Low-rank approximation as data modeling Applications Algorithms

Low-rank approximation
and its applications for data fitting

Ivan Markovsky

K.U.Leuven, ESAT-SISTA

Related problems



Low-rank approximation as data modeling Applications Algorithms Related problems

A line fitting example

Classical problem: Fit the points

d=[9). dp=[3]. ... . dao =[]

by a line passing through the origin.

Classical solution: Define d; =: col(a;,b;)
and solve the least squares problem

col(ay,...,a10)x = col(by,...,b1p).
The LS fitting line is given by axs = b.

It minimizes the vertical distances

data points
o
o
[ ]
o
o
-2 0
a

from the data points to the fitting line.

e
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A line fitting example

axis = b fit ) ) )
‘ ‘ ‘ Classical problem: Fit the points
6 ®
| di=[8], d2=[3]. . do=[7]
4 o 0
Lo by a line passing through the origin.
2f o
e e Classical solution: Define d; =: col(a;, b;)
X K—@—H—x—
< 0 s and solve the least squares problem
=2 L col(ay,...,a10)x = col(by,...,bp).
-4 ° . © The LS fitting line is given by ax;s = b.
-6 ° It minimizes the vertical distances
2 0 o2 from the data points to the fitting line.
a
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A line fitting example (cont.)

data points
6! | o ] Minimizing vertical distances does not
seem appropriate in this example.
4 o o
Revised LS problem:
2,
o o col(ay,...,a1p) =col(by,...,bip)x
o of ° ]
o o minimize the horizontal distances
_2, 4
The fitting line is now given by a = bx;s.
-4 o o
Total least squares fitting:
—67 o L .
‘ minimize the orthogonal distances
-2 0 2
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A line fitting example (cont.)

a = bxs fit
6! l ] Minimizing vertical distances does not
seem appropriate in this example.
4 o -%X-90
Revised LS problem:
2, 4
6---%x---9o col(ay,...,a1p) =col(by,...,bip)x
o of ° ]
6---x---90 minimize the horizontal distances
_2, 4
The fitting line is now given by a = bx;s.
-4 o -%X-9©
Total least squares fitting:
-6 T .
‘ T ‘ minimize the orthogonal distances
-2 0 2
a
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o
-2 0
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A line fitting example (cont.)

Total least squares problem:

min 2% ((a —8)2+ (b —Bi)?)
X4 ,bj

subjectto ajx=b;, i=1,...,10
However, xys does not exist! (Xys = o)
If we represent the fitting line as an

imaged =Pl or kernelRd =0
TLS solutions do exist, e.g.,

Pys=col(0,1) and Rys=[1 0].

e
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A line fitting example (cont.)

TLS fit
o 4
4 o -%X-90
2
0---%X---9©
o QOr [ ]
0---%X---9©
_2,
-4 o -X-©
_6 T
2 0 2
a

Total least squares problem:

min 2% ((a —8)2+ (b —Bi)?)
X4 ,bj

subjectto ajx=b;, i=1,...,10
However, xys does not exist! (Xys = o)
If we represent the fitting line as an

imaged =Pl or kernelRd =0
TLS solutions do exist, e.g.,

Pys=col(0,1) and Rys=[1 0].

o



What are the issues?

e LS isrepresentation dependent
e TLS is representation invariant

e TLS using I/O representation might have no solution

The representation is a matter of convenience and should not
affect the solution.

— Orthogonal distance minimization combined with
image or kernel representation is a better concept.



In this talk . ..

In fact, line fitting is a low-rank approximation (LRA) problem:

approximate D := [d; --- djo] by a rank-one matrix,

. arepresentation free concept applying to general
multivariable static and dynamic linear fitting problems.

LRA is closely related to:
e principle component analysis PCA
¢ latent semantic analysis LSA
¢ factor models
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Low-rank approximation

Given
e amatrix D e RN d <N
e a matrix norm |- ||, and
e anintegerm 0 < m<d,
find

D* = argmjn||D—I5|| subject to rank(ﬁ)gm
D

Interpretation:

D* is optimal rank-m(or less) approximation of D (w.r.t. || - ||).
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Why low-rank approximation?

