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Approximate GCD Problem

Given polynomials fi,..., fs € F|y1,y2,...,y, \ {0}, where F is
R or C; let d; = tdeg(f;) and k < d; for all i with 1 <i <.

We wish to compute Af,...,Af, € F'[y1,y2,...,y,], where F’ is
R or C, such that tdeg(Af,) <di,...,tdeg(Af) < d,

* tdeg(ged(f1+Afy,--. fs +Af)) >k,
o [[Af |3+ +]||Af,]3 is minimized.



Approximate GCD Problem

Given polynomials fi,..., fs € F[yi,y2,...,y,] \ {0}, where F is
R or C; let d; = tdeg(f;) and k < d, for all i with 1 <i <.

We wish to compute Af,...,Af, € F'[y1,y2,...,y,], where F’ is
R or C, such that tdeg(Af,) <di,...,tdeg(Af) < d,

* tdeg(ged(f1+Afy,--. fs +Af)) >k,
o [[Af |3+ +]||Af,]3 is minimized.

Problem depends on choice of norm || - ||, and notion of degree.
We use 2-norm on the coefficient vector, and total degree.



Previous Work on Approximate GCD

* Modified Euclidean algorithm for polynomials with
floating point coefficients
[Dunaway ’74, Schonhage ’85, Sasaki and Noda 89 & *91,
Ochi et al. "91, Hribernig and Stetter 97, Beckermann and
Labahn '98, Sasaki and Sasaki *01, Sanuki *05]

* Nearby roots matching, resultant-based algorithms, QR

factorization, Hensel lifting strategy [ Pan "01, Emiris et al.
"97, Rupprecht 99, Zhi and Noda ’01, Corless et al. 04 ]

* Least squares and SVD-based total least squares methods
[Corless et al. ’95, Chin et al. ’98, Karmarkar and
Lakshman 96 & °98, Zeng 03 & ’04, Gao et al. "04,
Diaz-Toca and Gonzalez-Vega 02 & ’06]

* Structure preserving total least squares algorithms
[Chu et al. ’03, L1 et al. ’05, Kaltofen et al. 05 & 06,
Botting et al. ’05, Markovsky and Huffel 05, Winkler and
Allan ’06]



Globally Nearest Complex/Real Solution

Theorem 1. Let f1,...,fs € Fly1,...,y,] \ {0}, where F is C or
R, d; = tdeg(f;) and k < d; with 1 <i <'s. There exist

ﬁGF[ylvy%'”ayr]vl <1 < s with
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Globally Nearest Complex/Real Solution

Theorem 1. Let f1,...,fs € Fly1,...,y,] \ {0}, where F is C or
R, d; = tdeg(f;) and k < d; with 1 <i <'s. There exist

ﬁGF[ylvy%'”ayr]vl <1 < s with
tdeg(fi) <d;, and tdeg(ged(f1,....fs)) > k,

such that for all f; € Fly1,y2,...,y,],1 <i<s with

tdeg(fi) < di7 and tdeg(ng(717 e 7?s)) > ka

we have
lA—=fill3+-+fi=FGIE<IF=Al5++ 7, = fl3

Remark: Theorem is false if tdeggcd = k.



Generalized Sylvester Matrix

Lemma 1. Let f,..., fs € Fly1,...,y/]/\ {0}, d; = tdeg(f;) and
k <d; with 1 <i<s. Then tdeg(gcd(fi,..., fs)) = k iff
1 polynomials uy,...,us; € Flyy,...,y,| with

up 0, Vi,2<i<s:uifi+u fi=0, tdeg(u;) <d;—k.

Equations give a linear system in the coefficients of u1, ..., u;.



