I. Markovsky, J. C. Willems, S. Van Huffel, and B. De Moor.
Exact and Approximate Modeling of Linear Systems: A Behavioral
Approach.
SIAM, 2006.
[ bib |
DOI |
pdf |
software |
Abstract ]
A. Fazzi, A. Kukush, and I. Markovsky.
Bias correction for Vandermonde low-rank approximation.
Econometrics and Statistics, 31:38--48, 2024.
[ bib |
DOI |
Abstract ]
I. Markovsky and H. Ossareh.
Finite-data nonparametric frequency response evaluation without
leakage.
Automatica, 159:111351, 2024.
[ bib |
DOI |
pdf |
software |
Abstract ]
M. Alsalti, I. Markovsky, V. G. Lopez, and M. A. Müller.
Data-based system representations from irregularly measured data.
IEEE Trans. Automat. Contr., 2024.
[ bib |
DOI |
pdf ]
I. Markovsky, M. Alsalti, V. G. Lopez, and M. A. Müller.
Identification from data with periodically missing output samples.
Automatica, 169:111869, 2024.
[ bib |
DOI |
pdf ]
J. Wang, L. Hemelhof, I. Markovsky, and P. Patrinos.
A trust-region method for data-driven iterative learning control of
nonlinear systems.
Control Systems Letters, 8:1847--1852, 2024.
[ bib |
DOI |
pdf ]
F. Dörfler, J. Coulson, and I. Markovsky.
Bridging direct & indirect data-driven control formulations via
regularizations and relaxations.
IEEE Trans. Automat. Contr., 68:883--897, 2023.
[ bib |
DOI |
pdf |
Abstract ]
I. Markovsky.
Data-driven simulation of generalized bilinear systems via linear
time-invariant embedding.
IEEE Trans. Automat. Contr., 68:1101--1106, 2023.
[ bib |
DOI |
pdf |
software |
Abstract ]
I. Markovsky and F. Dörfler.
Identifiability in the behavioral setting.
IEEE Trans. Automat. Contr., 68:1667--1677, 2023.
[ bib |
DOI |
pdf |
software |
Abstract ]
I. Markovsky, L. Huang, and F. Dörfler.
Data-driven control based on behavioral approach: From theory to
applications in power systems.
IEEE Control Systems Magazine, 43:28--68, 2023.
[ bib |
DOI |
pdf |
software |
Abstract ]
A. Fazzi and I. Markovsky.
Addition and intersection of linear time-invariant behaviors.
IFAC Journal of Systems and Control, 26:100233, 2023.
[ bib |
DOI |
Abstract ]
A. Fazzi, B. Grossmann, G. Mercère, and I. Markovsky.
Mimo system identification using common denominator and numerators
with known degrees.
International Journal of Adaptive Control and Signal
Processing, 36(4):870--881, 2022.
[ bib |
DOI |
.pdf |
Abstract ]
A. Fazzi, N. Guglielmi, and I. Markovsky.
A gradient system approach for Hankel structured low-rank
approximation.
Linear Algebra Appl., 623:236--257, 2021.
[ bib |
DOI |
pdf |
Abstract ]
V. Mishra and I. Markovsky.
The set of linear time-invariant unfalsified models with bounded
complexity is affine.
IEEE Trans. Automat. Contr., 66:4432--4435, 2021.
[ bib |
DOI |
pdf |
Abstract ]
A. Fazzi, N. Guglielmi, and I. Markovsky.
Generalized algorithms for the approximate matrix polynomial GCD of
reducing data uncertainties with application to MIMO system and control.
J. Comput. Appl. Math., 393:113499, 2021.
[ bib |
DOI |
pdf |
Abstract ]
I. Markovsky and F. Dörfler.
Behavioral systems theory in data-driven analysis, signal processing,
and control.
Annual Reviews in Control, 52:42--64, 2021.
[ bib |
DOI |
pdf |
Abstract ]
G. Q. Carapia, I. Markovsky, R. Pintelon, P. Csurcsia, and D. Verbeke.
Experimental validation of a data-driven step input estimation method
for dynamic measurements.