D is low-rank <= D is generated by a linear model

sothat LRA <= data modeling

Suppose
m:=rank(D) < d :=rowdim(D).

Then there is a full rank R € RP*9, p :=d —m such that RD = 0.

The columns d4,...,dy of D obey p independent linear relations
rid; = 0, given by the rows rq,...,rp of R.

Rd =0 is a kernel representation of the model % := {d |Rd =0}.

.y
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LRA as data modeling

Given
o N, d-variable observations [d; --- dy]:=D e RN
e a matrix norm || - ||, and

e model complexity m 0 < m< d,
find

colspan(ﬁ) 7

#* = argmin||D—D| subject to A
J #.D | | : dim(#) <m

Interpretation:

B is optimal (w.r.t. || - [) approximate model for D
with bounded complexity: dim(#) <m <= # inputs <m
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Structured low-rank approximation

Given
e avectorp € R,
e amapping . : R — R™*" (structure specification)

e avector norm || - ||, and
e anintegerr, 0 <r <min(m,n),
find
p*:=argmin|p—p|| subjectto rank((p)) <r.
P
Interpretation:

D* := Z(p*) is optimal rank-r (or less) approx. of D :=.7(p),
within the class of matrices with the same structure as D.

o
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Why structured low-rank approximation?

D = S(p) is low-rank p is generated by
and (Hankel) structured a LTI dynamic model

Example: D = 4 ,1(wg) block Hankel and rank deficient
IR, such that R4 | 1(wg) = 0. Taking into account the structure

Wd(l) Wd(Z) Wd(T I_I )
[Ro Ri - Ri] Wd:(2) Wd:(3) wd(T—: +1) o
Wd(|.—|-1) Wd(|.—|—2) Wd(T)

we have a vector difference equation for wq with | lags

Rowg(t) + Rawg(t+1)+---+Rywg(t+1)=0 fort=1,..., T —1.
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SLRA as time-series modeling

Given
e T samples, wvariables, vector time series wy € (RW)T,
e asignal norm || - ||, and
e model complexity (ml ), 0 < m<w,

find

W e B,

dm(Z) <TmHl (w-my

%" = argmin |lwg—W|| s.t.
B

Interpretation:

2" is optimal (w.r.t. || - 1) model for the time series wqy
with a bounded complexity: # inputs <mandlag <1 .

(Go back to page 25.)
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Kernel, image, and input/output representations

A static model #Z with d variables is a subset of RY.

How to represent a linear model 4 (a subspace) by equations?

Representations:
o kernel: % = ker(R), R € RPxd
e image: % = colspan(P), P cRIxM
e input/output: HBij, = B(X), X € R™P

Bio(X) = {d :=col(d;,do) € RY | dij e R, dp =X "d }

In terms of D, the I/O repr. is AX ~ B, where [A B]:=D".

— Solving AX ~ B approximately by LS, TLS, ...
is LRA using I/O representation
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Links among the parameters R, P, and X
Define the partitionings

Pi

R =: [Ri Ro]7 Ro € RP*P and P =: [Po

} , Pje R™M
We have the following links among R, P, and X:

RP=0

% =ker(R) 2 = colspan(P)

B = %i/o(x)
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LTI models of bounded complexity
A dynamic model % with wvariables is a subset of (R")”,
Bis LTl : <= s a shift-invariant subspace of (RW)Z.

Let £ be LTI with minputs, p outputs, of ordern and lag | ,
dim (Z|jp7)) =Ml +n <nil +pl , forT >1.
dim(%) is an indication of the model complexity.

= The complexity of # is specified by (mn) or (ml ).

