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Estimating linear relations from noisy data

One of the most common problems in science and technology

concerns the estimation of linear relations from data affected by

errors. Consider noiseless data given byN samples ofn

variables (N > n):
x1 x2 . . . xn. (1)

Linear relations between the variables (if any) can be described

in the form

a1 x1 + a2 x2 + . . . + an xn = 0 (2a)
or

y = α1 ξ1 + α2 ξ2 + . . . + αn−1 ξn−1 (2b)

By denoting withX theN × n matrix with rows given by the
observations
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X =











x11 x21 . . . xn1

x12 x22 . . . xn2

...
...

...

x1N x2N . . . xnN











, (3)

sets of one or more linear relations can be expressed in the form

X A = 0 (4)

whereA is a(n × q) matrix with columns given by theq sets of

coefficients describing theq = n − rank X (independent) linear

relations linking the data. Relation (4) can be rewritten also by

substitutingX with

Σ =
XT X

N
(5)
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i.e., under the assumption of null mean value of the variables,

with the sample covariance matrix of the data.

In absence of noise and in presence of linear relations

Σ ≥ 0 (6)

and every solution,A, with maximal rank, of

ΣA = 0 (7)

is a basis ofker Σ.

When the data are corrupted by noise,rank X = n, no linear

relations are compatible with the observations and

Σ > 0. (8)

Some Issues on Errors–in–Variables Identification – p. 4/29



In situations of this kind, linear relations can be extracted only

by modifyingX or Σ i.e. the data.

Definition 1 (Kalman, 1982a,b) – Ascheme is a systematic

procedure to extract linear relations from data affected byerrors.

Assumptions behind estimation schemes

If no assumptions are introduced,any set of noisy data is

compatible withany solution. The assumptions on the noise are,

usually, the following:

1) The noise is additive; every observation is the sum of an

unknown exact part̂xi, and of a noise term̃xi:

xi = x̂i + x̃i (9)
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2) The mean value of̂xi andx̃i is null:

N
∑

t=1

x̂it = 0,
N

∑

t=1

x̃it = 0. (10)

3) The sequences of noise samples are orthogonal to the

sequences of noiseless variables:

N
∑

t=1

x̃it x̂jt = 0 for every i, j. (11)

Under these assumptions:

X = X̂ + X̃ (12)

X̂T X̃ = 0 (13)
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Σ = Σ̂ + Σ̃ (14)

Σ > 0 (15)

Σ̃ ≥ 0 or Σ̃ > 0 (16)

Σ̂ ≥ 0. (17)

The problem of determining linear relations compatible with

noisy data can be formulated as follows:

Problem 1 (Kalman, 1982a,b) – Given a sample covariance

matrix of noisy observations,Σ, determine positive definite or

semidefinite noise covariance matricesΣ̃ such that

Σ̂ = Σ − Σ̃ ≥ 0. (18)

All corresponding solutions are described by any basis ofker Σ̂.
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The Frisch scheme

This scheme, proposed by Ragnar Frisch in 1934, assumes the

additivity of noise terms

xi = x̂i + x̃i, (19)

the independence between noise and data sequences and the

mutual independence of the noise sequences. This corresponds,

by introducing the suffixn in the sample covariance matrices, to

Σ̃n = diag [ σ̃2

1, . . . , σ̃
2

n ] ≥ 0 or > 0 (20)

whereσ̃2
1, . . . , σ̃

2
n are the sample variances of the noise terms

x̃1, . . . , x̃n.
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Every positive definite or semidefinite diagonal matrixΣ̃n such

that
Σ̂n = Σn − Σ̃n ≥ 0 (21)

is asolution of the Frisch scheme. The corresponding point

P = (σ̃2
1, . . . , σ̃

2
n)∈ Rn is a solution in the noise space.

Properties of the solutions in the noise space

Theorem 1(Beghelli, Guidorzi and Soverini, 1990) – All
admissible solutions in the noise space lie on a convex
(hyper)surfaceS(Σn) whose concavity faces the origin and
whose intersections with the coordinate axes are the points
[0, . . . , σ̃2

i , . . . , 0] corresponding to then ordinary least squares
solutions.

Some Issues on Errors–in–Variables Identification – p. 9/29



σ̃2
2

σ̃2
1

σ̃2

3

S(Σ′
3
)

S(Σ′′
3
)

Figure 1: LociS(Σ3) of admissible noise points
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Definition 2 (Guidorzi, 1995) – The (hyper)surfaceS(Σn) will

be calledsingularity (hyper)surface of Σn because its points

define noise covariance matricesΣ̃n associated with singular

matricesΣ̂n.