IEEE Transactions on Instrumentation and Measurement,
69:4843--4851, 2020.
[ bib |
DOI |
pdf |
Abstract ]
G. Q. Carapia, I. Markovsky, R. Pintelon, P. Csurcsia, and D. Verbeke.
Bias and covariance of the least squares estimate in a structured
errors-in-variables problem.
Comput. Statist. Data Anal., 144:106893, 2020.
[ bib |
DOI |
pdf |
Abstract ]
G. Q. Carapia and I. Markovsky.
Input parameters estimation from time-varying measurements.
Measurement, 153:107418, 2020.
[ bib |
DOI |
pdf |
Abstract ]
I. Markovsky, T. Liu, and A. Takeda.
Data-driven structured noise filtering via common dynamics
estimation.
IEEE Trans. Signal Process., 68:3064--3073, 2020.
[ bib |
DOI |
pdf |
software |
Abstract ]
V. Mishra, I. Markovsky, and B. Grossmann.
Data-driven tests for controllability.
Control Systems Letters, 5:517--522, 2020.
[ bib |
DOI |
pdf |
Abstract ]
T. Liu, I. Markovsky, T.-K. Pong, and A. Takeda.
A hybrid penalty method for a class of optimization problems with
multiple rank constraints.
SIAM J. Matrix Anal. Appl., 41:1260--1283, 2020.
[ bib |
DOI |
pdf |
Abstract ]
M. Zhang, I. Markovsky, C. Schretter, and J. D'hooge.
Compressed ultrasound signal reconstruction using a low-rank and
joint-sparse representation model.
Transactions on Ultrasonics, Ferroelectrics, and Frequency
Control, 66:1232--1245, 2019.
[ bib |
DOI |
pdf |
Abstract ]
A. Fazzi, N. Guglielmi, and I. Markovsky.
An ODE based method for computing the approximate greatest common
divisor of polynomials.
Numerical algorithms, 81:719--740, 2018.
[ bib |
DOI |
pdf |
Abstract ]
K. Usevich and I. Markovsky.
Variable projection methods for approximate (greatest) common divisor
computations.
Theoretical Computer Science, 681:176--198, 2017.
[ bib |
DOI |
pdf |
Abstract ]
I. Markovsky.
A missing data approach to data-driven filtering and control.
IEEE Trans. Automat. Contr., 62:1972--1978, 2017.
[ bib |
DOI |
pdf |
software |
Abstract ]
I. Markovsky and G. Mercère.
Subspace identification with constraints on the impulse response.
Int. J. Contr., 90:1728--1735, 2017.
[ bib |
DOI |
pdf |
software |
Abstract ]
N. Guglielmi and I. Markovsky.
An ODE based method for computing the distance of co-prime
polynomials to common divisibility.
SIAM Journal on Numerical Analysis, 55:1456--1482, 2017.
[ bib |
DOI |
pdf |
software |
Abstract ]
K. Usevich and I. Markovsky.
Adjusted least squares fitting of algebraic hypersurfaces.
Linear Algebra Appl., 502:243--274, 2016.
[ bib |
DOI |
pdf |
Abstract ]
I. Markovsky.
On the most powerful unfalsified model for data with missing values.
Systems & Control Lett., 95:53--61, 2016.
[ bib |
DOI |
pdf |
software |
Abstract ]
I. Markovsky.
Comparison of adaptive and model-free methods for dynamic
measurement.
IEEE Signal Proc. Lett., 22(8):1094--1097, 2015.
[ bib |
DOI |
pdf |
software |
Abstract ]
I. Markovsky and R. Pintelon.
Identification of linear time-invariant systems from multiple
experiments.
IEEE Trans. Signal Process., 63(13):3549--3554, 2015.
[ bib |
DOI |
pdf |
Abstract ]
K. Usevich and I. Markovsky.
Variable projection for affinely structured low-rank approximation in
weighted 2-norms.
