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Estimating linear relations from noisy data

One of the most common problems in science and technology
concerns the estimation of linear relations from data &0y
errors. Consider noiseless data givendgamples oh
variables (V > n):

Ty Xy ... Tp. (1)
Linear relations between the variables (if any) can be desdr
In the form

a1 X1 +asxs+ ... +a,x, =0 (2a)
or
y=a1&§taéet+ ..+ ay 181 (25)

By denoting withX the N x n matrix with rows given by the
observations
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sets of one or more linear relations can be expressed in the fo

XA=0 (4)
whereA is a(n x ¢) matrix with columns given by the sets of

coefficients describing the= n — rank X (independent) linear
relations linking the data. Relation (4) can be rewrittesodly
substitutingX with

- X'X

2= 8
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l.e., under the assumption of null mean value of the vargble
with the sample covariance matrix of the data.

In absence of noise and in presence of linear relations
> >0 ©
and every solution4, with maximal rank, of

YA =0 (7)
IS a basis oker ..

When the data are corrupted by noiseyk X = n, no linear
relations are compatible with the observations and

» > 0. (8)
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In situations of this kind, linear relations can be extrdataly
by modifying X or X i.e. the data.

Definition 1 (Kalman, 1982a,b) — Acheme is a systematic
procedure to extract linear relations from data affectedripgrs.

Assumptions behind estimation schemes

If no assumptions are introduceahy set of noisy data is
compatible withany solution. The assumptions on the noise are,
usually, the following:

1) The noise is additive; every observation is the sum of an
unknown exact part;, and of a noise term;:
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2) The mean value of; andz; is null:
N
Y dy =0, > Fy=0. )
t=1

3) The sequences of noise samples are orthogonal to the
sequences of noiseless variables:

N
Y Fudju=0  foreveryi,j. (11)
t=1

Under these assumptions:
X=X+X (12)
XTX =0 (13)
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S=%43 (14)
> >0 (15)
>0 or X >0 (16)
> > 0. (17)

The problem of determining linear relations compatiblehwit
noisy data can be formulated as follows:

Problem 1 (Kalman, 1982a,b) — Given a sample covariance
maitrix of noisy observationg;, determine positive definite or
semidefinite noise covariance matrié@such that

X=X -%>0. (18)
All corresponding solutions are described by any basis:of..
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The Frisch scheme

This scheme, proposed by Ragnar Frisch in 1934, assumes the
additivity of noise terms

the independence between noise and data sequences and the
mutual independence of the noise sequences. This cor@spon
by introducing the suffix. in the sample covariance matrices, to

>, =diag[62,...,62]>0 or >0 (20)

whereg?, ..., 52 are the sample variances of the noise terms
T1, ..., Ty
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Every positive definite or semidefinite diagonal mafrix such
that

A

Y, =%, — %, >0 en

IS asolution of the Frisch scheme. The corresponding point

P = (6%,...,6%)e R™is a solution in the noise space.

Properties of the solutions in the noise space

Theorem 1 (Beghelli, Guidorzi and Soverini, 1990) — All
admissible solutions in the noise space lie on a convex
(hyper)surface (3,,) whose concavity faces the origin and
whose intersections with the coordinate axes are the points
0,...,57,...,0] corresponding to the ordinary least squares

solutions.
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Figure 1: LociS(323) of admissible noise points
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Definition 2 (Guidorzi, 1995) — The (hyper)surfa¢gy:,,) will
be calledsingularity (hyper)surface of >.,, because its points
define noise covariance matricgs associated with singular
matricesy, .

A problem of great relevance concerns the conditions under
which a covariance matrix is compatible with more linear
relations I.e. the evaluation of the maximal dimensiot@f)_,
(Maxcorg(23,)) in the contextt of the Frisch scheme.

Theorem 2(Kalman, 1982a) Maxcorg(2>,) = 1 if and only if
>~ is Frobenius—like or becomes Frobenius—like by changing
the sign of some variables.
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Theorem 3— WhenMaxcorg(2,,) = 1 the coefficients
ai,...,ay, Of all linear relations compatible with the Frisch
scheme lie (by normalizing one of the coefficients to 1) iasid
the simplex whose vertices are defined by#heS solutions.