A problem of great relevance concerns the conditions under

which a covariance matrix is compatible with more linear

relations i.e. the evaluation of the maximal dimension ofker Σn

(MaxcorF (Σn)) in the contextt of the Frisch scheme.

Theorem 2(Kalman, 1982a) –MaxcorF (Σn) = 1 if and only if
Σ−1

n is Frobenius–like or becomes Frobenius–like by changing
the sign of some variables.
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Theorem 3– WhenMaxcorF (Σn) = 1 the coefficients

a1, . . . , an of all linear relations compatible with the Frisch

scheme lie (by normalizing one of the coefficients to 1) inside

the simplex whose vertices are defined by then LS solutions.

Theorem 4– WhenMaxcorF (Σn) = 1 the points of the simplex

of solutions in the parameter space are isomorphic with the

points ofS(Σn).

Theorem 5(Schachermayer and Deistler, 1998) –S(Σn) is

nonuniformly convex.

Theorem 6(Deistler and Scherrer, 1992) – All points ofS(Σn)

whereCor (Σn) = k (k > 1) are accumulation points for those
whereCor (Σn) = k − 1.
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Figure 2: Loci of admissible parameters
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Computation ofMaxcorF (Σn)

Define the singularity (hyper)surfaceS(Σn/r) as the locus of the

points[σ̃2
1, . . . , σ̃

2
r ]

T ∈ Rr such that

Σn − diag [ σ̃2

1, . . . , σ̃
2

r , 0, . . . , 0 ]≥ 0 (22)

andΣr as the sample covariance matrix of the firstr variables.

Then the following geometric relations hold:

Theorem 7(Guidorzi and Stoian, 1994) –S(Σn/r) always lies

under or onS(Σr).

Theorem 8(Guidorzi, 1995) –MaxcorF (Σn) ≥ q if and only if
S(Σn−q+1) ∩ S(Σn/n−q+1) 6= 0 for every subset ofn − q + 1

variables, i.e. for every permutation of the data leading to
different subgroups in the firstn − q + 1 positions.
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Figure 3: Common points betweenS(Σ2) andS(Σ3/2)
in a (3 × 3) covariance matrix with MaxcorF = 2
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Complete sets of data for the Frisch scheme

The Frisch scheme is considered as less affected by prejudices

than other schemes leading to unique solutions or to a limited

number of solutions, because it treats all variables in a symmetric

way and noa priori decomposition ofΣ is preferred to any other.

Remark 1 – The linear relation linking the noiseless data

belongs to the set of Frisch solutions; the knowledge ofΣ allows

computing the whole set of solutions but not discriminatingone

solution against others.

The definitions and properties that follow concern the asymptotic
case (infinite sequence of data).
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Definition 3 (Guidorzi, 1991) – Two noise–free data covariance

matrices of the same linear algebraic process,Σ̂1 andΣ̂2 are

defined asindependent if

dim kerΣ̂1 = dim kerΣ̂2 = dim ker(Σ̂1 − Σ̂2) = 1. (23)

Property 1 – If Σ̂1 andΣ̂2 are independent there exists a unique

(modulo scaling) vectora satisfying the conditions

Σ̂1 a = Σ̂2 a = (Σ̂1 − Σ̂2) a = 0. (24)

Definition 4 (Guidorzi, 1991) – Two noisy data covariance

matrices of the same linear algebraic process,Σ1 > 0 and

Σ2 > 0 are defined asindependent if
dim ker(Σ1 − Σ2) = 1. (25)
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Theorem 9(Guidorzi, 1991) – Two independent noisy

covariance matrices,Σ1 andΣ2, satisfy the following conditions

under the Frisch scheme

dim ker (Σ1 − Σ̃ ) = dim ker (Σ2 − Σ̃ ) = 1 (26)

(Σ1 − Σ2) a = (Σ1 − Σ̃) a = (Σ2 − Σ̃) a = 0, (27)

wherea = [a1 a2 . . . an]T defines the process model (1) and

Σ̃ ≥ 0 is a diagonal matrix satisfying the conditions

Σ1 − Σ̃ ≥ 0, Σ2 − Σ̃ ≥ 0. (28)
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Theorem 10(Guidorzi, 1991) – Among all points common to

the hypersurfaces of admissible noise points associated with the

independent noisy covariance matricesΣ1 andΣ2, one and only

one point is mapped, according toΣ1 andΣ2, into the same point

of the parameter space.

Corollary 1 – The Frisch scheme leads to a unique solution

determined by every pair of independent noisy data covariance

matrices of the process.