J. Comput. Appl. Math., 272:430--448, 2014.
[ bib |
DOI |
pdf |
software |
Abstract ]
I. Markovsky and K. Usevich.
Software for weighted structured low-rank approximation.
J. Comput. Appl. Math., 256:278--292, 2014.
[ bib |
DOI |
pdf |
software |
Abstract ]
I. Markovsky.
Recent progress on variable projection methods for structured
low-rank approximation.
Signal Processing, 96PB:406--419, 2014.
[ bib |
DOI |
pdf |
software |
Abstract ]
K. Usevich and I. Markovsky.
Optimization on a Grassmann manifold with application to system
identification.
Automatica, 50:1656--1662, 2014.
[ bib |
DOI |
pdf |
software |
Abstract ]
I. Markovsky, J. Goos, K. Usevich, and R. Pintelon.
Realization and identification of autonomous linear periodically
time-varying systems.
Automatica, 50:1632--1640, 2014.
[ bib |
DOI |
pdf |
software |
Abstract ]
M. Ishteva, K. Usevich, and I. Markovsky.
Factorization approach to structured low-rank approximation with
applications.
SIAM J. Matrix Anal. Appl., 35(3):1180--1204, 2014.
[ bib |
DOI |
pdf |
software |
Abstract ]
S. Rhode, K. Usevich, I. Markovsky, and F. Gauterin.
A recursive restricted total least-squares algorithm.
IEEE Trans. Signal Process., 62(21):5652--5662, 2014.
[ bib |
DOI |
pdf |
software |
Abstract ]
I. Markovsky and K. Usevich.
Structured low-rank approximation with missing data.
SIAM J. Matrix Anal. Appl., 34(2):814--830, 2013.
[ bib |
DOI |
pdf |
software |
Abstract ]
I. Markovsky.
A software package for system identification in the behavioral
setting.
Control Eng. Practice, 21:1422--1436, 2013.
[ bib |
DOI |
pdf |
software |
Abstract ]
F. Le, I. Markovsky, C. Freeman, and E. Rogers.
Recursive identification of Hammerstein systems with application to
electrically stimulated muscle.
Control Eng. Practice, 20(4):386--396, 2012.
[ bib |
DOI |
pdf |
Abstract ]
I. Markovsky.
On the complex least squares problem with constrained phase.
SIAM J. Matrix Anal. Appl., 32(3):987--992, 2011.
[ bib |
DOI |
pdf |
software |
Abstract ]
I. Markovsky, D. Sima, and S. Van Huffel.
Total least squares methods.
Wiley Interdisciplinary Reviews: Comput. Stat., 2(2):212--217,
2010.
[ bib |
DOI |
pdf |
Abstract ]
F. Le, I. Markovsky, C. Freeman, and E. Rogers.
Identification of electrically stimulated muscle models of stroke
patients.
Control Eng. Practice, 18(4):396--407, 2010.
[ bib |
DOI |
pdf |
Abstract ]
I. Markovsky and S. Mahmoodi.
Least-squares contour alignment.
IEEE Signal Proc. Letters, 16(1):41--44, 2009.
[ bib |
DOI |
pdf |
software |
Abstract ]
I. Markovsky and M. Niranjan.
Approximate low-rank factorization with structured factors.
Comput. Statist. Data Anal., 54:3411--3420, 2008.
[ bib |
DOI |
pdf |
software |
http |
Abstract ]
S. Shklyar, A. Kukush, I. Markovsky, and S. Van Huffel.
On the conic section fitting problem.
Journal of Multivariate Analysis, 98:588--624, 2007.
[ bib |
DOI |
pdf |
Abstract ]
I. Markovsky and S. Van Huffel.
Left vs right representations for solving weighted low rank
approximation problems.
Linear Algebra Appl., 422:540--552, 2007.
[ bib |
DOI |
pdf |
software |
Abstract ]
M. Schuermans, I. Markovsky, and S. Van Huffel.
An adapted version of the element-wise weighted TLS method for
applications in chemometrics.
Chemometrics and Intelligent Laboratory Systems, 85(1):40--46,
2007.