Theorem 4— WhenMaxcorg(X,,) = 1 the points of the simplex
of solutions in the parameter space are isomorphic with the
points ofS(%,,).

Theorem 5(Schachermayer and Deistler, 1998%C.,) is
nonuniformly convex.

Theorem 6 (Deistler and Scherrer, 1992) — All points 8t>,,)
whereCor (3,,) = k (k > 1) are accumulation points for those
whereCor (2,,) = k — 1.
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Figure 2: Loci of admissible parameters
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Computation ofMaxcory (2,,)

Define the singularity (hyper)surfacd.,, /) as the locus of the
points[c?,...,52]" € R" such that

3, —diag[57,...,57,0,...,0]> 0 (22)

and>., as the sample covariance matrix of the firstariables.
Then the following geometric relations hold:

Theorem 7 (Guidorzi and Stoian, 1994)&(%,, /) always lies
under or onS(3,.).

Theorem 8(Guidorzi, 1995) Maxcorg (X,,) > ¢ if and only if
S(En—gt1) N S(Xn/m—q+1) # 0 for every subset of — ¢ + 1
variables, i.e. for every permutation of the data leading to
different subgroups in the first — ¢ + 1 positions.
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Figure 3: Common points betwe&lX;) andS (s ;)
In a (3 x 3) covariance matrix with Maxcer= 2
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Complete sets of data for the Frisch scheme

The Frisch scheme is considered as less affected by pregidic
than other schemes leading to unique solutions or to a kimite
number of solutions, because it treats all variables in ansgmc
way and naa priori decomposition ok is preferred to any other.

Remark 1 — The linear relation linking the noiseless data
belongs to the set of Frisch solutions; the knowledgke aflows
computing the whole set of solutions but not discriminatmg
solution against others.

The definitions and properties that follow concern the adpitmgp
case (infinite sequence of data).
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Definition 3 (Guidorzi, 1991) — Two noise—free data covariance
matrices of the same linear algebraic procéssand?:, are
defined asndependent if

dim ker®; = dim kerYy = dim ker (2, — 35)=1.  (23)

Property 1 — If 33; and>, are independent there exists a unique
(modulo scaling) vectas satisfying the conditions

210,:220,:(21—22)0,:0. (24)

Definition 4 (Guidorzi, 1991) — Two noisy data covariance
matrices of the same linear algebraic procéss;> 0 and

Yo > 0 are defined asdependent if
dim ker (3; — ) = 1. (25)
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Theorem 9(Guidorzi, 1991) — Two independent noisy
covariance matrices$;; and>.,, satisfy the following conditions
under the Frisch scheme

~ ~

dim ker (37 — ¥ )=dim ker (3 — X ) =1 (26)

(X1 —Y2)a=(21—-Y)a= (23 —2X)a=0, (27)

wherea = [a; as ... a,|’ defines the process model (1) and
> > 0 is a diagonal matrix satisfying the conditions

> —X >0, ¥,—X>0. (28)
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Theorem 10(Guidorzi, 1991) — Among all points common to
the hypersurfaces of admissible noise points associatidie
Independent noisy covariance matriegsand>:,, one and only
one point is mapped, accordingX and>,, into the same point
of the parameter space.

Corollary 1 — The Frisch scheme leads to a unique solution
determined by every pair of independent noisy data covegian
matrices of the process.

Corollary 2 — Two independent noisy data covariance matrices
of a process constitutecmpl ete set of data under the Frisch
scheme.
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Figure 4: Admissible noise points
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Figure 5: Admissible model parameters
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Determination of the Frisch solution from real data

Theorem 10 allows defining a consistent criterion to seasch f
solutions even when the intersection betwé¢h, ) andS(32;)
does not contain any point mapped,yand?:, into the same
point of the parameter space.