Convolution Matrix

The convolution matrix C!'/( /) produces the coefficient vector
of u- f as CY(f)-ii, where [ = tdeg(u). For instance,

a 0 0
_bz_ a; a» 0 _bz_
Cm (a2y2 + aiyy + Cl()) - |b1| = lag a1 ax| - |bg
bo 0O ap ay bo
o 0 0 a|

In the univariate case, the matrix is of Toeplitz form. In the mul-
tivariate case, the dimensions of C/(f) with tdeg(f) = m are

(l+m+r) < (l+r) .

r r



Denote the coefficient matrix of the system Si(fi,..., fs) =

CleH (7))
0

0
ClsH (1))




Denote the coefficient matrix of the system Si(fi,..., fs) =

ClB=H( 1) 0 0 Cl=H (1)
0 Cldz—k| (f1) 0 Cldi—] (f3)
L 0 cltH() A (fs)

Lemma 2. tdeg(gcd(fi,..., fs)) = kiff Sg(f1,..., fs) has rank
deficiency at least one.



The Minimal Perturbation Problem

Our problem can be transformed into:

min _ ||f; = fAlls -+ — il
tdeg(ged(f) ... 7)) >k

= min _|fi= A3+ - £l
dim Nullspace(S;)>1

where S, is the k-th Sylvester matrix generated by f,..., f, with
tdeg?l- <d;, 1 <i<sy.

—p.



The Minimal Perturbation Problem

Our problem can be transformed into:

. - ) - p
min _ 1=+ fs— 515
tdeg(ged(Fy . Ty)) >k

= min _|fi= A3+ - £l
dim Nullspace(S;)>1

where S, is the k-th Sylvester matrix generated by f,..., f, with
tdegfl- <d;, 1 <i<sy.

Nearest singular matrix + Sylvester structure
—> Approximate GCD

—p.



Structure Preserving Low Rank Approximation

Let S(C) = [A1(G) | b(C) | A2(C)] and let A(C) = [A1(C) [ A2(C)];

where C contains the coefficients of fi,.... f;. We solve the
structure-preserving total least norm problem

min ||z|| or min ||z|| with A(c+z)x=b(c+12z)
z€RY zcCV

for some vector x. Here c 1s fixed to the initial coefficient vector.



Structure Preserving Low Rank Approximation

Let S(C) = [A1(G) | b(C) | A2(C)] and let A(C) = [A1(C) [ A2(C)];

where C contains the coefficients of fi,.... f;. We solve the
structure-preserving total least norm problem

min ||z|| or min ||z|| with A(c+z)x=b(c+12z)
z€RY zcCV

for some vector x. Here c 1s fixed to the initial coefficient vector.

Remark: We choose the column »(C) corresponding to the
absolutely largest component in the first singular vector of S(C).



Example r = 1,5 = 2.

am 0

Am—1 dm
Sk = [b(C), A(C)] — 0 0

0 0)

n—k+1

0 0 by 0 0 O

0 0 b1 by 0 O

agp dadj 0) 0] b() b 1

0] ap 0] 0 0) b()
m:l:+1

Here c 1s fixed to the initial coefficient vector

C = [am,...,ao,bn,..

. bol!.

—p.1



Example (continued)

The structured real perturbations of S,

21 im-+2
) . im+3
21 : e Zme2
im+1 <2 im+n+2 <m—+3
i Im+1 Im+n+2
n—k+1 m—k+1

can be represented by a vector z ¢ R(7+7+2)x1.

T
7 — [Z17Z27 ‘e 7Zm+n+lazm+n+2]



Initialization of x and Ac

Suppose H(&)C = S(C)E and v is the first singular vector of S(c¢),
then we compute Ac as:

Ac=z=—HW(HWHW))1S(c)v.

We have —S(z)v = —H(v)z = S(c)v, hence
S(c+z)v=0.

—-p.l



Initialization of x and Ac

Suppose H(&)C = S(C)E and v is the first singular vector of S(c¢),
then we compute Ac as:

Ac=z=—HW(HWHW))1S(c)v.

We have —S(z)v = —H(v)z = S(c)v, hence

S(c+z)v=0.
We 1nitialize x as
e [Lv =] et !
B T {1 47 A /17 I I

where v|¢| is the absolutely largest component. We have

Alc+z)x=b(c+12z).

