Publications of the DECOUPLE project
Books
[1]
|
I. Markovsky.
Low-Rank Approximation: Algorithms, Implementation,
Applications.
Communications and Control Engineering. Springer, second edition
edition, 2019.
|
This file was generated by
bibtex2html 1.98.
PhD theses
[1]
|
G. Hollander.
Multivariate polynomial decoupling in nonlinear system
identification.
PhD thesis, Vrije Universiteit Brussel (VUB), 2017.
[ .html ]
|
This file was generated by
bibtex2html 1.98.
Journal papers
[1]
|
K. Usevich, P. Dreesen, and M. Ishteva.
Decoupling multivariate polynomials: interconnections between
tensorizations.
J. Comp. Appl. Math. (in press), 2019.
(preprint at arXiv:1703.02493).
[ bib |
DOI ]
|
[2]
|
J. Decuyper, P. Dreesen, J. Schoukens, M. C. Runacres, and K. Tiels.
Decoupling multivariate polynomials for nonlinear state-space models.
IEEE Control Systems Letters (L-CSS) (in press),
2019.
[ bib |
DOI ]
|
[3]
|
A. Fakhrizadeh Esfahani, P. Dreesen, K. Tiels, J.-P. Noël, and
J. Schoukens.
Parameter reduction in nonlinear state-space identification of
hysteresis.
Mechanical Systems and Signal Processing, 104:884--895, 2018.
[ bib |
DOI ]
|
[4]
|
P. Dreesen, K. Batselier, and B. De Moor.
Multidimensional realization theory and polynomial system solving.
Int. J. Control, 91(12):2692--2704, 2018.
[ bib |
DOI ]
|
[5]
|
G. Hollander, P. Dreesen, M. Ishteva, and J. Schoukens.
Approximate decoupling of multivariate polynomials using weighted
tensor decomposition.
Numerical Linear Algebra with Applications, 25(2):e2135, 2018.
[ bib |
DOI ]
|
[6]
|
A. Fazzi, N. Guglielmi, and I. Markovsky.
An ODE based method for computing the approximate greatest common
divisor of polynomials.
Numerical algorithms, 2018.
[ bib |
DOI |
pdf |
Abstract ]
|
[7]
|
R. Relan, K. Tiels, A. Marconato, P. Dreesen, and J. Schoukens.
Data-driven discrete-time parsimonious identification of a nonlinear
state-space model for a weakly nonlinear system with short data record.
Mech. Syst. Signal Process., 104:929--943, 2018.
[ bib |
DOI ]
|
[8]
|
N. Guglielmi and I. Markovsky.
An ODE based method for computing the distance of co-prime
polynomials to common divisibility.
SIAM Journal on Numerical Analysis, 55:1456--1482, 2017.
[ bib |
DOI |
pdf |
Abstract ]
|
[9]
|
P. Dreesen, M. Ishteva, and J. Schoukens.
Decoupling multivariate polynomials using first-order information and
tensor decompositions.
SIAM J. Matrix Anal. Appl., 36(2):864--879, 2015.
[ bib |
DOI |
pdf |
Abstract ]
|
This file was generated by
bibtex2html 1.98.
Conference papers
[1]
|
P. Dreesen, J. De Geeter, and M. Ishteva.
Decoupling multivariate functions using second-order information and
tensors.
In Y. Deville, S. Gannot, R. Mason, M. D. Plumbley, and D. Ward,
editors, Proc. 14th International Conference on Latent Variable Analysis
and Signal Separation (LVA/ICA 2018), volume 10891 of Lecture Notes on
Computer Science (LNCS), pages 79--88, Guildford, UK, 2018.
[ bib |
DOI |
http ]
|
[2]
|
I. Markovsky, O. Debals, and L. De Lathauwer.
Sum-of-exponentials modeling and common dynamics estimation using
tensorlab.
In Proc. 20th IFAC World Congress, pages 14715--14720,
Toulouse, France, July 2017.
[ bib |
pdf |
Abstract ]
|
[3]
|
I. Markovsky.
Application of low-rank approximation for nonlinear system
identification.
In Proc. 25th IEEE Mediterranean Conf. on Control and
Automation, pages 12--16, Valletta, Malta, July 2017.
[ bib |
pdf |
Abstract ]
|
[4]
|
P. Dreesen, K. Tiels, M. Ishteva, and J. Schoukens.
Nonlinear system identification: finding structure in nonlinear
black-box models.
In Proc. IEEE Int. Workshop on Computational Advances in
Multi-Sensor Adaptive Processing, pages 443--446, 2017.
[ bib ]
|
[5]
|
D. Westwick, M. Ishteva, P. Dreesen, and J. Schoukens.
Tensor factorization based estimates of parallel
Wiener-Hammerstein models.
In Proc. IFAC World Congress, volume 50, pages 9468--9473,
2017.
[ bib ]
|
[6]
|
A. Fakhrizadeh Esfahani, P. Dreesen, K. Tiels, J.-P. Noël, and J. Schoukens.
Polynomial state-space model decoupling for the identification of
hysteretic systems.