Corollary 2 – Two independent noisy data covariance matrices
of a process constitute acomplete set of data under the Frisch
scheme.
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Determination of the Frisch solution from real data

Theorem 10 allows defining a consistent criterion to search for

solutions even when the intersection betweenS(Σ1) andS(Σ2)

does not contain any point mapped, byΣ1 andΣ2 into the same

point of the parameter space.

Criterion 1 (Guidorzi and Diversi, 2006) – Consider a pair of
covariance matricesΣ1 andΣ2 and their loci of solutions,S(Σ1),
S(Σ2) in the noise space. The best approximation of the actual
noise variances will be given by the pointP ∈ S(Σ1) ∩ S(Σ2)

that minimizes the euclidean norm of the distance between the
parameter vectorsa′ anda′′ associated toP by Σ1 andΣ2.
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Remark 2 – Criterion 1 is consistent since the cost function

f(P ) = ‖a′ − a′′‖2 annihilates whenΣ1 andΣ2 are independent.

Remark 3 – Once that the minimum off(P ) has been found,

two solutions,a′ anda′′ will be available and their distance is a

measure of the reliability of the procedure. Their mean value can

be assumed as problem solution.

Remark 4 – It can be observed that the outlined procedure can
be applied even in the case of simplexes without common points.
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A numerical example

Two independent sets of noise–free data, concerningN = 100

observations ofn = 3 variables are characterized by the sample

covariance matrices

Σ̂1 =
X̂T

1 X̂1

N
=







3 12 −12

12 56 −52

−12 −52 50







Σ̂2 =
X̂T

2 X̂2

N
=







14 18 −37

18 36 −54

−37 −54 101






.

Σ̂1 andΣ̂2 have rank2 and are associated with the same linear
relation described bya1 = 2, a2 = 0.5 anda3 = 1.
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A Monte Carlo simulation of 100 runs has been performed by

generating, in every run, two independent sets of three gaussian

white sequences and by adding these sequences to the noise–free

data in order to obtain the noisy ones.

a1 a2

true 2 0.5

estim. 1 2.0320 ± 0.1437 0.4945 ± 0.0610

estim. 2 2.0305 ± 0.1424 0.4802 ± 0.0724

Table 1: True and estimated values of the coefficientsa1, a2

Some Issues on Errors–in–Variables Identification – p. 25/29



References

S. Beghelli, R. Guidorzi and U. Soverini (1990). The Frisch

scheme in dynamic system identification, Automatica, Special

Issue on Identification and System Parameter Estimation, vol.

26, n. 1, pp. 171–176.

M. Deistler and W. Scherrer (1992). Identification of linear

systems from noisy data, in New Directions in Time Series

Analysis, Part II, D. Brillinger et al., eds., IMA Vol. Math.

Appl., 46, Springer-Verlag, pp. 21–42.

R. Frisch (1934). Statistical confluence analysis by means of

complete regression systems, pub. no. 5, Economic Institute,

Oslo University.

Some Issues on Errors–in–Variables Identification – p. 26/29



R. Guidorzi (1991). Certain models from uncertain data: the

algebraic case, Systems and Control Letters, vol. 17, n. 6, pp.

415–424.

R. Guidorzi (1995). Identification of the maximal number of

linear relations from noisy data, Systems and Control Letters,

vol. 24, n. 3, pp. 159-166.

R. Guidorzi and R. Diversi (2006). Determination of linear

relations from real data in the Frisch scheme context,

Proceedings of the 17th International Symposium on

Mathematical Theory of Networks and Systems, pp. 530–535,

Kyoto.

Some Issues on Errors–in–Variables Identification – p. 27/29



R. Guidorzi and A. Stoian (1994). On the computation of the

maximal corank of a covariance matrix under the Frisch scheme,

Preprints of the 10th IFAC Symposium on System Identification,

vol. 3, pp. 171–173, Copenhagen.

R.E. Kalman (1982a). System identification from noisy data,in

Dynamical Systems II, A.R. Bednarek and L. Cesari, eds.,

Academic Press, pp. 135–164.

R.E. Kalman (1982b). Identification from real data, in Current

Developments in the Interface: Economics, Econometrics,

Mathematics, M. Hazewinkel and H.G. Rinnooy Kan, eds.,

Reidel, Doordrecht, pp. 161–196.

Some Issues on Errors–in–Variables Identification – p. 28/29



W. Schachermayer and M. Deistler (1998). The set of

observationally equivalent errors–in–variables models,Systems

& Control Letters, vol. 34, pp. 101–104.