[ bib |
DOI |
pdf |
Abstract ]
A. Kukush, I. Markovsky, and S. Van Huffel.
Estimation in a linear multivariate measurement error model with a
change point in the data.
Comput. Statist. Data Anal., 52(2):1167--1182, 2007.
[ bib |
DOI |
pdf |
Abstract ]
I. Markovsky, M. Rastello, A. Premoli, A. Kukush, and S. Van Huffel.
The element-wise weighted total least squares problem.
Comput. Statist. Data Anal., 50(1):181--209, 2005.
[ bib |
DOI |
pdf |
software |
Abstract ]
A. Kukush, I. Markovsky, and S. Van Huffel.
Consistency of the structured total least squares estimator in a
multivariate errors-in-variables model.
J. Statist. Plann. Inference, 133(2):315--358, 2005.
[ bib |
DOI |
pdf |
Abstract ]
I. Markovsky, S. Van Huffel, and R. Pintelon.
Block-Toeplitz/Hankel structured total least squares.
SIAM J. Matrix Anal. Appl., 26(4):1083--1099, 2005.
[ bib |
DOI |
pdf |
software |
Abstract ]
I. Markovsky, J. C. Willems, P. Rapisarda, and B. De Moor.
Algorithms for deterministic balanced subspace identification.
Automatica, 41(5):755--766, 2005.
[ bib |
DOI |
pdf |
software |
Abstract ]
I. Markovsky, J. C. Willems, S. Van Huffel, B. De Moor, and R. Pintelon.
Application of structured total least squares for system
identification and model reduction.
IEEE Trans. Automat. Contr., 50(10):1490--1500, 2005.
[ bib |
DOI |
pdf |
software |
Abstract ]
J. C. Willems, P. Rapisarda, I. Markovsky, and B. De Moor.
A note on persistency of excitation.
Systems & Control Lett., 54(4):325--329, 2005.
[ bib |
DOI |
pdf |
Abstract ]
I. Markovsky and S. Van Huffel.
High-performance numerical algorithms and software for structured
total least squares.
J. Comput. Appl. Math., 180(2):311--331, 2005.
[ bib |
DOI |
pdf |
software |
Abstract ]
M. Schuermans, I. Markovsky, P. Wentzell, and S. Van Huffel.
On the equivalence between total least squares and maximum likelihood
PCA.
Analytica Chimica Acta, 544(1--2):254--267, 2005.
[ bib |
DOI |
pdf |
Abstract ]
A. Kukush, I. Markovsky, and S. Van Huffel.
Consistent estimation in an implicit quadratic measurement error
model.
Comput. Statist. Data Anal., 47(1):123--147, 2004.
[ bib |
DOI |
pdf |
software |
Abstract ]
I. Markovsky, A. Kukush, and S. Van Huffel.
Consistent least squares fitting of ellipsoids.
Numerische Mathematik, 98(1):177--194, 2004.
[ bib |
DOI |
pdf |
software |
Abstract ]
I. Markovsky, S. Van Huffel, and A. Kukush.
On the computation of the structured total least squares estimator.
Numer. Linear. Algebra Appl., 11:591--608, 2004.
[ bib |
DOI |
pdf |
software |
Abstract ]
A. Kukush, I. Markovsky, and S. Van Huffel.
Consistent estimation in the bilinear multivariate
errors-in-variables model.
Metrika, 57(3):253--285, 2003.
[ bib |
DOI |
pdf |
Abstract ]
A. Kukush, I. Markovsky, and S. Van Huffel.
Consistent fundamental matrix estimation in a quadratic measurement
error model arising in motion analysis.
Comput. Statist. Data Anal., 41(1):3--18, 2002.
[ bib |
DOI |
pdf |
Abstract ]
A. Fazzi, K. Usevich, and I. Markovsky.
Implementation improvements and extensions of an ode-based algorithm
for structured low-rank approximation.
Calcolo.
[ bib ]
J. Wang, L. Hemelhof, I. Markovsky, and P. Patrinos.
A trust-region method for data-driven iterative learning control of
nonlinear systems.