Criterion 1 (Guidorzi and Diversi, 2006) — Consider a pair of
covariance matrices; and>; and their loci of solutionsS (3, ),
S(X5) in the noise space. The best approximation of the actual
noise variances will be given by the poiRte S(X;) N S(3,)

that minimizes the euclidean norm of the distance between th
parameter vectors anda” associated t@ by >; and>.s.
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Remark 2 — Criterion 1 IS consistent since the cost function
f(P) = ||a’ — d"|| annihilates whe; and>:; are independent.

Remark 3 — Once that the minimum of( P) has been found,
two solutionsa’ anda” will be available and their distance is a
measure of the reliablility of the procedure. Their meanealan
be assumed as problem solution.

Remark 4 — It can be observed that the outlined procedure can
be applied even in the case of simplexes without common goint
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A numerical example

Two independent sets of noise—free data, concerning 100
observations of. = 3 variables are characterized by the sample
covariance matrices

o 3 12 —12
S, = X1 A 12 56 —52
1 — N —
—12 —52 50
S 14 18 —37
. XTX,
S, = —= 15 36 —54
| —37 —54 101

3}, andY), have rank and are associated with the same linear
relation described by; = 2, a; = 0.5 andas = 1.
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A Monte Carlo simulation of 100 runs has been performed by
generating, in every run, two independent sets of threesigus
white sequences and by adding these sequences to the nesse—f
data in order to obtain the noisy ones.

a1 ag

true 2 0.5
estim. 1 | 2.0320 = 0.1437 | 0.4945 4+ 0.0610
estim. 2 | 2.0305 +=0.1424 | 0.4802 4+ 0.0724

Table 1: True and estimated values of the coefficients;
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The Frisch scheme in the dynamic case

Consider a dynamic SISO system of orader

n+1

J(t +n) = ZozkytJrk’—lJrZﬁkutJrk‘—l) (1)

and noisy input/output measures

whereu(t) andy(t) are white processes with zero mean,
mutually uncorrelated and uncorrelated witft).
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() > SYAIEIN > (1)

Figure 1. The dynamic Frisch scheme context
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Define now the Hankel matrices

Cy(1) y(k) 7

Xy = | 7© R (3a)
Ly(N) y(k+N—1)_
Cw(l) .. ulk)

o) u(:2) u(k - | )
_u(}V) u(k+N— 1)

the matrix of input/output samples

Xy = [ Xer1(y) Xigr(u) ] (4)
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and the sample covariance matriéesgiven by

PP [E(yy) E(@/U)]
N Y(uy) X(uu) |

X ()

Denoting withs;* anda” the variances ofi(t) andg(t) and
with P* the point
P* _ (5_*27 5_*2 )7 (6)

the previous assumptions establish, wiAénr- oo, that
Y =2, + 25 (7)

where

53}2 = diag [5;2]1:“7 5Z2Ik+1]° (8)
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The identification problem

The identification problem, in the context of the Frisch sohe
consists in determining the order and the parameters of mode
(1), or of any equivalent state—space model, and the additiv
noise variances;”, 5> on the basis of the knowledge of the
noisy sequences(-), y(-) or, equivalently, of the sequence of
Increasing—dimension matrices fork =1,2, .. ..

Model (1) implies, for every mput sequence persistentigiteng
of ordern, the nonsingularity of;, ..., >, ; and the
singularity of,, for & > n.
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For any value ok (lower, equal or larger tham), a point

P = (¢;,5,) belonging to the first orthant of the noise space,

defines an admissible solution if and only if
dimker(3;, — 35) = 1, ©
Y — 35 >0 (10)
whereX,, is the noise covariance matrix defined By
Y = Lp(P) = diag [6] Ly1, 05 Iisa]. (11)

The corresponding solution in the parameter spéce), is
univocally defined byer (X, — X), i.e. by the relation

>, 0(P) = (I, — Zx) 8(P) = 0. )
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Theorem 1(Beghelli, Guidorzi and Soverini, 1990) — For every
k > 0 all admissible points define a convex cu&@:;) in the
first quadrant of the noise plarie? with a concavity facing the
origin. The pointP* = (5.*, 5.*) associated with the actual
noise variances belongs to all curee:, ) whenk > n and

