

On the equivalence between TLS and MLPCA with applications in chemometrics

Mieke Schuermans Katholieke Universiteit Leuven, Dept. Electrical Engineering, Leuven, Belgium

TLS workshop, Leuven, August 21-23, 2006

1 Introduction

Weighted low rank approximation problem

B Link with TLS

WLRA in chemometrics: PCA and MLPCA

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

6 MLPCA and TLS equivalent?

6 Performance comparison

1 Introduction

2 Weighted low rank approximation problem

B Link with TLS

4 WLRA in chemometrics: PCA and MLPCA

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

6 MLPCA and TLS equivalent?

6 Performance comparison

1 Introduction

Weighted low rank approximation problem

3 Link with TLS

4 WLRA in chemometrics: PCA and MLPCA

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

6 MLPCA and TLS equivalent?

6 Performance comparison

1 Introduction

Weighted low rank approximation problem

- 3 Link with TLS
- **4** WLRA in chemometrics: PCA and MLPCA

- **6** MLPCA and TLS equivalent?
- **6** Performance comparison
- Conclusion

1 Introduction

Weighted low rank approximation problem

3 Link with TLS

4 WLRA in chemometrics: PCA and MLPCA

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

5 MLPCA and TLS equivalent?

6 Performance comparison

1 Introduction

Weighted low rank approximation problem

3 Link with TLS

4 WLRA in chemometrics: PCA and MLPCA

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

5 MLPCA and TLS equivalent?

6 Performance comparison

1 Introduction

2 Weighted low rank approximation problem

- 3 Link with TLS
- **4** WLRA in chemometrics: PCA and MLPCA

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- **5** MLPCA and TLS equivalent?
- 6 Performance comparison
- Conclusion

1 Introduction

Introducti

WLRA

Link with TLS

In chemometr: PCA/MLPCA

MLPCA/TLS equivalent?

Performance comparison

Conclusion

Weighted low rank approximation problem

3 Link with TLS

• WLRA in chemometrics: PCA and MLPCA

5 MLPCA and TLS equivalent?

6 Performance comparison

WLRA

Link with TLS

In chemometr: PCA/MLPCA MLPCA/TLS equivalent? Performance

comparison Conclusion

Motivation: mixture analysis

Example: near-infrared spectroscopic data

- 31 three-component mixtures containing toluene, chlorobenzene and heptane
- spectra obtained over the range 400-2500 nm

・

Motivation: mixture analysis

The spectra form a 31×1050 noisy data matrix D:

$$D = \begin{bmatrix} y_1^{(1)} & y_2^{(1)} & \dots & y_{1050}^{(1)} \\ y_1^{(2)} & y_2^{(2)} & \dots & y_{1050}^{(2)} \\ \vdots & & & \\ y_1^{(31)} & y_2^{(31)} & \dots & y_{1050}^{(31)} \end{bmatrix}$$

? : approximation matrix \widehat{D} of rank 3.

Introduction

WLRA

Link with TLS

In chemometr: PCA/MLPCA

MLPCA/TLS equivalent?

Performance comparison

1 Introduction

Introduction

WLRA

Link with TLS

PCA/MLPCA

MLPCA/TLS equivalent?

Performance comparison

Conclusion

2 Weighted low rank approximation problem

3 Link with TLS

WLRA in chemometrics: PCA and MLPCA

5 MLPCA and TLS equivalent?

6 Performance comparison

Given: data matrix
$$D \in \mathbb{R}^{m \times n}$$
 and $r < rank(D)$
?: nearest approximation $\widehat{D} \in \mathbb{R}^{m \times n}$ with $rank(\widehat{D}) \leq r$

Introduction

WLRA

Link with TLS

In chemometr: PCA/MLPCA

MLPCA/TLS equivalent?

Performance comparison

Conclusion

Problem formulation

$$\min_{\hat{D} \atop rank \, \hat{D} \leq r} \| D - \widehat{D} \|_{W}^{2} = \min_{\hat{D} \atop rank \, \hat{D} \leq r} \operatorname{vec}^{\top} (D - \widehat{D}) W^{-1} \operatorname{vec} (D - \widehat{D})$$

Given: data matrix $D \in \mathbb{R}^{m \times n}$ and r < rank(D)?: nearest approximation $\widehat{D} \in \mathbb{R}^{m \times n}$ with $rank(\widehat{D}) \leq r$

Introduction

WLRA

Link with TLS

In chemometr: PCA/MLPCA

MLPCA/TLS equivalent?

