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Introduction

Shift-invariant subspaces appear in a variety of signal pro-

cessing problems including:

Problem 1 Modeling scalar data as the sum of exponentially

damped sinusoidal components. Estimate amplitudes,

phases, frequencies, and damping factors from Hankel

matrices formed from the data. The data could be real

or complex valued.

Problem 2 Multichannel signal modeling. Several signals are

observed, each with the same frequencies and damping

factors, but with independent amplitudes and phases.
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Summary of Talk

• We consider a standard method for estimating parameters
that reduces to the need to solve a system of noisy linear
equations ÃX̃ ≈ B̃ in which the perturbations in Ã and B̃
have a special structure.

• When X is square and nonsingular, the equation AX = B
says that col(A) = col(B). We first estimate this under-
lying subspace. Parameters are then calculated from the
subspace.

• The result is a two step (non-iterative) method, called
OSE (optimal subspace estimation), for estimating pa-
rameters. Error variances reach the Cramer-Rao lower
bound.

University of Rhode Island
R.J. Vaccaro, TLS Workshop, K.U. Leuven, Belgium, August 2006

3



Data Model for Single Channel Data

Consider the continuous-time signal model

y(t) =
q∑

i=1

Aie
−δit cos(2πfi + φi)

The sampled, discrete-time signal is

y[k] = y(t)|t=(k−1)T , k = 1, · · · , N.

The sampled signal can be modeled as the impulse response

of a discrete-time state-space system.
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State-Space Approach to Signal Modeling

The sampled signal can be modeled as the impulse response

of a discrete-time state-space system. This representation is

as follows

y[k] = hFk−1g, k = 1, · · · , N

where h is a 1 × p vector, F is a p × p matrix, and g is a

p×1 vector. The value of p is twice the number of sinusoidal

components in the data (p = 2q).

Recall: eig(F) = {e−δi+j2πfiT}, {e−δi−j2πfiT}, i = 1, · · · , q.

University of Rhode Island
R.J. Vaccaro, TLS Workshop, K.U. Leuven, Belgium, August 2006

5



Data Model and Hankel Matrix Factorization

The formula y[k] = hFk−1g implies:


y[1] y[2] · · · y[N − m + 1]

y[2] y[3] · · · y[N − m + 2]
... ... ... ...

y[m] y[m + 1] · · · y[N ]

 =


h

hF
...

hFm−1

 [ g Fg · · · FN−m ]

or

H = OC
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Realization Formulas

A model (F, g,h) is obtained from a factorization of H as
follows:

Let

O = rows 1 to m − 1 of O,

O = rows 2 to m of O.

The model is obtained as follows

h = first row of O,

g = first column of C,

OF = O which may be solved to yield F = OLO

where OL is the left inverse of O.
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Obtaining a Model from Data

Given a data sequence y[k] form the Hankel matrix H and fac-

tor it by computing the singular value decomposition (SVD)

of H (throw away the zero singular values):

H = U1Σ1V
T
1 = (U1)(Σ1V

T
1 )

def
= OC.

The SVD provides a factorization of H, and a state-space

model may be obtained from this factorization using the re-

alization formulas.
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Obtaining State-Space Models from Noisy Data

Given a noisy data vector

ỹ = y + n

form a Hankel matrix

H̃ = H + N.

The SVD of H̃ is

H̃ = [ Ũ1 Ũ2 ]

[
Σ̃1 0

0 Σ̃2

] [
ṼT

1
ṼT

2

]
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Obtaining State-Space Models from Noisy Data

The rank of H̃ is full, although it can be approximated by a

matrix of rank p. Truncate the SVD to get such an approxi-

mation

H̃ ≈ Ũ1Σ̃1Ṽ
T
1 .

Note that the approximation is not a Hankel matrix, and if

we try to use the realization formulas we get

Ũ1 F ≈ Ũ1
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Solving Overdetermined Equations: Least Squares

In order to solve the overdetermined system of equations

AF ≈ B

all columns of A and B must lie in a p-dimensional subspace.
The LS approach chooses this subspace to be the column-
space of A and projects the columns of B into this subspace.
The LS solution is

FLS = (ATA)−1ATB

The LS approach is optimal only when the columns of A are
noise-free and the perturbations on the elements of B are
i.i.d. random variables.
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The Total Least Squares Approach

The TLS approach chooses the p-dimensional subspace by

minimizing the sum of squared distances from every element

of A and B to the subspace. This is the optimal subspace

only when the perturbations on the elements of [A B ] are

i.i.d. random variables.

[A B ] = [ Ū1 Ū2 ]

[
Σ̄1 0

0 Σ̄2

] [
V̄11 V̄12

V̄21 V̄22

]
.

The total least squares solution is

FTLS = −V̄12V̄
−1
22 .
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A New Approach: Optimal Subspace Estimation

• Ũ1 and Ũ1 define subspaces that are noisy measurements

of the true subspace. They are data for a weighted least-

squares problem whose solution gives an estimate of the

underlying subspace.

• We use a subspace perturbation expansion to get a first-

order statistical description of the perturbations in the

subspaces defined by Ũ1 and Ũ1.