0(P*) is the true parameter vector,

Theorem 2(Beghelli, Guidorzi and Soverini, 1990) —dfand;
are integers with > ¢, thenS§(%,) lies under or or5(%;).
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Example 1—- The figure that follows shows the curv8&;), . ..
..., S8(25) for data generated by the third order system
Gt +3) =049t +2)—0.3¢(t+1)—0.19(¢t)
+0.20(t +2) — 0.384(t + 1) + 0.58 4(t)
for o;* = 0.05 ando® = 0.05.
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Problems in the Frisch identification of real processes

1) The key property described by Theorem 1 holds only when
the (asymptotic) properties assumed for the additive noise
sequences (mutual orthogonality and orthogonality wigh th
input/output sequences) hold, i.e. wh&n) andy(-) are
uncorrelated white sequences with infinite length.

2) Similar conseguences follow from violations on the lingari
and time—invariance assumptions.

3) The algorithms that can be developed to estimate a single
solution from real data can exhibit robustness and reltgbil
problems and require the development of suitable criteria.
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Example 2— The process considered is a natural gas reservoir
converted to storage operations. The model orientatiosiders
as input the total amount of injected/extracted gas and g&ibu
the mean reservoir pressure. The process exhibits a non
stationary behavior because of the volume variations due to

water encroaching.
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Frisch identification criteria

The shifted relation criterioriBeghelli, Castaldi, Guidorzi
and Soverini, 1993)

This method is based on the following rank deficiency propert
of the matrices, (P*) for k > n:

e if £ > n the dimension of the null space bf,(P*) and,
consequently, the multiplicity of its least eigenvalueggial
to(k —n+1);

e for k£ > n all linear dependence relations between the columns
of the matrice<;,(P*) are described by the same set of
coefficients)*.
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Whenk = n, ker £,,(P*) = im 6* while whenk = n + 1

ker 3,41 (P*) = im [v" v"], (13)

where
V=001 ...00, =108 ... Bug1]" (14)
v'=lay ..., —1006 ... 8oy 0% )

Consider now the intersectiod® = (62,5%), P" = (62",52")

y o u y 2 u

of a line from the origin withS(>,,) andS(X,,. 1), so that

~ 9/ ~ !

5y _ 0y

~ 9/ — = 1) (1 6)
Ou Ou
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and define the cost function (Diversi, Guidorzi and Soverini
2004)

J(P', P") = trace ([v/(P') v"(P")]*" (17)

XEn 1 (P7) [0'(P) " (P)])

wherev'(P'),v"(P’) have been constructed with the entries of
¢(P’). This function exhibits the following properties:

J(P',P") >0 (18)

J(P',P") =0« P = P"'= P~ )

It Is thus possible to perform the identification by seargHor
the solution that minimizes (17).
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The covariance—matching criteri@iversi, Guidorzi and
Soverini, 2003)

Consider the residual(t) of the EIV process
Yt) =ary(t)+ - F+Fayylt+n—1) —y(t +n)
+B1u(t) + - - + Buy1 ult +n); en)
that can also be written as
Y(t) =1 §(t) + -+ Gt +n—1) — Gt +n)
+B1U(t) + -+ + Burru(t +n), (21)

l.e., as the sum of two MA processes driven by the white noises
y(t) andu(t).
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Because of the assumptions @) andu(t) the autocorrelations

of v (t), ry (k)

E |~v(t)~y(t — k)|, are given by

n+1 n+1

Y et Y 22

n—k-+1 n—k-+1

~2* Z O Qiyg + 0 Z Bi Bitk (23)
i—1

fork=1,...,n

ry(k) =0 fork >n (24)

wherea,, 1 =

—1.
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Define now, for every poinP = (¢, 5;) of S(3,) the vector
ri(P) = [ry(0, P)ry (1, P) ... ry(k, P)]", (25)

with entries computed by means of (22)—(24) using the vaaan
(67,5,) and the parametefg P).