Performance comparison

Conclusion

Vec (·) = 990

Given: data matrix $D \in \mathbb{R}^{m \times n}$ and r < rank(D)?: nearest approximation $\widehat{D} \in \mathbb{R}^{m \times n}$ with $rank(\widehat{D}) \leq r$

Introduction

WLRA

Link with TLS

In chemometr: PCA/MLPCA

MLPCA/TLS equivalent?

Performance comparison

Given: data matrix
$$D \in \mathbb{R}^{m \times n}$$
 and $r < rank(D)$
?: nearest approximation $\widehat{D} \in \mathbb{R}^{m \times n}$ with $rank(\widehat{D}) \leq \mathbb{R}^{m \times n}$

Introduction

WLRA

Link with TLS

In chemometr: PCA/MLPCA

MLPCA/TLS equivalent?

Performance comparison

Conclusion

Vec (·) = 990

r

Given: data matrix
$$D \in \mathbb{R}^{m \times n}$$
 and $r < rank(D)$
?: nearest approximation $\widehat{D} \in \mathbb{R}^{m \times n}$ with $rank(\widehat{D}) <$

Introduction

WLRA

Link with TLS

PCA/MLPCA

MLPCA/TLS equivalent?

Performance comparison

Conclusion

Problem formulation $\min_{\hat{D} \atop rank \hat{D} \leq r} \| D - \hat{D} \|_{W}^{2} = \min_{\hat{D} \atop rank \hat{D} \leq r} \operatorname{vec}^{\top} (D - \hat{D}) W^{-1} \operatorname{vec} (D - \hat{D})$

with $\widehat{\Delta D} = D - \widehat{D}$ the estimated measurement noise and W the covariance matrix of $vec(\widehat{\Delta D})$.

1 Introduction

Introduction

WLRA

Link with TLS TLS Link

In chemometr: PCA/MLPCA

MLPCA/TLS equivalent?

Performance comparison

Conclusion

Weighted low rank approximation problem

3 Link with TLS

• WLRA in chemometrics: PCA and MLPCA

6 MLPCA and TLS equivalent?

6 Performance comparison

TLS: problem formulation

Introduction

WLRA

Link with TLS TLS Link

In chemometr: PCA/MLPCA

MLPCA/TLS equivalent?

Performance comparison

Conclusion

Classical TLS problem formulation

Given: overdetermined set of linear equations $AX \approx B$

Find: $\min_{\widehat{\Delta A}, \widehat{\Delta B}, \widehat{X}} \| [\widehat{\Delta A} \ \widehat{\Delta B}] \|_{F}^{2}$ s.t. $(A - \widehat{\Delta A}) \widehat{X} = B - \widehat{\Delta B}$

 \widehat{X} is called a TLS solution and $[\widehat{\Delta A} \ \widehat{\Delta B}]$ the corresponding TLS correction.

TLS: problem formulation

Classical TLS problem formulation

Introduction

WLRA

Link with TLS TLS Link

In chemometr: PCA/MLPCA

MLPCA/TLS equivalent?

Performance comparison

Conclusion

Given: overdetermined set of linear equations
$$AX \approx B$$

Find: $\min_{\widehat{D},\widehat{X}} \parallel D - \widehat{D} \parallel_{F}^{2}$ subject to $\widehat{D} \begin{bmatrix} \widehat{X} \\ -I \end{bmatrix} = 0$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

TLS: problem formulation

Classical TLS problem formulation

Introduction

WLRA

Link with TLS TLS Link

In chemometr: PCA/MLPCA

MLPCA/TLS equivalent?