Reference: Lemmerling’99

—-p.l



Lagrangian Multiplies [Lemmerling et al. *00]

We introduce the Lagrangian multiplies and define:

L(z,x,\) = 22" z— A (b(c+2z) — A(c +2)x).

-p.L
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Lagrangian Multiplies [Lemmerling et al. *00]

We introduce the Lagrangian multiplies and define:

L(z,x,\) = 22" z— A (b(c+2z) — A(c +2)x).

Apply the Newton method on the Lagrangian L yields:

_ - Az _ i}
w o Jt g+ JIA
J 0 Al =- r(z,X)
i ol AL . i ’ _
where T — It <t; O xt, o= f:1 (all-;w)7
_Ot2><t1 Ol‘2><l‘2_

th = §:1 (di—k—i—r) o 17 g = W

r

, J=|H,A(c+z)|]. Here

H is a Sylvester-like matrix: H(x)z = A(z)x — b(z).

-p.L



Complex Polynomials

Suppose z = zZg +iz;,X = Xg +ixX; and L = Ag +iA;, we define

L(z,x,A) = 35z"'z—Ag(b(cg+2r)—A(cg+2r)Xg +A(cs +21)X])
— 7\.{([9(0] -+ Z[) —A(CR —+ ZR)X] —A(C[ -+ Z[)XR)

= 1272+ Myrr(2,X) +A] 1/(2,X).

_p‘lz



First Order Iterative Update

We introduce a Sylvester-like matrix ¥ such that
Y(x)z =A(z)x.

Applying the Newton method on the Lagrangian L yields:

AZR ) -
AZ[ 7LR

- 1 +J'

w I (axe| |7 A

J 0] |Ax rg(z,x) |
ANR r;(z,X)
Al | ) )

Reference: H. Park et al. ’99



Where

—p.1



Complex Optima for Real Inputs

Consider the polynomials f = x*> 4+ 1 and g = x* + 2.
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Complex Optima for Real Inputs

Consider the polynomials f = x*> 4+ 1 and g = x* + 2.

The nearest pair of real polynomials with a common divisor
F=0.723598x> +1.170810 and g = 1.170822x> + 1.894436

The minimal perturbation || f — f1|5 + ||g — g||5 = 0.145898.
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Complex Optima for Real Inputs

Consider the polynomials f = x*> 4+ 1 and g = x* + 2.

The nearest pair of real polynomials with a common divisor

f=0.723598x*41.170810 and g = 1.170822x> + 1.894436

The minimal perturbation || f — f1|5 + ||g — g||5 = 0.145898.

The nearest pair of complex polynomials with a common root:

f = 0.81228x* —0.14813ix+ 1.1169
g = 1.1220x% +0.096263ix + 1.9240

oQ

The minimal perturbation || f — f]|5 +||g — g||5 = 0.1007615.

The complex conjugate is a second global optimum.
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Random Complex Perturbation in the Initialization

We initialize z as:
z=—HV) (HV)HV)) " 'S(c+iAcana)V,

where v is the first sing. vec. of S(¢ +iAc,uuq), ACrung 18 @
random real vector of small noise.

We 1nitialize x by normalizing v as before, then

A(c+iAc,yng+2)X=b(c+iACrgng+ 7).

—p. L



Multiple Local Minima

Consider the polynomials

1
= 1000v'0 3 — 1 d o=v>— —,
f y o4y and g =y"— 155

We seek to compute the nearest pair of polynomials f and g that
have a non-trivial GCD.

The algorithm converges after about ten iterations in average to
the local minima:

0.0421579,0.0463113,0.0474087,0.0493292, . ..

for different initializations.

—p. 1



Among solutions, the polynomials

~

f = 1000.0y" 40.0000147908y’ + - - - 4-0.00415059y — 0.991601,
g = 0.956139y* —0.0887590y — 0.189618,

have a common divisor
y—0.4941547,

and the backward error 1s

If — FlI5+|lg — &l13 = 0.0421579.

It 1s the non-monic global minimum found by the global methods

Karmarkar and Lakshman Y.N. 1998; Hitz and Kaltofen 1998.