• This first-order description is an approximation to the

actual statistical distribution of the perturbations. There

is a range of SNR over which the approximation is very

good.
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A Simulation Example

The signal is

y(t) = e−20t cos(2π40t +
π

2
) + e−25t cos 2π60t

The frequencies are: 40 and 60 Hz

The damping factors are: 20 and 25

The sampling rate is 1,000 Hz and the number of samples is

50.
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The Test Signal
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MSE in Frequency Estimates vs. SNR
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MSE in Damping Estimates vs. SNR
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Bias in Frequency Estimates vs. SNR
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Bias in Damping vs. SNR
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Subspace Perturbation Expansion

The noisy matrix and its SVD are given by

H̃ = H + N

H̃ = [ Ũ1 Ũ2 ]

[
Σ̃1 0

0 Σ̃2

] [
ṼH

1
ṼH

2

]

The perturbed subspace is col(Ũ1). How is it related to

col(U1)? The answer is given by the following approximate

basis for col(Ũ1):

X̃1
1
= U1 + U2U

T
2NV1Σ

−1
1
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Optimal Subspace Estimation (OSE)

The matrix Ũ1 is be partitioned into top and bottom pieces.
These pieces would span the same subspace in the absence
of noise. Because we are forming projection matrices, we can
use any basis. We can use Ũ1 (for numerical calculation) or
X̃1 (for calculating the covariance matrix of the error terms).

Let

P̃ = Ũ1(Ũ
T
1 Ũ1)

−1ŨT
1

and

P̃ = Ũ1(Ũ
T
1 Ũ1)

−1ŨT
1

Then [
P̃

P̃

]
=

[
I

I

]
P +

[
∆P

∆P

]
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OSE (cont.)

We now “compress” the projection matrix estimation equa-

tion by multiplying with a fixed matrix Z whose columns are

a basis for the true underlying subspace.

[
P̃Z

P̃Z

]
=

[
I

I

]
PZ +

[
∆PZ

∆PZ

]

[
Z̃1

Z̃2

]
=

[
Im−1

Im−1

]
Z +

[
∆Z1

∆Z2

]
.

In practice, we use Z = orth(Ũ).
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OSE (cont.)

We vectorize the upper and lower halves of the previous equa-

tion, making use of the following formula to vectorize ∆Z1

and ∆Z2 into e1 and e2, respectively.

vec(ABC) = (CT ⊗A)vec(B)

The result is

[
z̃1
z̃2

]
=

[
I

I

]
z +

[
e1

e2

]
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Correlation Structure of OSE

The covariance matrix of the noise terms in the subspace

estimation equation is:

E

{[
e1

e2

]
[ eT

1 eT
2 ]

}
= σ2

n

[
B1

B2

]
[BT

1 BT
2 ]

The error covariance matrix is computed using the subspace

perturbation expanion. It is a rank deficient matrix, and

Paige’s method is used to solve the rank-deficient, weighted

least-squares problem.
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Multichannel Data

yk(t) =
q∑

i=1

Aike−δit cos(2πfi + φik), k = 1, · · · , C

• There are C data channels. The covariance matrix of the

noise samples is known up to a scale factor.

• The amplitudes (Aik) and phases (φik) are different for

each channel

• The frequencies (fi) and damping factors (δi) are the

same for each channel
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Multichannel Data Simulation Parameters

• There are two channels containing complex-valued sig-

nals. The length of the signals is 25 samples.

• The sampling interval is T = 1 second. The frequencies

are f1 = 0.2, f2 = 0.22. The damping factors are δ1 =

0.02, δ2 = 0.02.

• The amplitudes and phases of the signals were generated

randomly.
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TLS Approach (Papy, DeLathauwer, Van Huffel 2006)

1. Put each signal into a Hankel matrix, Hk, k = 1, · · · , C

2. Compute SVDs: Hk = UkΣkV
T
k , k = 1, · · · , C

3. Aggregate the left singular vectors from all channels:

Utot = [U1 U2 · · · Uk ]

4. Compress into a p-dimensional subspace using SVD of

Utot to get Û.

5. Extract frequencies and dampings using TLS (SVD of

[ ¯̂U Û ]
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OSE Approach to Multichannel Signal Modeling

1. Form vector sequence y(t) =

 y1(t)
...

yC(t)

 , t = kT, k = 1, · · · , N

2. Form block Hankel matrix

Hm×n =


y[1] y[2] · · · y[N − m + 1]

y[2] y[3] · · · y[N − m + 2]
... ... ... ...

y[m] y[m + 1] · · · y[N ]



3. Calculate SVD: H = U1Σ1V
T
1 = (U1)(Σ1V

T
1 )
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4. Perform OSE using block shift:

Ū1 = rows 1 to m − c of U1
U1 = rows C + 1 to M of U1



MSE in Frequency Estimates vs. SNR for 2-Channel Data
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MSE in Damping Estimates vs. SNR for 2-Channel Data
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2-Channel OSE Estimates at 40 dB
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2-Channel TLS Estimates at 40 dB
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2-Channel OSE Estimates at 27 dB
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2-Channel TLS Estimates at 27 dB
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Conclusions

• Parameter estimation problems involving shift-invariant

subspaces result in the need to solve noisy linear equations

with a special structure.

• The structure can be accounted for by using the structured-

TLS approach, but then an initial guess must be obtained

and one has to worry about the convergence of an itera-

tive algorithm.

• The first-order statistical information about the error struc-

ture provided by the subspace perturbation expansion is

adequate to obtain statistically efficient estimates with a

non-iterative algorithm.
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