Performance comparison

Conclusion

Given: overdetermined set of linear equations $AX \approx B$ Find: $\min_{\widehat{D},\widehat{X}} \| D - \widehat{D} \|_{F}^{2}$ subject to $\widehat{D} \begin{bmatrix} \widehat{X} \\ -I \end{bmatrix} = 0$

Remember WLRA

$$\min_{\hat{D} \atop rank \, \hat{D} \leq r} \| D - \widehat{D} \|_{W}^{2} = \min_{\hat{D} \atop rank \, \hat{D} \leq r} \operatorname{vec}^{\top} (D - \widehat{D}) W^{-1} \operatorname{vec} (D - \widehat{D})$$

 $\Rightarrow W \equiv I$ $\Rightarrow \text{ measurement errors on } D = [A B] \text{ are i.i.d.}$

TLS: extensions

• Element-wise weighted TLS: uncorrelated m.e. $W = diag(\sigma_{ij}^2)$

$$\widehat{D}_{ETLS} = \operatorname{argmin} \sum_{i,j} \left(\frac{a_{ij} - \hat{a}_{ij}}{\sigma_{a_{ij}}} \right)^2 + \sum_{i,j} \left(\frac{b_{ij} - \hat{b}_{ij}}{\sigma_{b_{ij}}} \right)^2$$

Generalized TLS: correlated m.e. + homoscedastic
 W = blkdiag(W_f,..., W_f)

$$\widehat{D}_{GTLS} = \operatorname{argmin} \| [A - \widehat{A} \ B - \widehat{B}] \ W_f^{-1/2} \|_2^2$$

 Row-wise weighted TLS: row-wise correlated m.e. + heteroscdastic W = blkdiag(W₁,..., W_m)

$$\widehat{D}_{RTLS} = \operatorname{argmin} \sum_{i=1}^{m} \parallel [A_i - \widehat{A}_i \ B_i - \widehat{B}_i] \ W_i^{-1/2} \parallel_2^2$$

Introduction

WLRA

Link with TLS TLS Link

In chemometr: PCA/MLPCA

MLPCA/TLS equivalent?

Performance comparison

Introduction

WLRA

Link with TLS

MLPCA/TLS equivalent?

Performance comparison

Conclusion

3 Link with TLS

WLRA in chemometrics: PCA and MLPCA

5 MLPCA and TLS equivalent?

6 Performance comparison

Introductic WLRA Link with In chemor PCA/MLP MLPCA/T equivalent Performan comparison Conclusion

WLRA in chemometrics: PCA and MLPCA method

Given: $D \in \mathbb{R}^{m \times n}$ of true pseudorank r

РСА
Compute: $\widehat{D}_{PCA} = \arg\min_{T,P} \ D - \widehat{D} \ _{F}^{2}$ s.t. $\widehat{D} = TP^{\top}$
ML if errors in d_{ij} are i.i.d.
Algorithm, truncated SVD
Algontinni. truncateu SVD
MLPCA
MLPCA Compute:

ML if true error covariance matrix \boldsymbol{W} is known Algorithm: Alternating LS

1 Introduction

Introduction

WLRA

Link with TLS

In chemometr: PCA/MLPCA

MLPCA/TLS equivalent?

Performance comparison

Conclusion

Weighted low rank approximation problem

3 Link with TLS

WLRA in chemometrics: PCA and MLPCA

5 MLPCA and TLS equivalent?

6 Performance comparison

Are (extended)TLS and (ML)PCA equivalent?

Equivalent methods to solve the same kernel problem:

Introduction

WLRA

Link with TLS

In chemometr: PCA/MLPCA

MLPCA/TLS equivalent?

Performance comparison

Conclusion

$$\min_{\widehat{D}} vec^{\top}(D - \widehat{D})W^{-1}vec(D - \widehat{D}) \text{ s.t. } rank(\widehat{D}) \leq r$$

Set $D = [A B] \in \mathbb{R}^{m \times n}$, with true pseudorank r.

