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A line fitting example
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Classical problem: Fit the points

d1 =
[

0
6

]
, d2 =

[
1
4

]
, . . . , d10 =

[
−1
4

]

by a line passing through the origin.

Classical solution: Define di =: col(ai ,bi)
and solve the least squares problem

col(a1, . . . ,a10)x = col(b1, . . . ,b10).

The LS fitting line is given by axls = b.

It minimizes the vertical distances
from the data points to the fitting line.
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Classical problem: Fit the points

d1 =
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6

]
, d2 =
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1
4

]
, . . . , d10 =
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−1
4

]

by a line passing through the origin.

Classical solution: Define di =: col(ai ,bi)
and solve the least squares problem

col(a1, . . . ,a10)x = col(b1, . . . ,b10).

The LS fitting line is given by axls = b.

It minimizes the vertical distances
from the data points to the fitting line.
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A line fitting example (cont.)

−2 0 2

−6

−4

−2

0

2

4

6

a

b

data points

Minimizing vertical distances does not
seem appropriate in this example.

Revised LS problem:

col(a1, . . . ,a10) = col(b1, . . . ,b10)x

minimize the horizontal distances

The fitting line is now given by a = bxls.

Total least squares fitting:

minimize the orthogonal distances
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A line fitting example (cont.)
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a = bxls fit

Minimizing vertical distances does not
seem appropriate in this example.

Revised LS problem:

col(a1, . . . ,a10) = col(b1, . . . ,b10)x

minimize the horizontal distances

The fitting line is now given by a = bxls.

Total least squares fitting:

minimize the orthogonal distances
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A line fitting example (cont.)
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Total least squares problem:

min
x ,âi ,b̂i

∑10
i=1

(
(ai − âi)

2 +(bi − b̂i)
2
)

subject to âix = b̂i , i = 1, . . . ,10

However, xtls does not exist! (xtls = ∞)

If we represent the fitting line as an

image d = Pl or kernel Rd = 0

TLS solutions do exist, e.g.,

Ptls = col(0,1) and Rtls =
[
1 0

]
.
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A line fitting example (cont.)
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TLS fit Total least squares problem:

min
x ,âi ,b̂i

∑10
i=1

(
(ai − âi)

2 +(bi − b̂i)
2
)

subject to âix = b̂i , i = 1, . . . ,10

However, xtls does not exist! (xtls = ∞)

If we represent the fitting line as an

image d = Pl or kernel Rd = 0

TLS solutions do exist, e.g.,

Ptls = col(0,1) and Rtls =
[
1 0

]
.



Low-rank approximation as data modeling Applications Algorithms Related problems

What are the issues?

• LS is representation dependent

• TLS is representation invariant

• TLS using I/O representation might have no solution

The representation is a matter of convenience and should not
affect the solution.

=⇒ Orthogonal distance minimization combined with
image or kernel representation is a better concept.
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In this talk . . .

In fact, line fitting is a low-rank approximation (LRA) problem:

approximate D :=
[
d1 · · · d10

]
by a rank-one matrix,

. . . a representation free concept applying to general
multivariable static and dynamic linear fitting problems.

LRA is closely related to:

• principle component analysis PCA

• latent semantic analysis LSA

• factor models
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Outline

Low-rank approximation as data modeling

Applications

Algorithms

Related problems
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Low-rank approximation

Given

• a matrix D ∈ R
d×N , d ≤ N

• a matrix norm ‖ · ‖, and

• an integer m, 0 < m< d,

find

D̂∗ := argmin
D̂

‖D− D̂‖ subject to rank(D̂) ≤ m.

Interpretation:

D̂∗ is optimal rank-m(or less) approximation of D (w.r.t. ‖ · ‖).
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Why low-rank approximation?

D is low-rank ⇐⇒ D is generated by a linear model

so that LRA ⇐⇒ data modeling

Suppose
m:= rank(D) < d := rowdim(D).

Then there is a full rank R ∈ R
p×d, p := d−m, such that RD = 0.

The columns d1, . . . ,dN of D obey p independent linear relations
ridj = 0, given by the rows r1, . . . , rp of R.