Some Issues on Errors–in–Variables Identification – p. 29/29



Some Issues on
Errors–in–Variables Identification

II. The Frisch scheme in the dynamic case

Roberto Guidorzi, Roberto Diversi, Umberto Soverini

rguidorzi,rdiversi,usoverini@deis.unibo.it

Bologna University

Some Issues on Errors–in–Variables Identification – p. 1/27



The Frisch scheme in the dynamic case

Consider a dynamic SISO system of ordern

ŷ(t + n) =
n

∑

k=1

αk ŷ(t + k − 1) +
n+1
∑

k=1

βk û(t + k − 1) (1)

and noisy input/output measures

u(t) = û(t) + ũ(t) (2a)

y(t) = ŷ(t) + ỹ(t) (2b)

whereũ(t) andỹ(t) are white processes with zero mean,
mutually uncorrelated and uncorrelated withû(t).
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Figure 1: The dynamic Frisch scheme context

Some Issues on Errors–in–Variables Identification – p. 3/27



Define now the Hankel matrices

Xk(y) =











y(1) . . . y(k)

y(2) . . . y(k + 1)
...

.. .
...

y(N) . . . y(k + N − 1)











, (3a)

Xk(u) =











u(1) . . . u(k)

u(2) . . . u(k + 1)
...

. ..
...

u(N) . . . u(k + N − 1)











, (3b)

the matrix of input/output samples

Xk = [Xk+1(y) Xk+1(u) ] (4)
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and the sample covariance matricesΣk given by

Σk =
XT

k Xk

N
=

[

Σ(yy) Σ(yu)

Σ(uy) Σ(uu)

]

. (5)

Denoting withσ̃∗2
u andσ̃∗2

y the variances of̃u(t) andỹ(t) and

with P ∗ the point

P ∗ = ( σ̃∗2

y , σ̃∗2

u ), (6)

the previous assumptions establish, whenN → ∞, that

Σk = Σ̂k + Σ̃∗

k (7)

where

Σ̃∗

k = diag [σ̃∗2

y Ik+1, σ̃∗2

u Ik+1]. (8)
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The identification problem

The identification problem, in the context of the Frisch scheme,

consists in determining the order and the parameters of model

(1), or of any equivalent state–space model, and the additive

noise variances̃σ∗2
y , σ̃∗2

u on the basis of the knowledge of the

noisy sequencesu(·), y(·) or, equivalently, of the sequence of

increasing–dimension matricesΣk for k = 1, 2, . . ..

Model (1) implies, for every input sequence persistently exciting
of ordern, the nonsingularity of̂Σ1, . . . , Σ̂n−1 and the
singularity ofΣ̂k for k ≥ n.
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For any value ofk (lower, equal or larger thann), a point

P = (σ̃2
y, σ̃

2
u) belonging to the first orthant of the noise space,

defines an admissible solution if and only if

dimker(Σk − Σ̃k) = 1, (9)

Σk − Σ̃k ≥ 0 (10)

whereΣ̃k is the noise covariance matrix defined byP

Σ̃k = Σ̃k(P ) = diag [σ̃2

y Ik+1, σ̃2

u Ik+1]. (11)

The corresponding solution in the parameter space,θ(P ), is

univocally defined byker (Σk − Σ̃k), i.e. by the relation

Σ̂k θ(P ) = (Σk − Σ̃k) θ(P ) = 0. (12)
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Theorem 1(Beghelli, Guidorzi and Soverini, 1990) – For every

k > 0 all admissible points define a convex curveS(Σk) in the

first quadrant of the noise planeR2 with a concavity facing the

origin. The pointP ∗ = (σ̃2∗
y , σ̃2∗

u ) associated with the actual

noise variances belongs to all curvesS(Σk) whenk ≥ n and

θ(P ∗) is the true parameter vector,θ∗.

Theorem 2(Beghelli, Guidorzi and Soverini, 1990) – Ifi andj

are integers withj > i, thenS(Σj) lies under or onS(Σi).
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Example 1– The figure that follows shows the curvesS(Σ1), . . .

. . . ,S(Σ5) for data generated by the third order system

ŷ(t + 3) = 0.4 ŷ(t + 2) − 0.3 ŷ(t + 1) − 0.1 ŷ(t)

+0.2 û(t + 2) − 0.38 û(t + 1) + 0.58 û(t)

for σ∗2
u = 0.05 andσ∗2

y = 0.05.
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Problems in the Frisch identification of real processes

1) The key property described by Theorem 1 holds only when

the (asymptotic) properties assumed for the additive noise

sequences (mutual orthogonality and orthogonality with the

input/output sequences) hold, i.e. whenũ(·) andỹ(·) are

uncorrelated white sequences with infinite length.

2) Similar consequences follow from violations on the linearity

and time–invariance assumptions.