Since

$$\widehat{B} \in \mathcal{R}(\widehat{A}) \Leftrightarrow \exists X : \widehat{A} \ \widehat{X}_{TLS} = \widehat{B} \quad \Leftrightarrow \quad rank(\widehat{D}) \leq r$$

 $\Leftrightarrow \quad \exists T, P : \widehat{D} = TP^{\top},$

we have:

$$\widehat{D}_{TLS} = \widehat{D}_{MLPCA}! \qquad \textbf{YES}$$

MLPCA and TLS: same kernel problem

min $vec^{\top}(D-\widehat{D})W^{-1}vec(D-\widehat{D})$ s.t. $rank(\widehat{D}) \leq r$ ĥ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Introduction

WLRA

Link with TLS

In chemometr: PCA/MLPCA

MLPCA/TL equivalent?

Performance comparison

MLPCA and TLS: same kernel problem

$$\min_{\widehat{D}} \textit{vec}^{\top}(D - \widehat{D}) W^{-1} \textit{vec}(D - \widehat{D}) \text{ s.t. } \textit{rank}(\widehat{D}) \leq r$$

Introduction

WLRA

Link with TLS

In chemometr: PCA/MLPCA

MLPCA/TL: equivalent?

Performance comparison

Conclusion

C1:
$$\widehat{D} = TP^{\top}$$
, where $T \in \mathbb{R}^{m \times r}$ and $P \in \mathbb{R}^{n \times r}$
C2: $\widehat{D} \begin{bmatrix} \widehat{X} \\ -I \end{bmatrix} = 0$, where $\widehat{X} \in \mathbb{R}^{r \times (n-r)}$
C3: $[\widehat{X}^{\top} - I] \widehat{D} = 0$, where $\widehat{X} \in \mathbb{R}^{r \times (m-r)}$.

different rank constraint representations

different algorithms used

- $\mathcal{A}1$: alternating least squares
- $\mathcal{A}2$: unconstrained nonlinear optimization

1 Introduction

Introduction

WLRA

Link with TLS

In chemometr: PCA/MLPCA

MLPCA/TLS equivalent?

Performance comparison

Conclusion

- - Weighted low rank approximation problem
- 3 Link with TLS

WLRA in chemometrics: PCA and MLPCA

5 MLPCA and TLS equivalent?

- 6 Performance comparison
- Conclusion

Remember kernel WLRA problem

$$\min_{\substack{\widehat{D} \\ rank \ \widehat{D} \leq r}} vec^{ op}(D - \widehat{D}) \ W^{-1} \ vec(D - \widehat{D})$$

In chemometr: PCA/MLPCA MLPCA/TLS equivalent?

Introduction WLRA Link with TLS

Performance comparison

Conclusion

with $\widehat{\Delta D} = D - \widehat{D}$ the estimated measurement noise and W the covariance matrix of $vec(\widehat{\Delta D})$. A wide variety of cases exist, depending on the error structure.

Case uncorrelated measurement errors $\Rightarrow W$ is diagonal:

Remember kernel WLRA problem

$$\min_{\substack{\widehat{D} \\ rank \ \widehat{D} \leq r}} vec^{ op}(D - \widehat{D}) \ W^{-1} \ vec(D - \widehat{D})$$

In chemometr: PCA/MLPCA MLPCA/TLS equivalent?

Introduction WLRA Link with TLS

Performance comparison

Conclusion

with $\widehat{\Delta D} = D - \widehat{D}$ the estimated measurement noise and W the covariance matrix of $vec(\widehat{\Delta D})$. A wide variety of cases exist, depending on the error structure.

Case only row/column correl. measurement errors \Rightarrow W is block diagonal with equal blocks:

Remember kernel WLRA problem

$$\min_{\hat{D} \atop rank \, \hat{D} \leq r} vec^{\top} (D - \widehat{D}) \, W^{-1} \, vec(D - \widehat{D})$$

In chemometr: PCA/MLPCA

Introduction WLRA Link with TLS

MLPCA/TLS equivalent?

Performance comparison

Conclusion

with $\widehat{\Delta D} = D - \widehat{D}$ the estimated measurement noise and W the covariance matrix of $vec(\widehat{\Delta D})$. A wide variety of cases exist, depending on the error structure.

Case only row/column correl. measurement errors \Rightarrow W is block diagonal with unequal blocks:

Remember kernel WLRA problem

$$\min_{\substack{\hat{D} \\ rank \ \hat{D} \leq r}} vec^{\top} (D - \widehat{D}) W^{-1} vec (D - \widehat{D})$$

Link with TLS In chemometr: PCA/MLPCA

Introduction WLRA

MLPCA/TLS equivalent?

