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/ 1. The Sylvester resultant matrix . \

Resultant matrices are used in computer aided geometric design for:
e Transforming between the implicit and parametric forms of a curve.
e The computation of the intersection points of curves and surfaces.

The Sylvester resultant matrix S( f, g) of the polynomials

F)=> ay™ " and gly) =) biy"
i=0 =0

has two important properties:

e The determinant of S( f, g) is equal to zero if and only if f(y) and g(y) have a
non-constant common divisor.

e The rank of S(f,g) is equal to (m + n — d), where d is the degree of the

\ greatest common divisor (GCD) of f(y) and g(y). /
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Are the forms of f(y) and g(y) unique?

e If f(y) and g(y) have a non-constant common divisor, then so do f(y) and

ag(y), where v is a non-zero constant.
e Instead of considering S( f, g), the more general matrix S( f, g) is considered.

e What is the effect of o on a structured low rank approximation of S( f, ag), and

how is its value chosen?
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Ge matrix S( f, ag) is \

ao abO
ai agp Oébl Oéb()
aq ) Oébl
Am—1 : ao Oébn_l : Oébo
Gy Gl - Q1 ab, ab,_1 - ab
Gy : ab,,
Am—1 i Oébn—l
Note that

S(f,ag) # aS(f, g)
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e How can one compute a structured low rank approximation of S( f, ag)?

Since the rank of S(f, ag) is equal to (m + n — d), it follows that reducing the
rank of S( f, ag) is equivalent to increasing d, the degree of the GCD of f(y) and

ag(y).

The computation of a structured low rank approximation of S(f, ag) is therefore
obtained by:

e Computing perturbations d f () and dg(y) such that
rankS(f+5f,a(g—|—5g)) =m+n—(d+1)

e Use subresultants of a Sylvester resultant matrix to calculate these perturbations.
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2. Subresultants '

The k’th Sylvester matrix, or subresultant, Sj, € R(mtn—k+l)x(m+n=2k+2) ;¢ 4

submatrix of S( f, ag) that is formed by:

e Deleting the last (k — 1) rows of S(f, ag).
e Deleting the last (k — 1) columns of the coefficients of f(y).
e Deleting the last (k — 1) columns of the coefficients of aeg(y).

The integer k satisfies 1 < k < min (m, n), and a subresultant matrix is defined

for each value of k.

e Start with & = ky = min (m,n) and decrease by one until a solution is

obtained.
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Example 1

Sl :S(f,ozg)

If m = 4 and n = 3, then

Oéb()
Ckbl
Ckbg

Oébg

Oébl
Oébg

O{bg

Oébl
Q{bg

Oébg




Ozbo
Ckbl
Oébg

Oébg

Ckb()
Oébl

Oébg

Oébl
OébQ

Oébg

Oébl

Ozbg

Oéb()
Oébl

abg




/Each matrix .S}, is partitioned into: \

® A vectorcy € RmJF”_k“, where ¢y, is the first column of S..

o Amatrix A, = Ap(a) € RimAn—kt1)x(m4n=2k+1) \yhere Ay, is the ma-

trix formed from the remaining columns of .S}..

S = Ck A ]

= | ¢ | coeffs. of f(y) ‘ coeffs. of cvg(y) }

A 7 \ . 7
— ~" ~~

1 n—k m—k+1

e Theinteger, 1 < k& < min(m,n), can be chosen arbitrarily.
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The following theorem is required.

Theorem 1 Consider the polynomials f(y) and ag(y), and let k be a positive
integer, where 1 < k& < min (m,n). Then

1.

. A necessary and sufficient condition for the polynomials f(y) and aig(y) to have

~

The dimension of the null space of .S}, is greater than or equal to one if and only
if the over determined equation

Arx = ¢y,

possesses a solution.

a common divisor of degree greater than or equal to k is that the dimension of

/

the null space of Sy, is greater than or equal to one.
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/ Algorithm \

1. Set k = kg = min (m,n).
2. Does the equation
Az = cg

have an exact solution?
(a) Yes: GOTO 3.
(b) No: Setk := k — 1 and GOTO 2.