3) The algorithms that can be developed to estimate a single
solution from real data can exhibit robustness and reliability
problems and require the development of suitable criteria.
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Example 2– The process considered is a natural gas reservoir

converted to storage operations. The model orientation considers

as input the total amount of injected/extracted gas and as output

the mean reservoir pressure. The process exhibits a non

stationary behavior because of the volume variations due to

water encroaching.
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Frisch identification criteria

The shifted relation criterion(Beghelli, Castaldi, Guidorzi

and Soverini, 1993)

This method is based on the following rank deficiency property

of the matriceŝΣk(P
∗) for k ≥ n:

• if k ≥ n the dimension of the null space ofΣ̂k(P
∗) and,

consequently, the multiplicity of its least eigenvalue, isequal

to (k − n + 1);

• for k > n all linear dependence relations between the columns

of the matriceŝΣk(P
∗) are described by the same set of

coefficientsθ∗.
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Whenk = n, ker Σ̂n(P ∗) = im θ∗ while whenk = n + 1

ker Σ̂n+1(P
∗) = im [v′ v′′], (13)

where

v′=[0 α1 . . . αn −1 0 β1 . . . βn+1]
T (14)

v′′=[α1 . . . αn −1 0 β1 . . . βn+1 0]T . (15)

Consider now the intersectionsP ′ = (σ̃2′

y , σ̃2′

u ), P ′′ = (σ̃2′′

y , σ̃2′′

u )

of a line from the origin withS(Σn) andS(Σn+1), so that

σ̃2′

y

σ̃2′

u

=
σ̃2′′

y

σ̃2′′

u

, (16)
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and define the cost function (Diversi, Guidorzi and Soverini,

2004)

J(P ′, P ′′) = trace ([v′(P ′) v′′(P ′)]T (17)

×Σ̂n+1(P
′′) [v′(P ′) v′′(P ′)]) ,

wherev′(P ′), v′′(P ′) have been constructed with the entries of

θ(P ′). This function exhibits the following properties:

J(P ′, P ′′) ≥ 0 (18)

J(P ′, P ′′) = 0 ⇔ P ′ = P ′′ = P ∗. (19)

It is thus possible to perform the identification by searching for

the solution that minimizes (17).
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The covariance–matching criterion(Diversi, Guidorzi and

Soverini, 2003)

Consider the residualγ(t) of the EIV process

γ(t) = α1 y(t) + · · · + αn y(t + n − 1) − y(t + n)

+β1 u(t) + · · · + βn+1 u(t + n); (20)

that can also be written as

γ(t) = α1 ỹ(t) + · · · + αn ỹ(t + n − 1) − ỹ(t + n)

+β1 ũ(t) + · · · + βn+1 ũ(t + n), (21)

i.e., as the sum of two MA processes driven by the white noises

ỹ(t) andũ(t).
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Because of the assumptions onỹ(t) andũ(t) the autocorrelations

of γ(t), rγ(k) = E [γ(t) γ(t − k)], are given by

rγ(0) = σ̃2∗

y

n+1
∑

i=1

α2

i + σ̃2∗

u

n+1
∑

i=1

β2

i (22)

rγ(k) = σ̃2∗

y

n−k+1
∑

i=1

αi αi+k + σ̃2∗

u

n−k+1
∑

i=1

βi βi+k (23)

for k = 1, . . . , n

rγ(k) = 0 for k > n (24)

whereαn+1 = −1.
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Define now, for every pointP = (σ̃2
y, σ̃

2
u) of S(Σn) the vector

rk(P ) = [rγ(0, P ) rγ(1, P ) . . . rγ(k, P )]T , (25)

with entries computed by means of (22)–(24) using the variances

(σ̃2
y, σ̃

2
u) and the parametersθ(P ).

Compute also, by means of the available data andθ(P ), the

sample vector

r̄k(P ) = [r̄γ(0, P ) r̄γ(1, P ) . . . r̄γ(k, P )]T , (26)

where

r̄γ(k, P ) =
1

N

n
∑

t=1

γ(t) γ(t + k). (27)
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Since, forN → ∞

rk(P
∗) = r̄k(P

∗) = [rγ(0) rγ(1) . . . rγ(k)]T , (28)

the following covariance–matching cost function can be

considered

J(P ) = ‖rk(P ) − r̄k(P )‖
2
, (29)

that compares the theoretical statistical properties ofγ(t) with

those computed from the data.