Rd = 0 is a kernel representation of the model B := {d | Rd = 0}.
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LRA as data modeling

Given

• N, d-variable observations
[
d1 · · · dN

]
:= D ∈ R

d×N

• a matrix norm ‖ · ‖, and

• model complexity m, 0 < m< d,

find

B̂
∗ := argmin

B̂,D̂
‖D− D̂‖ subject to

colspan(D̂) ⊆ B̂

dim(B̂) ≤ m

Interpretation:

B̂∗ is optimal (w.r.t. ‖ · ‖) approximate model for D
with bounded complexity: dim(B̂) ≤ m ⇐⇒ # inputs ≤ m.
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Structured low-rank approximation

Given

• a vector p ∈ R
np ,

• a mapping S : R
np → R

m×n (structure specification)

• a vector norm ‖ · ‖, and

• an integer r , 0 < r < min(m,n),

find

p̂∗ := argmin
p̂

‖p− p̂‖ subject to rank
(
S (p̂)

)
≤ r .

Interpretation:

D̂∗ := S (p̂∗) is optimal rank-r (or less) approx. of D := S (p),
within the class of matrices with the same structure as D.
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Why structured low-rank approximation?

D = S(p) is low-rank
and (Hankel) structured

⇐⇒
p is generated by

a LTI dynamic model

Example: D = Hl +1(wd) block Hankel and rank deficient

∃R, such that RHl +1(wd) = 0. Taking into account the structure

[R0 R1 · · · Rl ]




wd(1) wd(2) · · · wd(T − l )
wd(2) wd(3) · · · wd(T − l +1)

...
...

...

wd(l +1) wd(l +2) · · · wd(T )


 = 0

we have a vector difference equation for wd with l lags

R0wd(t)+R1wd(t +1)+ · · ·+Rl wd(t + l ) = 0 for t = 1, . . . ,T − l .
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SLRA as time-series modeling

Given

• T samples, w variables, vector time series wd ∈ (Rw)T ,

• a signal norm ‖ · ‖, and

• model complexity (m, l ), 0 ≤ m< w,

find

B̂
∗ := argmin

B̂,ŵ
‖wd − ŵ‖ s.t.

ŵ ∈ B̂,

dim(B̂) ≤ T m+ l (w−m)
(∗)

Interpretation:

B̂∗ is optimal (w.r.t. ‖ · ‖) model for the time series wd

with a bounded complexity: # inputs ≤ mand lag ≤ l .

(Go back to page 25.)
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Kernel, image, and input/output representations

A static model B with d variables is a subset of R
d.

How to represent a linear model B (a subspace) by equations?

Representations:

• kernel: B = ker(R), R ∈ R
p×d

• image: B = colspan(P), P ∈ R
d×m

• input/output: Bi/o = B(X ), X ∈ R
m×p

Bi/o(X ) := {d := col(di,do) ∈ R
d | di ∈ R

m, do = X⊤di}

In terms of D, the I/O repr. is AX ≈ B, where
[
A B

]
:= D⊤.

=⇒ Solving AX ≈ B approximately by LS, TLS, . . .
is LRA using I/O representation
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Links among the parameters R, P, and X

Define the partitionings

R =:
[
Ri Ro

]
, Ro ∈ R

p×p and P =:

[
Pi

Po

]
, Pi ∈ R

m×m.

We have the following links among R, P, and X :

B = ker(R)
RP=0

X⊤=−R−1
o Ri

B = colspan(P)

X⊤=PoP−1
i

B = Bi/o(X )

R=[X⊤ −I] P⊤=[I X ]
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LTI models of bounded complexity

A dynamic model B with w variables is a subset of (Rw)Z.

B is LTI : ⇐⇒ B is a shift-invariant subspace of (Rw)Z.

Let B be LTI with minputs, p outputs, of order n and lag l ,

dim
(
B|[0,T ]

)
= mT +n ≤ mT +pl , for T ≥ l .

dim(B) is an indication of the model complexity.

=⇒ The complexity of B is specified by (m,n) or (m, l ).

Notation: L w
m,l — LTI model class with bounded complexity

# inputs ≤ mand lag ≤ l .
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LTI model representations

• Kernel representation (parameter R(z) := ∑l
i=0 Riz i )

R0w(t)+R1w(t +1)+ · · ·+Rl w(t + l ) = 0

• Impulse response represent (parameter H : Z → R
p×m)

w = col(u,y), y(t) = ∑t
τ=−∞ H(τ)u(t − τ)

• Input/state/output representation (parameter (A,B,C,D))

w = col(u,y),
x(t +1) = Ax(t)+Bu(t)

y(t) = Cx(t)+Du(t)

Transitions among R, H, (A,B,C,D) are classic problems, e.g.,

R or H 7→ (A,B,C,D) are realization problems.
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Applications

• System theory

1. Approximate realization

2. Model reduction

3. Errors-in-variables system identification

4. Output error system identification

• Signal processing

5. Output only (autonomous) system identification

6. Finite impulse response (FIR) system identification

7. Harmonic retrieval

8. Image deblurring

• Computer algebra

9. Approximate greatest common divisor (GCD)
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System theory applications

B “true” (high order) model w observed response
H observed impulse resp.