In Conference on Decision and Control, 2024.
[ bib |
pdf ]
L. Hemelhof, I. Markovsky, and P. Patrinos.
Data-driven output matching of output-generalized bilinear and linear
parameter-varying systems.
In European Control Conference, pages 1525--1530, 2023.
[ bib |
Abstract ]
V. Mishra, I. Markovsky, A. Fazzi, and P. Dreesen.
Data-driven simulation for NARX systems.
In Proc. of the European Association for Signal Processing,
2021.
[ bib |
DOI |
Abstract ]
I. Markovsky.
System theory without transfer functions and state-space? Yes, it's
possible!
In 60th IEEE Conference on Decision and Control, 2021.
[ bib |
DOI |
pdf |
Abstract ]
Antonio Fazzi, Nicola Guglielmi, Ivan Markovsky, and Konstantin Usevich.
Common dynamic estimation via structured low-rank approximation with
multiple rank constraints.
In 19th IFAC Symposium on System Identification, volume 54,
pages 103--107, 2021.
[ bib |
DOI |
Abstract ]
D. Verbeke and I. Markovsky.
Line spectral estimation with palyndromic kernels.
In In Proceedings of the International Conference on Acoustics,
Speech, and Signal Processing, pages 5960--5963, Barcelona, 2020.
[ bib |
DOI |
.pdf |
Abstract ]
A. Fazzi, N. Guglielmi, and I. Markovsky.
Computing common factors of matrix polynomials with applications in
system and control theory.
In Proc. of the IEEE Conf. on Decision and Control, pages
7721--7726, Nice, France, December 2019.
[ bib |
DOI |
pdf |
Abstract ]
K. Usevich and I. Markovsky.
Software package for mosaic-Hankel structured low-rank
approximation.
In Proc. of the IEEE Conf. on Decision and Control, pages
7165--7170, Nice, France, December 2019.
[ bib |
DOI |
.pdf |
Abstract ]
P. Dreesen and I. Markovsky.
Data-driven simulation using the nuclear norm heuristic.
In In Proceedings of the International Conference on Acoustics,
Speech, and Signal Processing, Brighton, UK, 2019.
[ bib |
DOI |
pdf |
Abstract ]
I. Markovsky, T. Liu, and A. Takeda.
Subspace methods for multi-channel sum-of-exponentials common
dynamics estimation.
In Proc. of the IEEE Conf. on Decision and Control, pages
2672--2675, 2019.
[ bib |
DOI |
pdf |
software |
Abstract ]
S. Formentin and I. Markovsky.
A comparison between structured low-rank approximation and
correlation approach for data-driven output tracking.
In Proc. of the IFAC Symposium on System Identification, pages
1068--1073, 2018.
[ bib |
DOI |
pdf |
Abstract ]
M. Zhang, I. Markovsky, C. Schretter, and J. D'hooge.
Ultrasound signal reconstruction from sparse samples using a low-rank
and joint-sparse model.
In In Proceedings of iTWIST'18, Paper-ID: 21, Marseille,
France, 2018.
[ bib |
DOI |
pdf |
Abstract ]
I. Markovsky, O. Debals, and L. De Lathauwer.
Sum-of-exponentials modeling and common dynamics estimation using
tensorlab.
In 20th World Congress of the International Federation of
Automatic Control, pages 14715--14720, Toulouse, France, July 2017.
[ bib |
DOI |
pdf |
Abstract ]
I. Markovsky.
Application of low-rank approximation for nonlinear system
identification.
In 25th IEEE Mediterranean Conference on Control and
Automation, pages 12--16, Valletta, Malta, July 2017.
[ bib |
DOI |
pdf |
Abstract ]
G. Mercèr, I. Markovsky, and J. Ramos.
Innovation-based subspace identification in open- and closed-loop.
In Proc. of the 55th IEEE Conference on Decision and Control,
Las Vegas, USA, December 2016.