Compute also, by means of the available dataiid), the
sample vector

mr(P) = [7(0, P) 7y (1, P) ... 7y (k, P)]", (26)

where

Zv v(t + k). (27)
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Since, forN — ¢
rp(P*) = 75(P) = [ry(0) (1) ... 7y (K)]", (28)

the following covariance—matching cost function can be
considered

J(P) = |[r(P) = (Pl (29)

that compares the theoretical statistical propertiesof with
those computed from the data.

The identification problem can thus be solved by minimizing
J(P) alongS(%,).
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A criterion based on Yule—Walker equatiqpsversi,
Guidorzi and Soverini, 2006)

Define the regressor vector
p(t)=[y(t —n) ... y(t = 1) —y@)ult —n) ... u(®)]" (30)
and they x 1 vector of delayed inputs
o't =lult—n—q) ... ult—n—1)]". (31)

Consider then the x (2n + 2) matrix

2" = Eleut) ¢ (1)) (32)

If ¢ > 2n 4+ 1, It IS easy to show that
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Bt = Egu(t) " (1), (33)
where

o) =[gt —n) ... g(t = 1) —g®)a(t —n) ... a@®)]" (34)
oMt =la(t—n—gq) ...t —n—1)]". (35)
Sincep! (t) 0* = 0 it follows that

e = 0. (36)

e Relation (36) represents a set of high order Yule—Walker
equations that could be directly used to estimate the
parameter vectat*.

e This approach can also be seen as an instrumental variable
method that uses delayed inputs as instruments.
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o If ¢ > 2n + 1, 6* can be consistently identified frokf*. The
search for the poinP* on S(X,,) can be performed by means of
the cost function

J(P)=x"0(P)l; = 6" (P)(Z")" 2" 0(P)  (37)

that exhibits the following properties

Some Issues on Errors—in—Variables Identification — p.21/2



Multivariable Frisch identification

The extension of Frisch identification techniques to the ®IIS
case Is straightforward but this is not the case for MIMO
processes that face conceptual and practical congruence
problems not present in the single—output case.

The solution of this problem (Guidorzi, 1996, Guidorzi, Saowi
and Diversi, 2002) has required the introduction of new
parametrizations of the Frisch singularity surfaces (Gradand
Pierantoni, 1995) that associate modelaltalirections in the
noise space instead than to single (admissible) points.
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Example 3— A Monte Carlo simulation of 100 independent runs
has been performed on the system

22— 0.4z +0.3 0.1975 ]
—0.20262 +0.1013 2z —04]"

[ 0.3426z + 0.7194 ]
=
0.7979
The input sequence(-) is a PRBS with lengthivV = 300. The

variances of the noiseless output sequenges, y»(-) are equal
to 1. The noise variances are

P(z):[

o, =004 0¢7=016 4, =0.36

corresponding to amounts of 20%, 40% and 60% in standard
deviation.
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o111

o112

o121

0.3000

—0.4000

0.19750

0.2781 £0.08

—0.4246 = 0.09

0.2363 £0.14

211

0212

(2]

0.1013

—0.2026

—0.4000

0.090 £0.10

—0.2165 = 0.12

—0.3748 =0.16

B111

B112

Bi21

0.7194

0.3426

0.7979

0.7167 £ 0.04

0.3423 +£0.03

0.7997 £ 0.06

-

O V)

0.0400

0.1600

0.3600

0.0400 £ 0.02

0.1537 £0.02

0.3746 £ 0.04
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Blind identification of SIMO FIR system®iversi,
Guidorzi and Soverini, 2005a, Guidorzi, Diversi and Sawveri
2006)

e The blind identification of dynamic systems is of great
relevance in many fields like telecommunications, sismyglog
radioastronomy, etc. The purpose is the reconstructioneof t
transfer function of a transmission channel starting fransy
measurements performed only on its output.

