













−1

z

θ









= 0 ,
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Meaningless solution approximation

‖[0 , E]‖2

F = ‖r1‖
2 θ−2 + σ2

min (A22) = ‖r1‖
2 θ−2 + ω2 .

For large θ we have ‖[r , E]‖F → σmin ([A22]) = ω and

“close to optimal solution vector”

[

z

v2 θ

]

≡

[

z

θ

]

which is absolutely meaningless, since it couples the blocks and reflects

no useful information whatsoever.

The nongeneric TLS concept requires [r , E] [0 , 0 , 1]T = 0 ,

and constructs the unique nongeneric solution from the block [b1 , A11] .
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The block structure is not restrictive

In this section, the problem was structured so that the difficulty was clearly

revealed and the solution was transparent.

The crucial point:

We claim and show that the given block structure, which represents

fundamental decomposition of the original data, fully determined by the

multiplicities and irelevant information in the data b̃ , Ã , can always be

found via proper orthogonal transformations.

The solution can then be found by ignoring all multiplicities and irelevant

information (i.e. block A22 ).
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4. CORE PROBLEM

WITHIN Ã x̃ ≈ b̃
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The goal

Our suggestion is to find an orthogonal transformation

P T [b̃ , Ã Q] =

[

b1 A11 0

0 0 A22

]

, P−1 = P T , Q−1 = QT

so that A11 has minimal dimensions, and A11x1 ≈ b1 can be solved

by the algorithm given by Golub and Van Loan. Then solve

A11x1 ≈ b1 , and take the original problem solution to be

x̃ = Q

[

x1

0

]

.
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The transformation (compatible case)

Such an orthogonal transformation is given by reducing [b̃, Ã] to an
upper bidiagonal matrix. In fact, A22 need not be bidiagonalized,

[b1, A11] = P T
1 [b̃, Ã Q1] has nonzero bidiagonal

elements and is either

[b1 | A11] =















β1 α1

β2 α2

· ·

βp αp















, βiαi 6= 0, i = 1, . . . , p

if βp+1 = 0 or p = n , (where Ã is n × k), or



C.C. Paige and Z. Strakoš 33

The transformation (incompatible case)

[b1 | A11] =





















β1 α1

β2 α2

· ·

βp αp

βp+1





















, βiαi 6= 0 , βp+1 6= 0

if αp+1 = 0 or p = k (where Ã is n × k).

In both cases: [b1, A11] has full row rank and A11 has full column rank.

Technique: Householder reflections or Golub-Kahan bidiagonalization.
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Core problem matches the restriction

Theorem: Core problem characteristics

(a) A11 has no zero or multiple singular values, so any zero singular

values or repeats that Ã has must appear in A22 .

(b) A11 has minimal dimensions, and A22 maximal dimensions, over all

orthogonal transformations of the form given above.

(c) All components of b1 in the left singular vector subspaces of A11 are

nonzero. Consequently, the solution of the TLS problem A11x1 ≈ b1

can be obtained by the algorithm of Golub and Van Loan.



C.C. Paige and Z. Strakoš 35

Theory justifies computation

The core problem approach consists of three steps:

1. Orthogonal transformation [b, A] = P T [b̃ , Ã Q] , where the upper

bidiagonal block [b1, A11] is as above, A22 is not bidiagonalized.

All irrelevant and multiple information is filtered out to A22 .

2. Solving the minimally dimensioned A11 x1 ≈ b1

by the algorithm of Golub and Van Loan.

3. Setting x̃ = Qx ≡ Q

[

x1

0

]

, (if we take x2 = 0).
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Computational efficiency

The core problem approach is computationally efficient.

When the bidiagonalization stops, we use only the necessary

(and sufficient) information for computing the solution.