Notation: £7)j — LTI model class with bounded complexity
#inputs <mandlag <1 .
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LTI model representations

e Kernel representation (parameter R(z) := Z!:o R;iz")
Row(t) +Riw(t+1)+---+Ryw(t+1)=0
e Impulse response represent  (parameter H : Z — RP*™M)
w=col(uy), y(t)=3\ oH(Du(t-1)
e Input/state/output representation  (parameter (A,B,C,D))

x(t+1)
y(t)

Transitions among R, H, (A,B,C,D) are classic problems, e.g.,

AXx(t)+Bu(t)
Cx(t)+Du(t)

w = col(u,y),

RorH~ (A,B,C,D) are realization problems.

e



Applications

Applications

e System theory

1. Approximate realization

2. Model reduction

3. Errors-in-variables system identification
4. Output error system identification

e Signal processing

5. Output only (autonomous) system identification

6. Finite impulse response (FIR) system identification
7. Harmonic retrieval

8. Image deblurring

e Computer algebra

9. Approximate greatest common divisor (GCD)
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System theory applications

2 *“true” (high order) model w  observed response
H observed impulse resp.
% approximate (low order) W response of #
model H impulse resp. of #
Y ——  model reduction7 ,9/3?
) N /
o et c
g _— s
3 w w |8
o T
S 5]
g o
=]
H SLRA

i



Applications

Generic problem: structured LRA

The applications are special cases of the SLRA problem:

p*:=argmin|jp —p|| subjectto rank(#(p)) <r
p

for specific choices of p, .7, and r.

= Algorithms and software for SLRA can be readily used.

Notes:

¢ In many applications, .#(-) is composed of blocks that are:

(H) block Hankel, (U) Unstructured, or (F) Fixed.

« Of interest is the model %, given, e.g., by leftker (7 (p")).

e The algorithms compute R, such that F?Y(ﬁ*) =0.

o



Applications

Errors-in-variables identification

Statistical name for the fitting problem (x) considered before.

Given wg € (RW)T and complexity specification (m1 ), find

#* = arg min|l\wqg—W/|l,, subjectto W e B e Ll -
BN

SLRA with . (p) = 74 +1(wq), Hstructure, and r = p.

EIVmodel: wq=W+W, WeZeLy, W~ Normal(0,o%)

W — true data, % — true model, W — measurement noise
%* is a maximum likelihood estimate of 2, in the EIV model

consistent and assympt. normal = confidence regions
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Statistical vs. deterministic formulation

The EIV model gives a quality certificate to the method.

The method works “well” (consistency) and is optimal
(efficiency) under certain specified conditions.

However, the assumption that the data is generated by a true
model with additive noise is sometimes not realistic.

Model-data mismatch is often due to a restrictive (LTI) model
class being used and not (only) due to measurement noise.

— The approximation aspect is often more important
than the stochastic estimation one.
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System theory « Signal proc. < Computer algebra

The Toeplitz matrix—vector producty = .7 (H)u = .7 (u)H is
equivalent to (may describe):

(uy)e2H) . y=Hxu _  y(z)=H(2)u@)
FIR sys. traj. convolution polyn. multipl.

Multivariable case: block Toeplitz structure

multivariable matrix valued matrix valued
systems time series polynomials

2D case: block Toeplitz—Toeplitz block structure

multidim. function of several polyn. of
= ) =
system indep. variables several var.

e
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(F) Forward problem define y:=.7(u)H
() Inverse problem solve y=.2(u)H forH

| System theory | Signal proc. | Computer algebra
F | FIR sys. simulation convolution ‘ polyn. multipl.
I

FIR sys. identification | deconv. polyn. division

Typically y = 7 (u)H is an overdetermined system of eqns
— With “rough data wq = (uq,Yq)”, there is no exact solution.

~» approximate identification, deconvolution, polyn. division.

SLRA: find the smallest modification of the data wy that
allows the modified data w to have an exact solution.
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Unstructured low-rank approximation

D*:=argmin|D—D||r subjectto rank(D)<m
b

Theorem (closed form solution)
LetD =UXV ' be the SVD of D and define

m p
. m P . Zl 0 m . m P
U:[Ul Uz] d, X= 0 Y| p and V:[Vl Vz] N .

An optimal LRA solution is
D*=U;%1V,, %" =ker(U))=colspan(Uy).