3. The degree of the GCD is kg := k.
What happens if the polynomials are inexact?

e What are the smallest perturbations d f (y) and adg(y) such that f(y)+3df(y)
and a(g(y) + dg(y)) have a non-constant GCD? /
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3. The method of structured total least norm (STLN)

The problem to be solved is:

For a given value of k, compute the smallest perturbations to f () and a,g(y) such
that

(Ax + Ex) x = ¢ + hy,
has a solution, where

e [, has the same structure as Ay.

e h ;. has the same structure as cy.

\_ /
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20
21 <0
<1
Zm—1

/o z; be the perturbation of a;,7 = 0, ..., m, of f(y).

The perturbed Sylvester resultant matrix is:

® Zn,+1+; be the perturbation of ab;, 7 =0, ..., n, of ag(y).

Zm-1
Zm+2
<0 Zm-+n “m+1
<1 “m4n+1 E Zm-+2
“m—1 K Zm-+n
<m Am4n+1
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min ||Dz|| where
z

such that

and

\_

D =

The method of STLN is used to solve the following problem:

(n—k+ 1) 0
O (m — k‘ + ]-)In—l—l

(Ak—|-Ek)£E:Ck—|—hk

e Fi. has the same structure as Ayg.

e h ;. has the same structure as cy.
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/ Criteria for the acceptance of a structured low rank approximation \

A solution is obtained for each value of «v, and so how is the ‘best’ solution selected?

e Only the values of « for which the normalised residual ||7,0:-m || is less than

10~ 13 are retained.
[(Ax + Ex) . — (cx + ha) |

r —
1T norm || o T
e [f the signal-to-noise ratio is p, retain the values of « for which the perturbations
satisfy
[2fll < M and M < M
H [e1 T

e From the remaining values of «, select the one for which the ratio of the singular

values
Om+n—k

Om+4+n—(k—1)

\ is a maximum. /
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4. Results '

Example 1 Consider the polynomials

fily) = (y = 0.25)%(y = 0.5)°(y — 0.75)"(y — 1) (y — 1.25)"?

and

g1(y) = (y+0.25)"(y = 0.25)°(y — 0.5)°
which have 11 common roots, from which it follows that rank S(fl, g1) = 54.

Noise was added to these polynomials, and the method of STLN was used to com-
pute a structured low rank approximation of the Sylvester matrix formed from these
noisy polynomials.

\_ /
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Figure 1: 1 = 10® and k = 11. (j)(a) The maximum allowable value of ||z,

which is equal to || f1|| /1, (b) the computed value of ||z,

allowable value of ||z, || /e, which is equal to ||g1]| /i, (b) the computed value of

12, 11/ e
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Figure 2: 11 = 10% and k = 11. (i) the normalised residual ||70rm]|; (ii) the

logarithm of the singular value ratio 054 /0755.
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Figure 3: The normalised singular values, on a logarithmic scale, of the Sylvester
matrix for (i) the theoretically exact data <>; (ii) the given inexact data [I; (iii) the

computed data X, for « = 10796

\_ /
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Example 2 Consider the polynomials

A

F2(y) = (y = 1)%(y — 2)"°(y — 3)*
and

32(y) = (y = D=y +2)*(y = 3)°(y +4)°
which have 16 common roots, and thus the rank of S (fa, g2 is 58.

The polynomials were perturbed by noise, such that © = 108,

\_
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computed data X, for « = 10%-1.

\_
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Figure 4: The normalised singular values, on a logarithmic scale, of the Sylvester
matrix for (i) the theoretically exact data <>; (ii) the given inexact data [I; (iii) the

/
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5. Conclusions '

A method for computing a structured low rank approximation of a Sylvester matrix
has been described.

The rank of the approximation can be selected.

The introduction of an arbitrary scaling factor allows a family of low rank approxi-

mations to be constructed.

Several criteria for accepting structured low rank approximations were used in

order to eliminate unsatisfactory solutions.

/
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