[ bib |
DOI |
pdf |
software |
Abstract ]
I. Markovsky and N. Guglielmi.
Model order estimation based on a method for computing distance to
uncontrollability.
In Proc. of the Conference on Noise and Vibration Engineering
(ISMA), pages 2963--2970, Leuven, Belgium, September 2016.
[ bib |
pdf |
Abstract ]
I. Markovsky and R. Pintelon.
Consistent estimation of autonomous linear time-invariant systems
from multiple experiments.
In Proc. of the Conference on Noise and Vibration Engineering
(ISMA), pages 3265--3268, Leuven, Belgium, September 2014.
[ bib |
pdf |
Abstract ]
M. Ishteva and I. Markovsky.
Tensor low multilinear rank approximation by structured matrix
low-rank approximation.
In Proc. of the 21st International Symposium on Mathematical
Theory of Networks and Systems, pages 1808--1812, Groningen, The
Netherlands, July 2014.
[ bib |
pdf |
Abstract ]
I. Markovsky.
Approximate identification with missing data.
In Proc. of the 52nd IEEE Conference on Decision and Control,
pages 156--161, Florence, Italy, December 2013.
[ bib |
DOI |
pdf |
software |
Abstract ]
I. Markovsky.
Exact identification with missing data.
In Proc. of the 52nd IEEE Conference on Decision and Control,
pages 151--155, Florence, Italy, 2013.
[ bib |
DOI |
pdf |
software |
Abstract ]
I. Markovsky.
Dynamical systems and control mindstorms.
In Proc. 20th Mediterranean Conf. on Control and Automation,
pages 54--59, Barcelona, 2012.
[ bib |
DOI |
pdf |
Abstract ]
K. Usevich and I. Markovsky.
Structured low-rank approximation as a rational function
minimization.
In Proc. of the 16th IFAC Symposium on System Identification,
pages 722--727, Brussels, 2012.
[ bib |
DOI |
pdf |
Abstract ]
I. Markovsky.
How effective is the nuclear norm heuristic in solving data
approximation problems?
In Proc. of the 16th IFAC Symposium on System Identification,
pages 316--321, Brussels, 2012.
[ bib |
DOI |
pdf |
software |
Abstract ]
F. Le, I. Markovsky, C. Freeman, and E. Rogers.
Recursive identification of Hammerstein structure.
In Proc. of the 18th IFAC World Congress, volume 44, pages
13954--13959, Milano, Italy, August 2011.
[ bib |
DOI ]
F. Le, I. Markovsky, C. Freeman, and E. Rogers.
Online identification of electrically stimulated muscle models.
In Proc. of the American Control Conference (ACC), pages
90--95, San Francisco, USA, June 2011.
[ bib |
DOI ]
F. Le, I. Markovsky, C. Freeman, and E. Rogers.
Identification of electrically stimulated muscle after stroke.
In European Control Conference, pages 1576--1581, Budapest,
Hungary, August 2009.
[ bib |
DOI ]
I. Markovsky.
An algorithm for closed-loop data-driven simulation.
In 15th IFAC Symposium on System Identification, pages
114--115, Saint-Malo, France, July 2009.
[ bib |
DOI |
pdf |
software |
Abstract ]
I. Markovsky.
Applications of structured low-rank approximation.
In 15th IFAC Symposium on System Identification, pages
1121--1126, Saint-Malo, France, July 2009.
[ bib |
DOI ]
M. Przedwojski, I. Markovsky, and E. Rogers.
Identifiability of clock synchronization errors: a behavioural
approach.
In 48th IEEE Conf. on Decision and Control, pages 8095--8100,
Shanghai, China, 2009.
[ bib |
DOI |
pdf |
Abstract ]
I. Markovsky, A. Amann, and S. Van Huffel.
Application of filtering methods for removal of resuscitation
artifacts from human ECG signals.
In Proc. of the 30th Conf. of IEEE Eng. in Medicine and Biology
Soc. (EMBS), pages 13--16, Vancouver, Canada, August 2008.
[ bib |
DOI |
pdf |
Abstract ]
P. Rapisarda and I. Markovsky.
Why "state" feedback?