The approximation problems for the original data [b̃, Ã] and the

orthogonally transformed data [b, A] are equivalent. Consequently,

the core problem approach always gives meaningful solutions

by setting x2 = 0 .
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The single concept covers all

Theorem

The core problem approach gives in exact arithmetic the minimum norm

(Scaled) TLS solution of Ãx̃ ≈ b̃ determined by the algorithm of Golub

and Van Loan, if it exists. If such a solution does not exist, then the core

problem approach gives the nongeneric minimum norm (Scaled) TLS

solution determined by the algorithm of Van Huffel and Vandewalle.
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5. TECHNIQUES, IF TIME PERMITS
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Understanding core problems

Start with the SVD of Ã:

[b̃, Ã] =



b̃

∣

∣

∣

∣

∣

∣

U





S 0

0 0



 V T



 = U





c̃ S 0

d 0 0









1 0

0 V T





Use orthogonal transformations from the left and right in order to

● transform nonzero d to δe1;
● create as many zeros in c̃ as possible;
● move out all zeros in c̃,

● and so move out all multiplicities and unneeded elements in S.
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Analysis based on SVD

Result (with new U , V ):

UT [b̃, ‖ÃV ] =





b1 A11 0

0 0 A22



 =









c S1 0

δ 0 0

0 0 S2









,

δ is nonzero (and the corresponding row exists) if and only if the system

is incompatible. Size of the core problem ( p × p or (p + 1) × p) is

given by the number of the left singular subspaces of Ã, corresponding to

distinct nonzero singular values, in which b̃ has a nonzero component.

( c has all its components nonzero, singular values in S1 are distinct

and nonzero).
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Obtaining this structure from bidiagonalization

Upper bidiagonalization of [b̃, Ã]. Then, using A11 = U11S1V
T
11,

(obtaining A22 = U22S2V
T
22 is unnecessary),

[

b1 A11 0

0 0 A22

]

=

[

U11 r1 0

0 0 U22

]







c S1 0
δ 0 0

0 0 S2













1 0 0
0 V T

11
0

0 0 V T

22







where c ≡ UT
11b1, δ ≡ ‖w‖ ≡ ‖b1 − U11c‖, and, if δ 6= 0,

r1 ≡ w/δ.
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Alternative proof

[Hnětynková, S - 2006]: Relationship between

the Golub-Kahan bidiagonalization of Ã starting with b/‖b‖

and

the Lanczos tridiagonalization of ÃT Ã starting with ÃT b/‖ÃT b‖

respectively

the Lanczos tridiagonalization of ÃÃT starting with b/‖b‖ .
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It gives the standard concept solutions

Orthogonal transformations do not change the problem. Therefore,
consider the (partial) upper bidiagonal form in the incompatible case
(the compatible case is obvious).

[b, A] =





b1 A11 0

0 0 A22



 =





















β1 α1

β2

. . . 0

. . . αp

βp+1

0 0 A22




















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Proof

Case 1: σmin(A) > σmin([b, A]) > 0.

Case 2: σj([b, A]) > σj+1([b, A]) = . . . = σk+1([b, A]),

V ′ = [ṽj+1, ṽj+2, . . . , ṽk+1],

Case 2a: eT
1 V ′ 6= 0.

Case 2b: eT
1 V ′ = 0.
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6. FURTHER WORK
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Numerical issues and regularization

Numerically, determining b1 , A11 , A22 will depend on some

(application related) threshold criterion.

If the problem is ill-posed and the data are corrupted by noise, then
determining and solving the numerical core problem should also
incorporate some way of determining what we can of a meaningful
solution, such as regularization.

A survey of regularization in connection with TLS is given in [Hansen,
O’leary – 97], [Fierro, Golub, Hansen, O’Leary – 97], [Hansen – 98],
[Golub, Hansen, O’Leary – 99], see also [Kilmer, O’Leary – 01],
[Kilmer, Hansen, Espanol – 06], ...

Also in computational statistics, and the Russian school inspired by
Tikhonov [Zhdanov et al. – 86, 89, 90, 91].
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Truncated TLS

(A + E) x = b + r, min ‖ [r, E] ‖F subject to

(rank ([b + r, A + E]) =) rank (A + E) = m.