In Proc. IFAC 2017 World Congress, volume 50(1) of
IFAC-PapersOnLine, pages 458--463, Toulouse, France, 2017.
[ bib |
DOI ]
|
[7]
|
P. Dreesen, A. Fakhrizadeh Esfahani, J. Stoev, K. Tiels, and J. Schoukens.
Decoupling nonlinear state-space models: case studies.
In P. Sas, D. Moens, and A. van de Walle, editors, Int. Conf. on
Noise and Vibration, Leuven, Belgium, pages 2639--2646, 2016.
[ bib ]
|
[8]
|
G. Hollander, P. Dreesen, M. Ishteva, and J. Schoukens.
Parallel Wiener-Hammerstein identification: A case study.
In P. Sas, D. Moens, and A. van de Walle, editors, Int. Conf. on
Noise and Vibration, pages 2647--2656, 2016.
[ bib ]
|
[9]
|
P. Dreesen, M. Ishteva, and J. Schoukens.
Recovering Wiener-Hammerstein nonlinear state-space models using
linear algebra.
In Proc. 17th IFAC Symposium on System Identification, volume
48(28), pages 951--956, Beijing, China, 2015.
[ bib |
DOI |
pdf ]
|
[10]
|
P. Dreesen, M. Ishteva, and J. Schoukens.
On the full and block-decoupling of nonlinear functions.
In PAMM-Proceedings of Applied Mathematics and Mechanics,
volume 15, pages 739--742, 2015.
[ bib |
DOI |
pdf |
http ]
|
[11]
|
P. Dreesen, M. Ishteva, and J. Schoukens.
Recovering Wiener-Hammerstein nonlinear state-space models using
linear algebra.
In Proc. IFAC World Congress, volume 48, pages 951--956,
Beijing, China, 2015.
[ bib |
DOI ]
|
[12]
|
P. Dreesen, M. Schoukens, K. Tiels, and J. Schoukens.
Decoupling static nonlinearities in a parallel Wiener-Hammerstein
system: A first-order approach.
In Proc. IEEE Int. Conf. on Instrumentation and Measurement
Technology, pages 987--992, 2015.
[ bib ]
|
[13]
|
K. Usevich.
Decomposing multivariate polynomials with structured low-rank matrix
completion.
In Proc. 21th Int. Symposium on Mathematical Theory of Networks
and Systems, pages 1826--1833, 2014.
[ bib |
pdf |
Abstract ]
|
[14]
|
A. Van Mulders, L. Vanbeylen, and K. Usevich.
Identification of a block-structured model with several sources of
nonlinearity.
In Proc. 14th European Control Conf., pages 1717--1722, 2014.
[ bib |
DOI |
pdf |
Abstract ]
|
This file was generated by
bibtex2html 1.98.
Book chapters
[1]
|
I. Markovsky, A. Fazzi, and N. Guglielmi.
Applications of polynomial common factor computation in signal
processing.
In Latent Variable Analysis and Signal Separation, Lecture
Notes in Computer Science, pages 99--106. Springer, 2018.
[ bib |
DOI |
pdf |
Abstract ]
|
[2]
|
I. Markovsky and P.-L. Dragotti.
Using structured low-rank approximation for sparse signal recovery.
In Latent Variable Analysis and Signal Separation, Lecture
Notes in Computer Science, pages 479--487. Springer, 2018.
[ bib |
DOI |
pdf |
software |
Abstract ]
|
[3]
|
G. Hollander, P. Dreesen, M. Ishteva, and J. Schoukens.
An initialization method for nonlinear model reduction.
In Latent Variable Analysis and Signal Separation, volume 10169
of Lecture Notes on Computer Science, pages 111--120. 2017.
[ bib ]
|
[4]
|
P. Dreesen, D. T. Westwick, J. Schoukens, and M. Ishteva.
Modeling parallel Wiener-Hammerstein systems using tensor
decomposition of Volterra kernels.
In Latent Variable Analysis and Signal Separation, volume 10169
of Lecture Notes in Computer Science, pages 16--25. 2017.
[ bib ]
|
[5]
|
P. Dreesen, T. Goossens, M. Ishteva, L. De Lathauwer, and J. Schoukens.
Block-decoupling multivariate polynomials using the tensor block-term
decomposition.
In E. Vincent, A. Yeredor, Z. Koldovský, and P. Tichavský,
editors, Latent Variable Analysis and Signal Separation, volume 9237 of
Lecture Notes in Computer Science, pages 14--21. Springer, 2015.
[ bib |
DOI |
pdf |
http ]
|
This file was generated by
bibtex2html 1.98.
Technical reports
[1]
|
K. Usevich and I. Markovsky.
Software package for mosaic-hankel structured low-rank approximation.
Technical report, Dept. ELEC, Vrije Universiteit Brussel, 2017.
[ bib |
.pdf |
Abstract ]
|
This file was generated by
bibtex2html 1.98.
|