In Proc. of the 17th IFAC World Congress, pages 12285--12290,
Seoul, Korea, July 2008.
[ bib |
DOI |
pdf |
Abstract ]
I. Markovsky and S. Rao.
Palindromic polynomials, time-reversible systems, and conserved
quantities.
In 16th Mediterranean Conf. on Control and Automation, pages
125--130, Ajaccio, France, June 2008.
[ bib |
DOI |
pdf |
Abstract ]
I. Markovsky and P. Rapisarda.
On the linear quadratic data-driven control.
In Proc. of the European Control Conf., pages 5313--5318, Kos,
Greece, July 2007.
[ bib |
DOI |
pdf |
Abstract ]
I. Markovsky, J. C. Willems, and B. De Moor.
Software for exact linear system identification.
In Proc. of the 17th Symp. on Math. Theory of Networks and
Systems, pages 1475--1483, Kyoto, Japan, 2006.
[ bib |
DOI |
pdf |
software |
Abstract ]
I. Markovsky, A. Kukush, and S. Van Huffel.
On errors-in-variables estimation with unknown noise variance ratio.
In Proc. of the 14th IFAC Symp. on System Identification, pages
172--177, Newcastle, Australia, 2006.
[ bib |
DOI |
pdf |
Abstract ]
I. Markovsky, J. C. Willems, and B. De Moor.
Recursive computation of the most powerful unfalsified model.
In In Proc. of the of the 14th IFAC Symp. on System
Identification, pages 588--593, Newcastle, Australia, 2006.
[ bib |
DOI |
software |
.ps.gz |
Abstract ]
J. C. Willems, I. Markovsky, and B. De Moor.
State construction in subspace identification.
In Proc. of the 14th IFAC Symposium on System Identification,
pages 303--308, Newcastle, Australia, 2006.
[ bib |
DOI |
.ps.gz |
Abstract ]
I. Markovsky, J. C. Willems, and B. De Moor.
Comparison of identification algorithms on the database for system
identification DAISY.
In Proc. of the 17th Symp. on Math. Theory of Networks and
Systems, pages 2858--2869, Kyoto, Japan, 2006.
[ bib |
pdf ]
I. Markovsky and S. Van Huffel.
An algorithm for approximate common divisor computation.
In Proc. of the 17th Symp. on Math. Theory of Networks and
Systems, pages 274--279, Kyoto, Japan, 2006.
[ bib |
pdf ]
I. Markovsky, J. C. Willems, and B. De Moor.
The module structure of ARMAX systems.
In Proc. of the 41st Conf. on Decision and Control, pages
811--816, San Diego, USA, 2006.
[ bib |
DOI |
.ps.gz |
Abstract ]
I. Markovsky, J. Boets, B. Vanluyten, K. De Cock, and B. De Moor.
When is a pole spurious?
In Proc. of the International Conf. on Noise and Vibration
Engineering, pages 1615--1626, Leuven, Belgium, 2006.
[ bib |
.ps.gz |
Abstract ]
I. Markovsky, J. C. Willems, P. Rapisarda, and B. De Moor.
Data driven simulation with applications to system identification.
In Proc. of the 16th IFAC World Congress, Prague, Czech
Republic, 2005.
[ bib |
DOI |
pdf |
software ]
I. Markovsky, J. C. Willems, and B. De Moor.
State representations from finite time series.
In Proc. of the 44th Conf. on Decision and Control, pages
832--835, Seville, Spain, 2005.
[ bib |
DOI |
pdf ]
I. Markovsky, J. C. Willems, S. Van Huffel, and B. De Moor.
Software for approximate linear system identification.
In Proc. of the 44th Conf. on Decision and Control, pages
1559--1564, Seville, Spain, 2005.
[ bib |
DOI |
pdf |
software ]
I. Markovsky, S. Van Huffel, and B. De Moor.
H2-optimal linear parametric design.
In Proc. of the 16th Int. Symp. on Math. Theory of Networks and
Systems, 2004.