Its (minimum norm nongeneric TLS) solution is constructed by
considering the small singular values equal and set to zero, while
preserving the singular vectors. With the restriction of the rank, the T-TLS
distance is (unlike in the nongeneric TLS problem) the square root of the
sum of squares of the neglected singular values.

Suggested in [van Huffel, Vandewalle - 91, Section 3.6.1].
Analyzed in [Fierro, Bunch – 94], [Fierro, Bunch – 96], [Wei – 92],
see also [Stewart – 84], [van der Sluis, Veltkamp – 79].
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Golub-Kahan Truncated TLS

Golub-Kahan bidiagonalization of [b̃ , Ã] . Then compute approximate

truncated TLS solution by applying TLS to the bidiagonal system with

the (k + 1) × k matrix at each step k (which represents the truncated

approximation of the core problem). Stopping criterion is based

on the TLS solution of the (k + 1) by k bidiagonal problem.

[Fierro, Golub, Hansen, O’Leary – 97], [Sima, Van Huffel – 05, 06],
[Sima – 06]

[Hnětynková, Plešinger, S - 06]: Bidiagonalization itself can provide

useful information about the level of noise in b .

[Hansen, Kilmer and Kjeldsen - 06]
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In ill-posed LS problems

[Paige and Saunders – 82 I+II] classics contains, in addition to LSQR for
solving least squares problems, also stopping criteria, approximation to
truncated SVD - regularization, see also [Golub, Kahan – 65], relationship
to other methods like CGLS, Craig, PLS [Wold – 1980], see [Eldén -
2004], numerical stability issues, code.

Regularization by projection: Eldén (1977), Björck and Eldén (1979
rep.), Björck (1980 rep.), Varah (1979), van der Sluis and van der Vorst
(1986, 1990), Golub and Urs von Matt (1991), Hansen and O’Leary
(1993), Hanke, Nagy and Plemmons (1993), Björck, Grimme and Van
Dooren (1994), Vogel and Wade (1994), Hanke (1995), Vogel (1997),
Hansen (1998), Calvetti, Golub and Reichel (1999), Simon and Zha
(2000), Calvetti and Reichel (2002) ...

Projection with subsequent regularization: O’Leary and Simmons
(1980), Björck (1988 paper!), Hanke and Hansen (1993), Hanke (2001),
Kilmer and O’Leary (2001), Kilmer, Hansen and Espanol (2006) ...
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A nonzero x2 component

Consider, noisy ill-posed LS problems and Modified TSVD

[Hansen, Sekii, Shibahaski – 92]

min ‖Lx̃ ‖2 subject to min ‖ Ãx̃ − b̃ ‖ .

If L is a general matrix with full row rank, then one can consider

x2 6= 0 for numerically determined A22 . This does not alter

the core problem concept theoretically or computationally,

cf. [Fierro, Golub, Hansen, O’Leary – 97, Section 5].

For more general case see [Kilmer, Hansen, Espanol – 06].
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Multiple right hand sides

Extension of the core problem theory and computation?

[Björck – 05, 06], the following lecture

[Sima – 06]

Hnětynková, Plešinger, S : poster
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CLOSING REMARKS
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Closing remarks

The core problem approach represents a clear computationally efficient
concept which in exact arithmetic gives in all cases (Scaled) TLS solutions
identical to the minimum norm solutions given by the standard concepts of
Golub and Van Loan, Van Huffel and Vandewalle.

Theoretically, it simplifies and extends the previous (Scaled) TLS analysis.

Computationally, it can lead to interesting numerical questions and
applications. A close connection to regularization.

Extension to multiple right hand sides seems to be in progress in the
sense of decomposition of data and the core problem definition, with
interesting ideas also in the sense of computation.



C.C. Paige and Z. Strakoš 54

Closing remarks

THANK YOU!
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