The identification problem can thus be solved by minimizing

J(P ) alongS(Σn).
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A criterion based on Yule–Walker equations(Diversi,

Guidorzi and Soverini, 2006)

Define the regressor vector

ϕ(t) = [y(t − n) . . . y(t − 1) − y(t) u(t − n) . . . u(t)]T (30)

and theq × 1 vector of delayed inputs

ϕh
u(t) = [u(t − n − q) . . . u(t − n − 1)]T . (31)

Consider then theq × (2n + 2) matrix

Σh = E [ϕh
u(t) ϕT (t)]. (32)

If q ≥ 2n + 1, it is easy to show that
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Σh = E [ϕ̂h
u(t) ϕ̂T (t)], (33)

where

ϕ̂(t) = [ŷ(t − n) . . . ŷ(t − 1) − ŷ(t) û(t − n) . . . û(t)]T (34)

ϕ̂h
u(t) = [û(t − n − q) . . . û(t − n − 1)]T . (35)

Sinceϕ̂T (t) θ∗ = 0 it follows that

Σh θ∗ = 0. (36)

• Relation (36) represents a set of high order Yule–Walker

equations that could be directly used to estimate the

parameter vectorθ∗.

• This approach can also be seen as an instrumental variable

method that uses delayed inputs as instruments.
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• If q ≥ 2n + 1, θ∗ can be consistently identified fromΣh. The

search for the pointP ∗ onS(Σn) can be performed by means of

the cost function

J(P ) = ‖Σh θ(P )‖2

2 = θT (P )(Σh)T Σh θ(P ) (37)

that exhibits the following properties

J(P ) ≥ 0

J(P ) = 0 ⇔ P = P ∗
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Multivariable Frisch identification

The extension of Frisch identification techniques to the MISO

case is straightforward but this is not the case for MIMO

processes that face conceptual and practical congruence

problems not present in the single–output case.

The solution of this problem (Guidorzi, 1996, Guidorzi, Soverini

and Diversi, 2002) has required the introduction of new

parametrizations of the Frisch singularity surfaces (Guidorzi and

Pierantoni, 1995) that associate models toall directions in the

noise space instead than to single (admissible) points.
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Example 3– A Monte Carlo simulation of 100 independent runs

has been performed on the system

P (z)=

[

z2 − 0.4z + 0.3 0.1975

−0.2026z + 0.1013 z − 0.4

]

,

Q(z)=

[

0.3426z + 0.7194

0.7979

]

The input sequencêu(·) is a PRBS with lengthN = 300. The

variances of the noiseless output sequencesŷ1(·), ŷ2(·) are equal

to 1. The noise variances are

σ̃2∗

u = 0.04 σ̃2∗

y1
= 0.16 σ̃2∗

y2
= 0.36

corresponding to amounts of 20%, 40% and 60% in standard

deviation.
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Blind identification of SIMO FIR systems(Diversi,

Guidorzi and Soverini, 2005a, Guidorzi, Diversi and Soverini,

2006)

• The blind identification of dynamic systems is of great

relevance in many fields like telecommunications, sismology,

radioastronomy, etc. The purpose is the reconstruction of the

transfer function of a transmission channel starting from noisy

measurements performed only on its output.

• Blind identification relies on linear models describing

a set of parallel channels driven by an unknown sequence

and characterized by a finite impulse response (FIR). These

models can describe a single unknown source in presence

of multiple spatially and/or temporally distributed sensors.
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u(t)

ŷ1(t)

ŷ2(t)

H1(z
−1)

H2(z
−1)

+

+

ỹ1(t)

ỹ2(t)

y1(t)

y2(t)

ŷi(t) = Hi(z
−1) u(t) =

n
∑

k=0

hi(k) u(t − k), i = 1, 2 (1)

Hi(z
−1) = hi(0) + hi(1) z−1 + · · · + hi(n) z−n, i = 1, 2 (2)

yi(t) = ŷi(t) + ỹi(t), i = 1, 2 (3)
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Relations (1) lead immediately to the well–known cross–relation

property

H2(z
−1) ŷ1(t) = H1(z

−1) ŷ2(t). (4)

It is thus possible to write
[

Xn+1(ŷ1) Xn+1(ŷ2)
]

h = 0 , (5)

where

h = [h2(n) · · · h2(0) − h1(n) · · · − h1(0)]T (6)

and

Xn+1(ŷi) =







ŷi(1) . . . ŷi(n + 1)
...

...

ŷi(N) . . . ŷi(N + n)






, i = 1, 2. (7)
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Define now the covariance matrix

Σ̂n= lim
N→∞

1

N

[

Xn+1(ŷ1) Xn+1(ŷ2)
]T [

Xn+1(ŷ1) Xn+1(ŷ2)
]

. (8)

It follows that

Σ̂n h = 0 (9)

Σn = Σ̂n + Σ̃∗

n (10)

Σ̃∗

n = diag [σ̃2∗

y1 In+1, σ̃2∗

y2 In+1], (11)

whereΣn andΣ̃∗

n can be obtained by insertingXn+1(yi) and

Xn+1(ỹi) in (8).