¢ Blind identification relies on linear models describing
a set of parallel channels driven by an unknown sequence
and characterized by a finite impulse response (FIR). These
models can describe a single unknown source in presence
of multiple spatially and/or temporally distributed sersso
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y1(t)

71(t)

— Hl(z_l)

i=1,2

7i(2)

() ult) =) hi(k)u(t — k),

i=1,2

yi(t) = 0:(t) + va(t),



Relations (1) lead immediately to the well-known crossatren
property

It IS thus possible to write

{antl(?)l) Xn+1(292)} h=0, ()
where
h = [ha(n) -+ ha(0) = ha(n) -~ — hi(0)]" ©
and
(1) ... gi(n+1) ]
Xnt1(Gs) = | 5 , =12 (7)
| 5i(N) ... 9i(N +n) |
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Define now the covariance matrix

> —Nhinoo% Xn+1(??1)Xn+1(?32)r {Xn—kl(?)l) Xn+1(92) |- (8)
It follows that

>, h=0 ©

Y, =3, + 3k (10)

Z = diag |0 2*] n+1; 55; Lpt1], (11)

whereX,, andX* can be obtained by inserting, . (y;) and
Xna1(7;) In (8).

The blind identification problem has thus been mapped into an
errors—in—variables identification problem.
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|dentification of noisy autoregressive modg@sersi,
Soverini and Guidorzi, 2005, Diversi, Guidorzi and Soverin

2005d)

e Autoregressive (AR) models are commonly used in a wide
range of engineering applications, like spectral estiomati
speech and image processing, noise cancellation etc.

e A considerable attention has been dedicated, in the
literature, to the problem of estimating the AR parameters
from signals corrupted by white noise.

e In this case the estimates obtained with classical AR
identification methods (least—squares, Yule—\Walker
equations) are poor, particularly for low signal-to—noise
ratio conditions.
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Problem statement

Consider the noisy AR model:
r(t)=arx(t—1)+ -+ a,x(t—n)+e(t), (12

y(t) = x(t) + w(?), (13)
wherez(t) is the noise—free AR signal(t) is the driving noise

andy(t) is the available observation affected by the additive
noisew(t).

Assumptions: e(t) andw(t) are zero—mean white processes,
mutually uncorrelated, with unknown varianees ando>*.

Problem: Estimatex, . . ., a,, ando=*, o2 starting from the
available measuremengsl), y(2), ..., y(N).
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Mapping the noisy AR problem into an EIV problem

By defining the vectors

po(t) = [t—n)...z(t—1) z(t)],
oy(t) = [yt —n) ...yt —=1) y(O)],
pu(t) = [w(t—mn)...w(t-1) wt)],
and the parameter vector
0* =[ay --- a1 — 1],

It Is possible to write model (12)—(13) in the form
(pr(t)—1[0...0e(t)]) 6" =0, (14)

oy(t) = @a(t) + ou(t). (15)
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Define now then + 1) x (n + 1) covariance matrix

Yo = Elps(t) e, (t)] —diag [0 .. 0 o¢7]

e

" 7,(0) (1) re(n) 7
_ (1) r:(0) ry(n—1)
L r2(n) re(n—1) r.(0) — o

5, 0" = 0. (16)
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Sincey,(t) = ¢.(t) + pu(t), it follows that the covariance
matrix of the noisy observation is given by

Sn = Bl (8) 7 ()] = B0 + £ (17)
where
ro 0 0 1
0 o 0 0
= | 5 = diag [0y In,077],
o 0
L 0 0 (o2F+02%).
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EIV Interpolation(Guidorzi, Diversi and Soverini, 2002, 2003)

Consider a SISO EIV process of order

n—+1

gt +n) = Zakyt+k—1+26kut+k—1) (18)

u(t) = (t) + u(t) (19a)
y(t) = 4(t) +y(t) (190)

When L input—output samples are available, equation (18) can be

evaluated at times=n + 1, ..., L. Itis thus possible to write
N = L — n relations in the form

Gv=0 (20)
whereG is the N x 2(N + n) matrix
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. S oar P .. an B —1 Bun
G — 0 0 a1 B a B2 ... oy ﬁn
0

1 Bpar 0 e 0

0 1 51 <. oy 677, —1 ﬁn—l—l .

andv is the2(N + n)-dimensional vector

o=[9(1) a(1) | 9(2) a2) |...| §N+n) UN+n)]".