It is unique if and only if Om# Omy1.
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Structured low-rank approximation

No closed form solution is known for the general SLRA problem
p“:=argmin||p—p|| subjectto rank(.7(p)) <r.
p
NP-hard, consider solution methods based on local optimization

Representing the constraint in a kernel form, the problem is

min (min||p—§\| subject to RY(ﬁ):O)
RRRT=In \ P

Note: Double minimization with bilinear equality constraint.
There is a matrix G(R), such that R.#(p) =0 <= G(R)p =0.

e



Low-rank approximation as data modeling Applications Algorithms Related problems

Variable projection vs. alternating projections

Two ways to approach the double minimization:

e Variable projections (VARPRO):
solve the inner minimization analytically

i vec (R(9) (G(R)GT(R))_lvec (R(P))

~» a nonlinear least squares problem for R only.

e Alternating projections (AP):
alternate between solving two least squares problems

VARPRO is globally convergent with a super linear conv. rate.

AP is globally convergent with a linear convergence rate.



Algorithms

Software implementation

The structure of . can be exploited for efficient O(dim(p))
cost function and first derivative evaluations.

SLICQOT library includes high quality FORTRAN implementation
of algorithms for block Toeplitz matrices.

SLRA C software using I/O repr. and VARPRO approach
http://www.esat.kuleuven.be/"imarkovs

Based on the Levenberg—Marquardt alg. implemented in MINPACK.

o
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Variations on low-rank approximation

Cost functions

« weighted norms  (vec' (D)W vec(D))

o information criteria  (logdet(D))

Constraints and structures

e nonnegative

e sparse

Data structures
e nonlinear models

e tensors

Optimization algorithms
e convex relaxations
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Weighted low-rank approximation

In the EIV model, LRA is ML assuming cov(vec(D)) = I.

Motivation: incorporate prior knowledge W about cov(vec(D))

minvec' (D — 5)W vec(D — IS) subject to rank(f)) <m
D

Known in chemometrics as maximum likelihood PCA.

NP-hard problem, alternating projections is effective heuristic
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Nonnegative low-rank approximation

Constrained LRA arise in Markov chains and image mining

min||D — 6|| subject to rank(ﬁ) <mand Bij >0 foralli,j.
D

Using an image representation, an equivalent problem is

min |ID—PL|| subjectto Py,Lg >0forallik,j.
PeRdxm| eRm<N
Alternating projections algorithm:
« Choose an initial approximation P(®) ¢ R9*Mand set k := 0.
e Solve: LK) =argmin,||D —P®)L|| subject to L > 0.
e Solve: P&+1) = argminp ||D — PL®)| subject to P > 0.
e Repeat until convergence.
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Data fitting by a second order model

BAb,c):={dcRY|d'Ad+b"d+c=0}, withA=AT
Consider first exact data:
de Z(Abc) < d'Ad+b'd+c=0
<= (col(d®sd,d,1),col (vecs(A),b,c)) =0
e 5
{d1,....,dy} € B(6) < O cleftker[deq1 -+ dean], 6#0
Dex
<= rank(Deg) <d—1
Therefore, for measured data ~~ LRA of Dey.

Notes:
 Special case % an ellipsoid (for A> 0 and 4c < b"Ah).
 Related to kernel PCA yisma
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Consistency in the errors-in-variables setting
Assume that the data is collected according to the EIV model
d;=d;+d;, where d;e%(8), d ~N(0,02).
LRA of Dg (kernel PCA) ~- inconsistent estimator
a@mi = col(ai ®Sai,ai,0) is not Gaussian
proposed method — incorporate bias correction in the LRA

Notes:
e works on the sample covariance matrix DMD(;[(t
« the correction depends on the noise variance o?

« the core of the proposed method is the o2 estimator
(possible link with methods for choosing regularization par.)
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Example: ellipsoid fitting
benchmark example of (Gander et.al. 94), called “special data”

dashed — LRA  solid — proposed method

dashed-dotted — orthogonal regression (geometric fitting)

o — data points x — centers yisma
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Summary
e LRA <= linear data modeling (in the behavioral setting)
e rank and behavior ~+ representation-free problems
¢ however, different repr. are convenient for different goals
e AX ~ B is LRA with fixed I/O repr. ~~ lack of solution

e applications in system theory, signal processing, and
computer algebra

e links with rank minimization, structured pseudospectra,
and positive rank
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Thank you
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