The blind identification problem has thus been mapped into an

errors–in–variables identification problem.
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Identification of noisy autoregressive models(Diversi,

Soverini and Guidorzi, 2005, Diversi, Guidorzi and Soverini,

2005d)

• Autoregressive (AR) models are commonly used in a wide

range of engineering applications, like spectral estimation,

speech and image processing, noise cancellation etc.

• A considerable attention has been dedicated, in the

literature, to the problem of estimating the AR parameters

from signals corrupted by white noise.

• In this case the estimates obtained with classical AR

identification methods (least–squares, Yule–Walker

equations) are poor, particularly for low signal–to–noise

ratio conditions.
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Problem statement

Consider the noisy AR model:

x(t) = α1 x(t − 1) + · · · + αn x(t − n) + e(t), (12)

y(t) = x(t) + w(t), (13)

wherex(t) is the noise–free AR signal,e(t) is the driving noise

andy(t) is the available observation affected by the additive

noisew(t).

Assumptions: e(t) andw(t) are zero–mean white processes,

mutually uncorrelated, with unknown variancesσ2∗
e andσ2∗

w .

Problem: Estimateα1, . . . , αn andσ2∗
e , σ2∗

w starting from the

available measurementsy(1), y(2), . . . , y(N).
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Mapping the noisy AR problem into an EIV problem

By defining the vectors

ϕx(t) = [x(t − n) . . . x(t − 1) x(t)]T ,

ϕy(t) = [y(t − n) . . . y(t − 1) y(t)]T ,

ϕw(t) = [w(t − n) . . . w(t − 1) w(t)]T ,

and the parameter vector

θ∗ = [ αn · · · α1 − 1]T ,

it is possible to write model (12)–(13) in the form

(

ϕT
x (t) − [0 . . . 0 e(t)]

)

θ∗ = 0, (14)

ϕy(t) = ϕx(t) + ϕw(t). (15)
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Define now the(n + 1) × (n + 1) covariance matrix

Σ̂n = E [ϕx(t) ϕT
x (t)] − diag [0 . . . 0

︸ ︷︷ ︸

n

σ2∗

e ]

=











rx(0) rx(1) · · · rx(n)

rx(1) rx(0) · · · rx(n − 1)
...

...
. . .

...

rx(n) rx(n − 1) · · · rx(0) − σ2∗
e











,

whererx(k) = rx(−k) = E [x(t) x(t − k)].

From relation (14) it follows that

Σ̂n θ∗ = 0. (16)
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Sinceϕy(t) = ϕx(t) + ϕw(t), it follows that the covariance

matrix of the noisy observation is given by

Σn = E [ϕy(t) ϕT
y (t)] = Σ̂n + Σ̃∗

n (17)

where

Σ̃∗

n =















σ2∗
w 0 · · · · · · 0

0 σ2∗
w 0 · · · 0

...
.. .

...
... σ2∗

w 0

0 · · · · · · 0 (σ2∗
w + σ2∗

e )















= diag [σ2∗

w In, σ
2∗

s ],

with σ2∗
s = σ2∗

w + σ2∗
e .
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EIV Interpolation(Guidorzi, Diversi and Soverini, 2002, 2003)

Consider a SISO EIV process of ordern

ŷ(t + n) =

n
∑

k=1

αk ŷ(t + k − 1) +

n+1
∑

k=1

βk û(t + k − 1) (18)

u(t) = û(t) + ũ(t) (19a)

y(t) = ŷ(t) + ỹ(t) (19b)

WhenL input–output samples are available, equation (18) can be

evaluated at timest = n + 1, . . . , L. It is thus possible to write

N = L − n relations in the form

G v̂ = 0 (20)

whereG is theN × 2(N + n) matrix
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G =











α1 β1 α2 β2 . . . αn βn −1 βn+1

0 0 α1 β1 α2 β2 . . . αn βn
...

...

0 . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . . . . . . . . . . . . . . . . 0

−1 βn+1 0 . . . . . . . . . . . . 0
...

...

0 α1 β1 . . . αn βn −1 βn+1











(21)

andv̂ is the2(N + n)-dimensional vector

v̂ = [ ŷ(1) û(1) | ŷ(2) û(2) | . . . | ŷ(N +n) û(N +n) ]T . (22)
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Relations (19) lead immediately to the condition

G v = G ( v̂ + ṽ )= G ṽ = Γ, (23)

wherev andṽ are vectors containing the observations and the

noise samples, with the same structure asv̂.

