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1. The Sylvester resultant matrix

Resultant matrices are used in computer aided geometric design for:

• Transforming between the implicit and parametric forms of a curve.

• The computation of the intersection points of curves and surfaces.

The Sylvester resultant matrix S(f, g) of the polynomials

f(y) =
m∑

i=0

aiy
m−i and g(y) =

n∑

j=0

bjy
n−j

has two important properties:

• The determinant of S(f, g) is equal to zero if and only if f(y) and g(y) have a

non-constant common divisor.

• The rank of S(f, g) is equal to (m + n − d), where d is the degree of the

greatest common divisor (GCD) of f(y) and g(y).
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Are the forms of f(y) and g(y) unique?

• If f(y) and g(y) have a non-constant common divisor, then so do f(y) and

αg(y), where α is a non-zero constant.

• Instead of considering S(f, g), the more general matrix S(f, αg) is considered.

• What is the effect of α on a structured low rank approximation of S(f, αg), and

how is its value chosen?
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The matrix S(f, αg) is



a0

a1 a0

... a1
. . .

am−1

...
. . . a0

am am−1
. . . a1

am
. . .

...

. . . am−1

am

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

αb0

αb1 αb0

... αb1
. . .

αbn−1

...
. . . αb0

αbn αbn−1
. . . αb1

αbn
. . .

...

. . . αbn−1

αbn




Note that

S(f, αg) 6= αS(f, g)
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• How can one compute a structured low rank approximation of S(f, αg)?

Since the rank of S(f, αg) is equal to (m + n − d), it follows that reducing the

rank of S(f, αg) is equivalent to increasing d, the degree of the GCD of f(y) and

αg(y).

The computation of a structured low rank approximation of S(f, αg) is therefore

obtained by:

• Computing perturbations δf(y) and δg(y) such that

rank S
(
f + δf, α(g + δg)

)
= m + n− (d + 1)

• Use subresultants of a Sylvester resultant matrix to calculate these perturbations.
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2. Subresultants

The k’th Sylvester matrix, or subresultant, Sk ∈ R(m+n−k+1)×(m+n−2k+2) is a

submatrix of S(f, αg) that is formed by:

• Deleting the last (k − 1) rows of S(f, αg).

• Deleting the last (k − 1) columns of the coefficients of f(y).

• Deleting the last (k − 1) columns of the coefficients of αg(y).

The integer k satisfies 1 ≤ k ≤ min (m,n), and a subresultant matrix is defined

for each value of k.

• Start with k = k0 = min (m,n) and decrease by one until a solution is

obtained.
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Example 1

If m = 4 and n = 3, then

S1 = S(f, αg) =




a0 αb0

a1 a0 αb1 αb0

a2 a1 a0 αb2 αb1 αb0

a3 a2 a1 αb3 αb2 αb1 αb0

a4 a3 a2 αb3 αb2 αb1

a4 a3 αb3 αb2

a4 αb3



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S2 =




a0 αb0

a1 a0 αb1 αb0

a2 a1 αb2 αb1 αb0

a3 a2 αb3 αb2 αb1

a4 a3 αb3 αb2

a4 αb3




, S3 =




a0 αb0

a1 αb1 αb0

a2 αb2 αb1

a3 αb3 αb2

a4 αb3




¤
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Each matrix Sk is partitioned into:

• A vector ck ∈ Rm+n−k+1, where ck is the first column of Sk.

• A matrix Ak = Ak(α) ∈ R(m+n−k+1)×(m+n−2k+1), where Ak is the ma-

trix formed from the remaining columns of Sk.

Sk =
[

ck

∣∣∣ Ak

]

=
[

ck

∣∣∣ coeffs. of f(y)
∣∣∣ coeffs. of αg(y)

]

︸︷︷︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
1 n− k m− k + 1

• The integer, 1 ≤ k ≤ min(m,n), can be chosen arbitrarily.
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The following theorem is required.

Theorem 1 Consider the polynomials f(y) and αg(y), and let k be a positive

integer, where 1 ≤ k ≤ min (m,n). Then

1. The dimension of the null space of Sk is greater than or equal to one if and only

if the over determined equation

Akx = ck

possesses a solution.

2. A necessary and sufficient condition for the polynomials f(y) and αg(y) to have

a common divisor of degree greater than or equal to k is that the dimension of

the null space of Sk is greater than or equal to one.
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Algorithm

1. Set k = k0 = min (m,n).

2. Does the equation

Akx = ck

have an exact solution?