B̂ approximate (low order) ŵ response of B̂

model Ĥ impulse resp. of B̂

B model reduction

da
ta

co
lle

ct
io

n

B̂

w

identification

ŵ

H SLRA

approx. realization

R̂ Ĥ

re
al

iz
at

io
n
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Generic problem: structured LRA

The applications are special cases of the SLRA problem:

p̂∗ := argmin
p̂

‖p− p̂‖ subject to rank
(
S (p̂)

)
≤ r

for specific choices of p, S , and r .

=⇒ Algorithms and software for SLRA can be readily used.

Notes:

• In many applications, S (·) is composed of blocks that are:

(H) block Hankel, (U) Unstructured, or (F) Fixed.

• Of interest is the model B̂∗, given, e.g., by leftker
(
S (p̂∗)

)
.

• The algorithms compute R̂, such that R̂S (p̂∗) = 0.
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Errors-in-variables identification

Statistical name for the fitting problem (∗) considered before.

Given wd ∈ (Rw)T and complexity specification (m, l ), find

B̂
∗ := argmin

B̂,ŵ
‖wd − ŵ‖ℓ2 subject to ŵ ∈ B̂ ∈ Lm,l .

SLRA with S (p) = Hl +1(wd), H structure, and r = p.

EIV model: wd = w̄ + w̃ , w̄ ∈ B̄ ∈L
w
m,l , w̃ ∼ Normal(0,σ2I)

w̄ — true data, B̄ — true model, w̃ — measurement noise

B̂∗ is a maximum likelihood estimate of B̄, in the EIV model

consistent and assympt. normal =⇒ confidence regions
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Statistical vs. deterministic formulation

The EIV model gives a quality certificate to the method.

The method works “well” (consistency) and is optimal
(efficiency) under certain specified conditions.

However, the assumption that the data is generated by a true
model with additive noise is sometimes not realistic.

Model-data mismatch is often due to a restrictive (LTI) model
class being used and not (only) due to measurement noise.

=⇒ The approximation aspect is often more important
than the stochastic estimation one.
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System theory ↔ Signal proc. ↔ Computer algebra

The Toeplitz matrix–vector product y = T (H)u = T (u)H is
equivalent to (may describe):

(u,y) ∈ B(H)
FIR sys. traj.

⇐⇒
y = H ⋆u

convolution
⇐⇒

y(z) = H(z)u(z)
polyn. multipl.

Multivariable case: block Toeplitz structure

multivariable
systems

⇐⇒
matrix valued
time series

⇐⇒
matrix valued
polynomials

2D case: block Toeplitz–Toeplitz block structure

multidim.
system

⇐⇒
function of several

indep. variables
⇐⇒

polyn. of
several var.
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(F) Forward problem define y := T (u)H

(I) Inverse problem solve y = T (u)H for H

System theory Signal proc. Computer algebra
F FIR sys. simulation convolution polyn. multipl.
I FIR sys. identification deconv. polyn. division

Typically y = T (u)H is an overdetermined system of eqns

=⇒ With “rough data wd = (ud,yd)”, there is no exact solution.

 approximate identification, deconvolution, polyn. division.

SLRA: find the smallest modification of the data wd that
allows the modified data ŵ to have an exact solution.
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Unstructured low-rank approximation

D̂∗ := argmin
D̂

‖D− D̂‖F subject to rank(D̂) ≤ m

Theorem (closed form solution)

Let D = UΣV⊤ be the SVD of D and define

U =:

m p[
U1 U2

]
d , Σ =:

m p[
Σ1 0
0 Σ2

]
m
p

and V =:

m p[
V1 V2

]
N .

An optimal LRA solution is

D̂∗ = U1Σ1V⊤
1 , B̂

∗ = ker(U⊤
2 ) = colspan(U1).

It is unique if and only if σm 6= σm+1.
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Structured low-rank approximation

No closed form solution is known for the general SLRA problem

p̂∗ := argmin
p̂

‖p− p̂‖ subject to rank
(
S (p̂)

)
≤ r .

NP-hard, consider solution methods based on local optimization

Representing the constraint in a kernel form, the problem is

min
R,RR⊤=Im−r

(
min

p̂
‖p− p̂‖ subject to RS (p̂) = 0

)

Note: Double minimization with bilinear equality constraint.