—p-2



Structured Condition Number

The nearest unstructured singular matrix A has

1S —A||Z = 0.000000098975.
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Structured Condition Number

The nearest unstructured singular matrix A has

1S —A||Z = 0.000000098975.

Let S be the nearest singular Sylvester matrix to S,

IS =317 =21f = fII3 + 10]l¢ - 813
> 2| f = fll3+2lg—3ll3
>2|lf — flI3+2|lg — &5 > 0.084315.
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Structured Condition Number

The nearest unstructured singular matrix A has

1S —A||Z = 0.000000098975.

Let S be the nearest singular Sylvester matrix to S,

|S— 8|7 = 2115 = F115+ 10[|g — &3
> 2| f = fll3+2llg—&ll5
>2|lf — Fll5+2llg — &l|5 > 0.084315.

Sylvester # Toeplitz a la Rump [2003]

-p.2



Approximate GCD of Polynomials

Suppose S; is the nearest singular generalized Sylvester matrix.

* Form the perturbed polynomials f,..., f, from ;.
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Approximate GCD of Polynomials

Suppose S; is the nearest singular generalized Sylvester matrix.

* Form the perturbed polynomials f,..., f, from ;.
* Suppose k = tdeg(gcd(f{,...,f,)).
e If dim Nullspace(Sy) = 1, then set k = k;
* Otherwise, determine k from the rank deficiency of S.

* Form polynomials u1, ..., us from the singular vector of EE-

* Solve the linear system to obtain d = gcd(fl, coe ,75)

(@) 1
K (ﬁz) fz

cl (z,) f



Approx. GCD of Multivariate Polynomials

B kel |o€rror error error
l (Zeng) (GKMYZ) (STLS)

1 7,7| 413 4(2.44360e—4 2.59476e—4 |6.50358e-5
2 7,71 45| 1]2.44404e-8 2.59194e-8 |6.50357e-9
3 7,77 47| 1(2.44405e-12| 2.59191e-12(6.50357e—13
4 7,71 419 1]2.44396e-16| 2.59187e¢—16|6.50361e—17
5 6,6| 32| 5(2.26617 1.49524 4.80154e—1
6 | 10,10] 5|4| 4 2.74672e-3 |1.84914e-3
7 8,8 45| 2|7.09371e-5 2.38059¢e-5 |2.01393e-5
8 | 40,40(30(5| 2/1.39858e-3 4.83931e—4 |4.39489¢—4
9 110,9,8| 5|3| 4 6.21772e-2
10 (8,7,8,6] 4|5| 2 4.04458e—6

-p-2



Linearly Constrained Input Coetficients

* Monicity, sparsity:

set j = constant.

— p2z



Linearly Constrained Input Coefficients

* Monicity, sparsity:
set  z; = constant.

* Nearest singular polynomials, approximate squarefree
factorization, symmetry:

set  zj = AzZ;

where A is an integer.

— p2z



Our Approach: Reduce Parameters

Let the linear constraints on the goal coefficients be

I'C=y.

We construct for the linear system (c¢ 1s the input coeff. vec.)

[C=vy-TIc

a matrix C, a vector d and free parameters {~ such that

{=CC +d,

(=

| Gy _

Cil

9

I'C=0,

Id=v—-1I¢c.

- p-2



Our Approach: Reduce Parameters

Let the linear constraints on the goal coefficients be

I'C=y.
We construct for the linear system (c¢ 1s the input coeff. vec.)
[C=vy-TIc

a matrix C, a vector d and free parameters {~ such that

_Cil_

C=CC +d, § = , I'C=0, Td=y-Tec.

| Gy _

Remark: We can add the constraints I'(c¢ -+ z) = v directly.
However, the least squares problem has a larger dimension.

- p-2



Initialization of x and z
Let

z=d—C (H(V)O)'(H(v)C (HW)CO)))1S(c+d)v,

v is the first singular vector of the matrix S(c + d). We have

S(c+z)v=0.
We 1nitialize x as
o[y vie=1] v+ !
B L ] S ] R

where v|t| is the absolutely largest component. We have
Alc+z)x=b(c+12z).