Performance comparison

Conclusion

with $\widehat{\Delta D} = D - \widehat{D}$ the estimated measurement noise and W the covariance matrix of $vec(\widehat{\Delta D})$. A wide variety of cases exist, depending on the error structure.

Case correlated measurem. err. \Rightarrow *W* is a full matrix:

Experiment 1: Homoscedastic errors

Introduction

WLRA

Link with TLS

In chemometr: PCA/MLPCA

MLPCA/TLS equivalent?

Performance comparison

Conclusion

Mixture analysis:

- 31 imes 1050 data matrix D containing NIR spectra
- 31 times 3-component mixtures of toluene, chlorobenzene and heptane
- standard deviation of the first sample mixture used
- \widehat{D} of rank 3 ?

	relative error	time (s)	
MLPCA	0.1583429241	37.6150	
GTLS	0.1583429241	4.1760	
			3

Experiment 2: Heteroscedastic errors, uncorrelated

Link with TLS

In chemometr: PCA/MLPCA

MLPCA/TLS equivalent?

Performance comparison

Conclusion

• Simulated 10 \times n (n = 10 to 200) data matrix $D = D_0 + \Delta D$ from chemical measurements

→ Ξ

- 10 times 2-component mixtures
- \widehat{D} of rank 2 ?

Figure: CPU time of MLPCA and RTLS

Experiment 3: Heterosced. errors, row-wise corr.

Introduction

WLRA

Link with TLS

In chemometr: PCA/MLPCA

MLPCA/TLS equivalent?

Performance comparison

Conclusion

• Simulated $m \times n$ (m = 6 to 13, n = 20 - m) data matrix $D = D_0 + \Delta D$ from chemical measurements

- row-wise correlation by using a moving average filter
- Monte-Carlo simulations over 100 runs
- \widehat{D} of rank r (r = 1 to 4) ?

Experiment 3: Heterosced. errors, row-wise corr.

Introduction

WLRA

Link with TLS

In chemometr: PCA/MLPCA

MLPCA/TLS equivalent?

Performance comparison

Conclusion

Which algorithm to use? 11 Depending on the size of data matrix D

$m \times n$		6×14	7×13	8×12	9×11	10×10	11×9	12×8	13×7
r = 1	MLPCA	16	16	16	17	11	17	17	18
	standard EW-TLS	15	16	16	13	14	10	9	8
	adapted EW-TLS	7	8	11	11	23	13	14	17
r = 2	MLPCA	27	28	30	32	13	35	31	36
	standard EW-TLS	56	58	46	38	48	30	30	25
	adapted EW-TLS	13	19	19	21	28	34	34	33
r = 3	MLPCA	37	41	46	50	18	51	49	53
	standard EW-TLS	88	84	72	67	66	53	48	35
	adapted EW-TLS	15	19	30	36	41	50	63	66
r = 4	MLPCA	46	50	53	62	24	64	63	61
	standard EW-TLS	88	89	83	78	77	63	49	31
	adapted EW-TLS	16	28	42	46	57	65	69	72

D

D

1 Introduction

Introduction WLRA

VEINA

Link with TLS

In chemometr: PCA/MLPCA

MLPCA/TLS equivalent?

Performance comparison

Conclusion

2 Weighted low rank approximation problem

3 Link with TLS

WLRA in chemometrics: PCA and MLPCA

5 MLPCA and TLS equivalent?

6 Performance comparison

	 The equivalence of (extended)TLS and (ML)F same kernel problem, different algorithms 						
ntroduction							
VLRA	• Performance comparison: $D \in \mathbb{R}^{m \times n}$ with $m < n$						
ink with TLS	row + col corr						
n chemometr: PCA/MLPCA	MLPCA						
MLPCA/TLS equivalent?	row corr.						
Performance comparison	adapted EWTLS classical EWTLS						
Conclusion							
Solicitation	heteroscedastic						
	EWTLS						
	\downarrow						
	uncorr.						
	homoscedastic						
	GTLS						