There is a matrix G(R), such that RS (p̂) = 0 ⇐⇒ G(R)p = 0.
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Variable projection vs. alternating projections

Two ways to approach the double minimization:

• Variable projections (VARPRO):
solve the inner minimization analytically

min
R,RR⊤=Im−r

vec⊤
(
RS (p̂)

)(
G(R)G⊤(R)

)−1
vec

(
RS (p̂)

)

 a nonlinear least squares problem for R only.

• Alternating projections (AP):
alternate between solving two least squares problems

VARPRO is globally convergent with a super linear conv. rate.

AP is globally convergent with a linear convergence rate.
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Software implementation

The structure of S can be exploited for efficient O(dim(p))
cost function and first derivative evaluations.

SLICOT library includes high quality FORTRAN implementation
of algorithms for block Toeplitz matrices.

SLRA C software using I/O repr. and VARPRO approach

http://www.esat.kuleuven.be/˜imarkovs

Based on the Levenberg–Marquardt alg. implemented in MINPACK.
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Variations on low-rank approximation

• Cost functions

• weighted norms (vec⊤(D)W vec(D))

• information criteria (logdet(D))

• Constraints and structures

• nonnegative

• sparse

• Data structures

• nonlinear models

• tensors

• Optimization algorithms

• convex relaxations
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Weighted low-rank approximation

In the EIV model, LRA is ML assuming cov(vec(D̃)) = I.

Motivation: incorporate prior knowledge W about cov(vec(D̃))

min
D̂

vec⊤(D− D̂)W vec(D− D̂) subject to rank(D̂) ≤ m

Known in chemometrics as maximum likelihood PCA.

NP-hard problem, alternating projections is effective heuristic
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Nonnegative low-rank approximation

Constrained LRA arise in Markov chains and image mining

min
D̂

‖D− D̂‖ subject to rank(D̂) ≤ mand D̂ij ≥ 0 for all i , j .

Using an image representation, an equivalent problem is

min
P∈Rd×m,L∈Rm×N

‖D−PL‖ subject to Pik ,Lkj ≥ 0 for all i ,k , j .

Alternating projections algorithm:

• Choose an initial approximation P(0) ∈ R
d×m and set k := 0.

• Solve: L(k) = argminL ‖D−P(k)L‖ subject to L ≥ 0.

• Solve: P(k+1) = argminP ‖D−PL(k)‖ subject to P ≥ 0.

• Repeat until convergence.
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Data fitting by a second order model

B(A,b,c) := {d ∈ R
d | d⊤Ad +b⊤d +c = 0}, with A = A⊤

Consider first exact data:

d ∈ B(A,b,c) ⇐⇒ d⊤Ad +b⊤d +c = 0

⇐⇒
〈

col(d ⊗s d ,d ,1)︸ ︷︷ ︸
dext

,col
(

vecs(A),b,c
)

︸ ︷︷ ︸
θ

〉
= 0

{d1, . . . ,dN } ∈ B(θ) ⇐⇒ θ ∈ leftker
[
dext,1 · · · dext,N

]
︸ ︷︷ ︸

Dext

, θ 6= 0

⇐⇒ rank(Dext) ≤ d−1

Therefore, for measured data LRA of Dext.

Notes:
• Special case B an ellipsoid (for A > 0 and 4c < b⊤A−1b).
• Related to kernel PCA
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Consistency in the errors-in-variables setting

Assume that the data is collected according to the EIV model

di = d i + d̃i , where d i ∈ B(θ̄), d̃i ∼ N(0,σ2I).

LRA of Dext (kernel PCA)  inconsistent estimator

d̃ext,i := col(d̃i ⊗s d̃i , d̃i ,0) is not Gaussian

proposed method — incorporate bias correction in the LRA

Notes:

• works on the sample covariance matrix DextD⊤
ext

• the correction depends on the noise variance σ2

• the core of the proposed method is the σ2 estimator
(possible link with methods for choosing regularization par.)



Low-rank approximation as data modeling Applications Algorithms Related problems

Example: ellipsoid fitting
benchmark example of (Gander et.al. 94), called “special data”

0 5 10 15
−2

0

2

4

6

8

x1

x 2

dashed — LRA solid — proposed method

dashed-dotted — orthogonal regression (geometric fitting)

◦ — data points × — centers
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Summary

• LRA ⇐⇒ linear data modeling (in the behavioral setting)

• rank and behavior  representation-free problems

• however, different repr. are convenient for different goals

• AX ≈ B is LRA with fixed I/O repr.  lack of solution

• applications in system theory, signal processing, and
computer algebra

• links with rank minimization, structured pseudospectra,
and positive rank
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Thank you
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