—p-2



First Order Iterative Update
Apply the Newton method on the Lagrangian L yields:

— - AZ_ — -
We J." g.+J. A
Jo 0 Ax ] =- r(z,x) |’
e I AL : T




First Order Iterative Update
Apply the Newton method on the Lagrangian L yields:

_ - AZ_ _ -
w, J.I g.+J. A
Jo 0 Ax ] =- r(z,x) |’
e I AL : T
cTC 0 cTCz~ +CTd
W, = 00 Jo=|HC,A(c+12z)|,g = 0 .




First Order Iterative Update
Apply the Newton method on the Lagrangian L yields:

_ - Az _ )
w, J.T ‘ o +J.T N
Jo 0 Ax ] =- r(z,x) |’
e I AL : T
cTCc 0 cTCz~ +CTd
W, = 00 Jo=|HC,A(c+12z)|,g = 0 .

The new coefficients are ¢ +z+ Az = c+z+ CAz ", satisty

['(c+z+Az)=T(c+z)=T(c+d)=vy

throughout the iteration.



Nearest Singular Polynomials

Lemma 3. Let f(y) € F|y|] with deg(f) = n over a field F' of
characteristic O, and let k be a multiplicity with 2 < k < n.

Denote by £/l = d'f/dy’, then deg(gcd (£, ..., F&1)) > 1 iff

the matrix )" (f) =
i cl=1( k=1 0
0 Cl=2)( fl=10)
0 0

has rank deficiency at least one.

C[n—k—l—l] (f[k—l]) C[n—k] (f[k—Z})

- p-2



Weighted Minimization Problem

For the nearest k-fold singular polynomial one optimizes

IAF]],

while the GCD problem with the corresponding constraints on
the coefficients optimizes

Y |l d'Af/dy'|,

which has a different minimum.

—p-2



We introduce a weight matrix D to the minimization problem,

min ||[DAc|| or min ||[DAc|| with A(c+ Ac)x =b(c+ Ac).
AceRY AceCV

Then the matrices become:

cTpDTDC 0]
W, = |
0 0
J. = |HC,A(c+1z)],
cTDTDCz~ +CTDT d|
g = O )




Ex.| d| k| it. | error(ZNKW) error(STLS)
1 2| 11 | .1763296120 1763296120
3| 41 | .6261127476 6261127478
21 42| 5| .1552760123e—12 | .1552725104e-12
31 4| .8834609009e-9 .9814622587e-9
41 2| .2021848972¢e—4 .1958553174e—4
31 412 5| .1645037985e-10| .1645037985e-10
31 5 | .4144531274e-6 4144531274e-6
41 6 | .1049993144 1049993144
41 5|12 2| .2460987981e-8 .246098798e-8
513| 30| .3681785214 3681785214
51 62| 2| .3231668276e-5 .3231668277e-5
6| 62| 3| .3009788845e—11| .3009789179%-11
31 7 | .7453849284e—6 7453849284e-6
41 24 | .4449023547 failed
71 5|12 8| .8565349347 8565349347
812112 3 190477e-8 | .18933576236e-8
3] 6 963776e—4 failed

Univariate Singular Polynomials

-p3



Current Investigations

* Compute nearest factorization with a given degree pattern
by applying STLS to Ruppert matrix.
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Current Investigations

* Compute nearest factorization with a given degree pattern
by applying STLS to Ruppert matrix.

* Compute nearest polynomial system with a given structure
of zeros.

* Nonlinear structure low rank approximation for Bezout
matrix.

* Investigation of displacement operators for generalized
Sylvester matrix or Bezout matrix or Ruppert matrix.

* How to certify a local minimum is a global minimum.

-p.3



Code + Benchmarks at:
http://mmrc.iss.ac.cn/~1lzhi/Research/hybrid

or
google->kaltofen (click on “Software™)
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http://mmrc.iss.ac.cn/~lzhi/Research/hybrid
google->kaltofen

Thank you!
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