Problem 1 (Interpolation) – Given the model of the process and

the noisy observationsv, determine an unbiased and minimal

variance estimate of̂v.

Problem 2 (Filtering) – Given the model of the process and an
increasing sequence of observations, estimate, as soon as anew
observationu(t), y(t), becomes available, an unbiased and
minimal variance estimate of̂u(t), ŷ(t).
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Whenũ(t) andỹ(t) are gaussian, the optimal interpolation is the

ML estimation ofv̂ under the constraintG v̂ = 0:

max
v̂∗

p (v|v̂∗) = max
v̂∗

exp

{

−
1

2
(v − v̂∗)T Σ̃−1 (v − v̂∗)

}

(24)

with G v̂∗ = 0;

Σ̃ = E [ ṽ ṽT ] (25)

=

















σ̃2
y σ̃yu . . . 0 0

σ̃yu σ̃2
u . . . 0 0

...
...

. ..
...

...

0 0 . . . σ̃2
y σ̃yu

0 0 . . . σ̃yu σ̃2
u

















=













Σ̃yu 0 ... 0

0 Σ̃yu ... 0
...

.. .
...

0 0 ... Σ̃yu













is the covariance matrix of̃v.
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The ML estimation of̂v is

v̂∗

ML = v − Σ̃ GT(G Σ̃ GT )−1
G v =

[

I − Σ̃ GT(G Σ̃GT )−1
G

]

v.

The covariance matrix of the estimation erroreMV = v̂ − v̂∗

MV is

cov eMV =

= E
[

(Σ̃GT(GΣ̃GT )−1
Gv − ṽ)(Σ̃GT(GΣ̃GT )−1

Gv)T−ṽT
]

= Σ̃(I − GT(GΣ̃GT )−1
GΣ̃) . (26)
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EIV Filtering (Guidorzi, Diversi and Soverini, 2002, 2003,

Diversi, Guidorzi and Soverini, 2003, Diversi, Guidorzi and

Soverini, 2005bc, Markovsky and De Moor, 2005)

Passing fromt to t + 1, the update of̂v∗(t) andG(t) is

v̂∗(t + 1) = [ v̂∗(t)T ŷ∗(t + 1) û∗(t + 1) ]T (27)

G(t + 1) = (28)











G(t)

0 0
...

...

0 0

0 . . . 0 α1 β1 . . . αn βn−1 βn+1











=











G(t)

0 0
...

...

0 0

m1(t) m2











Denoting withR(t) theN × N matrix
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R(t) = Σ̃(t) GT(t)(G(t)Σ̃(t)GT(t))−1
G(t) (28)

then
v̂∗(t) = [I − R(t)] v(t) (29)

and an iterative, finite–memory, solution of the optimal filtering

problem is given by

v̂∗(t+1)2n+2 =





v̂∗(t)2n

y(t + 1)

u(t + 1)



+k(t) Σ̃(n+1) sT(t) ε(t+1) (30)

wherev̂∗(t + 1)2n+2 denotes the last2n + 2 entries of̂v∗(t + 1),

s(t) = m

[

(I − R(N))
2n 0

0 I2

]

, (31)

m = [α1, β1, . . . ,−1, βn+1], (32)
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k(t) = 1/(s(t) Σ̃(n + 1) mT ), (33)

ε(t + 1) = y(t + 1) −
n

∑

k=1

αk ŷ∗(t − n + k) − βn+1 u(t + 1)

−
n

∑

k=1

βk û∗(t − n + k) (34)

and the suffix2n in a matrix denotes its lower right2n × 2n

submatrix.s(t) andk(t) can, finally, be updated by means of the

recursion

R(t + 1)2n =

[

R(t)2n 0

0 0

]

2n

+ k(t) Σ̃(n) (sT(t) s(t))
2n. (35)
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Example 1– This example refers to a 100 runs Monte Carlo

simulation concerning sequences of 400 samples generated by

the model

y(t+3) = 1.2 y(t+2)−0.81 y(t+1)+0.27 y(t)+0.0885u(t+3)

+ 0.168u(t + 2) + 0.0788u(t + 1) + 0.0385u(t)

The variances of̂u(·) andŷ(·) are equal to 1 while the variances

of ũ(·) andỹ(·) areσ̃2
u = 0.25 andσ̃2

y = 0.64; their covariance is

σ̃yu = 0.36.

This corresponds to percent amounts of noise of 50% on the
input and 80% on the output (on standard deviations).
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The expected performance of filtering is given by

σ2

eu = 0.2470

σ2

ey = 0.1667

The mean of the actual values obtained in 100 runs are

σ2

eu = 0.2473 ± 0.0066

σ2

ey = 0.1698 ± 0.0136
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