(21)

(22)
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Relations (19) lead immediately to the condition
Gv=G(v+0v)=Go=T, (23)

wherev andv are vectors containing the observations and the
noise samples, with the same structure.as

Problem 1 (Interpolation) — Given the model of the process and
the noisy observationsg determine an unbiased and minimal
variance estimate af.

Problem 2 (Filtering) — Given the model of the process and an
Increasing sequence of observations, estimate, as soomess a
observationu(t), y(t), becomes available, an unbiased and
minimal variance estimate af(t), y(t).
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Whenu(t) andy(t) are gaussian, the optimal interpolation is the
ML estimation ofo under the constrair v = 0:

max p (v]0*) = HI})%X exp {—% (v—20")" 27t (v— @*)} (24)
with G 0* =
> =E[v07] (25)
G2 Gy 0 0] s .
Gyu G2 0 0 8’“ 5
5 =

IS the covariance matrix af.
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The ML estimation ofy is
o =v—SCNGEGT) IGu = I - 26T (@S GT)*G} v,

The covariance matrix of the estimation eregr, = v — 0}, IS

COV Epny —
- [(EGT(GEGT)—lGU _ @)(EGT(GEGT)—lav)T—@T}

= %(I - GT(GEGT)'aY). (26)
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EIV Filtering (Guidorzi, Diversi and Soverini, 2002, 2003,
Diversi, Guidorzi and Soverini, 2003, Diversi, Guidorzoan
Soverini, 2005bc, Markovsky and De Moor, 2005)

Passing front to ¢ + 1, the update of*(¢) andG(t) is

0t +1) =[o*@®)" g+ 1) A+ 1)) (27)
Gt+1) = (28)
[ CUET 0 0°

G(t) . ) o
0 0 [ — 0 0
0 ...0 B ..an Bn—1 Briq _ml(t) ma

Denoting withR(¢) the N x N matrix
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R(t) = S(t) G (1) (GH)Z()G (1) G(t) (28)
then

0*(t) = [I = R()] v(?) (29)

and an iterative, finite—memory, solution of the optimaéfiihg
problem is given by

A
0" (t4 Dante = |yt +1) | +k(E) (n+1)s"(t) e(t+1) (30)
L u(t+ 1)

wherev* (¢t + 1)s,42 denotes the lagin + 2 entries ofo* (¢t + 1),

' 7 (31)

m = [ah 617"'7_1767%4-1]7 (32)
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k() =1/(s(t) 2(n+ 1)m?), (33)

et+1) =ylt+1) = ap§* (t—n+k) — Bopru(t+ 1)
k=1

) Bpdr(t—n+k) (34)

and the suffiX2n In a matrix denotes its lower rightth x 2n
submatrix.s(t) andk(t) can, finally, be updated by means of the
recursion

+ k() Z(n) (s7(t) s(t)),

2n

R(t + 1)9, = [R(t)zn 0]

€

no
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Example 1- This example refers to a 100 runs Monte Carlo
simulation concerning sequences of 400 samples genenated b
the model

y(t+3) = 1.2y(t+2)—0.81 y(t+1)+0.27 y(¢)+0.0885 u(t+3)

+0.168 u(t + 2) + 0.0788 u(t + 1) + 0.0385 u(t)

The variances ofi(-) andy(-) are equal to 1 while the variances
of %(-) andg(-) ares; = 0.25 andg, = 0.64; their covariance is
Gy = 0.36.

This corresponds to percent amounts of noise of 50% on the
iInput and 80% on the output (on standard deviations).
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200 220 240 260 280 300 320

Noiseless input (black) and its observation (red)

| |
240 260 280 300 320

Noiseless output (black) and its observation (red)
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Noiseless (black) and filtered (red) output
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The expected performance of filtering is given by
ol = 0.2470

0., = 0.1667
The mean of the actual values obtained in 100 runs are

o2 = 0.2473 £ 0.0066

oo, = 0.1698 + 0.0136
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