(a) Yes: GOTO 3.

(b) No: Set k := k − 1 and GOTO 2.

3. The degree of the GCD is k0 := k.

What happens if the polynomials are inexact?

• What are the smallest perturbations δf(y) and αδg(y) such that f(y)+δf(y)
and α(g(y) + δg(y)) have a non-constant GCD?
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3. The method of structured total least norm (STLN)

The problem to be solved is:

For a given value of k, compute the smallest perturbations to f(y) and αg(y) such

that

(Ak + Ek)x = ck + hk

has a solution, where

• Ek has the same structure as Ak.

• hk has the same structure as ck.
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• zi be the perturbation of ai, i = 0, . . . , m, of f(y).

• zm+1+j be the perturbation of αbj , j = 0, . . . , n, of αg(y).

The perturbed Sylvester resultant matrix is:

[
hk

∣∣∣ Ek

]
=




z0 zm+1

z1 z0 zm+2

... z1
. . .

...
. . .

zm−1

...
. . . z0 zm+n

. . . zm+1

zm zm−1
. . . z1 zm+n+1

. . . zm+2

zm
. . .

...
. . .

...

. . . zm−1
. . . zm+n

zm zm+n+1



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The method of STLN is used to solve the following problem:

min
z
‖Dz‖ where D =


 (n− k + 1)Im+1 0

0 (m− k + 1)In+1




such that

(Ak + Ek)x = ck + hk

and

• Ek has the same structure as Ak.

• hk has the same structure as ck.
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Criteria for the acceptance of a structured low rank approximation

A solution is obtained for each value of α, and so how is the ‘best’ solution selected?

• Only the values of α for which the normalised residual ‖rnorm‖ is less than

10−13 are retained.

‖rnorm‖ =
‖(Ak + Ek)x− (ck + hk)‖

‖ck + hk‖
• If the signal-to-noise ratio is µ, retain the values of α for which the perturbations

satisfy

‖zf‖ ≤ ‖f‖
µ

and
‖zg‖
|α| ≤

‖g‖
µ

• From the remaining values of α, select the one for which the ratio of the singular

values
σm+n−k

σm+n−(k−1)

is a maximum.
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4. Results

Example 1 Consider the polynomials

f̂1(y) = (y − 0.25)8(y − 0.5)9(y − 0.75)10(y − 1)11(y − 1.25)12

and

ĝ1(y) = (y + 0.25)4(y − 0.25)5(y − 0.5)6

which have 11 common roots, from which it follows that rank S(f̂1, ĝ1) = 54.

Noise was added to these polynomials, and the method of STLN was used to com-

pute a structured low rank approximation of the Sylvester matrix formed from these

noisy polynomials.
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Figure 1: µ = 108 and k = 11. (i)(a) The maximum allowable value of ‖zf1‖,

which is equal to ‖f1‖ /µ, (b) the computed value of ‖zf1‖; (ii)(a) the maximum

allowable value of ‖zg1‖/α, which is equal to ‖g1‖ /µ, (b) the computed value of

‖zg1‖/α.
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Figure 2: µ = 108 and k = 11. (i) the normalised residual ‖rnorm‖; (ii) the

logarithm of the singular value ratio σ54/σ55.
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Figure 3: The normalised singular values, on a logarithmic scale, of the Sylvester

matrix for (i) the theoretically exact data ♦; (ii) the given inexact data ¤; (iii) the

computed data×, for α = 10−0.6.
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Example 2 Consider the polynomials

f̂2(y) = (y − 1)8(y − 2)16(y − 3)24

and

ĝ2(y) = (y − 1)12(y + 2)4(y − 3)8(y + 4)2

which have 16 common roots, and thus the rank of S(f̂2, ĝ2) is 58.

The polynomials were perturbed by noise, such that µ = 108.
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Figure 4: The normalised singular values, on a logarithmic scale, of the Sylvester

matrix for (i) the theoretically exact data ♦; (ii) the given inexact data ¤; (iii) the

computed data×, for α = 100.1.
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5. Conclusions

• A method for computing a structured low rank approximation of a Sylvester matrix

has been described.

• The rank of the approximation can be selected.

• The introduction of an arbitrary scaling factor allows a family of low rank approxi-

mations to be constructed.

• Several criteria for accepting structured low rank approximations were used in

order to eliminate unsatisfactory solutions.
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