[ bib |
DOI |
software |
.pdf ]
I. Markovsky, J. C. Willems, S. Van Huffel, B. De Moor, and R. Pintelon.
Application of structured total least squares for system
identification.
In Proc. of the 43rd Conf. on Decision and Control, pages
3382--3387, Atlantis, Paradise Island, Bahamas, 2004.
[ bib |
DOI |
pdf ]
J. C. Willems, I. Markovsky, P. Rapisarda, and B. De Moor.
A note on persistency of excitation.
In Proc. of the 43rd Conf. on Decision and Control, pages
2630--2631, Atlantis, Paradise Island, Bahamas, 2004.
[ bib |
DOI |
pdf ]
I. Markovsky and B. De Moor.
Linear dynamic filtering with noisy input and output.
In Proc. of the 13th IFAC Symp. on System Identification, pages
1749--1754, Rotterdam, The Netherlands, 2003.
[ bib |
DOI |
pdf ]
I. Markovsky, S. Van Huffel, and B. De Moor.
Multi-model system parameter estimation.
In CD-ROM proceedings of IEEE Int. Conf. on Systems, Man, and
Cybernetics, 2002.
[ bib |
DOI |
pdf ]
I. Markovsky, J. C. Willems, and B. De Moor.
Continuous-time errors-in-variables filtering.
In Proc. of the 41st Conf. on Decision and Control, pages
2576--2581, Las Vegas, NV, 2002.
[ bib |
DOI |
pdf ]
I. Markovsky.
Dynamic measurement.
In Data-driven filtering and control design: Methods and
applications, chapter 6, pages 97--108. IET, 2019.
[ bib |
DOI |
pdf |
Abstract ]
I. Markovsky, A. Fazzi, and N. Guglielmi.
Applications of polynomial common factor computation in signal
processing.
In Latent Variable Analysis and Signal Separation, Lecture
Notes in Computer Science, pages 99--106. Springer, 2018.
[ bib |
DOI |
pdf |
Abstract ]
I. Markovsky and P.-L. Dragotti.
Using structured low-rank approximation for sparse signal recovery.
In Latent Variable Analysis and Signal Separation, Lecture
Notes in Computer Science, pages 479--487. Springer, 2018.
[ bib |
DOI |
pdf |
software |
Abstract ]
I. Markovsky.
System identification in the behavioral setting: A structured
low-rank approximation approach.
In E. Vincent et al., editors, Latent Variable Analysis and
Signal Separation, volume 9237 of Lecture Notes in Computer Science,
pages 235--242. Springer, 2015.
[ bib |
DOI |
pdf |
Abstract ]
I. Markovsky.
Rank constrained optimization problems in computer vision.
In A. Argyriou J. Suykens, M. Signoretto, editor,
Regularization, Optimization, Kernels, and Support Vector Machines, Pattern
Recognition, chapter 13, pages 293--312. Chapman & Hall/CRC Machine
Learning, 2014.
[ bib |
DOI |
pdf ]
I. Markovsky and K. Usevich.
Nonlinearly structured low-rank approximation.
In Yun Raymond Fu, editor, Low-Rank and Sparse Modeling for
Visual Analysis, pages 1--22. Springer, 2014.
[ bib |
DOI |
pdf |
Abstract ]
I. Markovsky.
Algorithms and literate programs for weighted low-rank approximation
with missing data.
volume 3, chapter 12, pages 255--273. Springer, 2011.
[ bib |
DOI |
pdf |
software ]
I. Markovsky, A. Amann, and S. Van Huffel.
Application of filtering methods for removal of resuscitation
artifacts from human ECG signals.
In L. Wang, H. Garnier, and T. Jakeman, editors, System
Identification, Environmental Modelling, and Control System Design.
Springer, 2009.
[ bib |
DOI |
pdf |
software ]
I. Markovsky and S. Van Huffel.
On weighted structured total least squares.
In I. Lirkov, S. Margenov, and J. Waśniewski, editors,
Large-Scale Scientific Computing, volume 3743 of Lecture Notes in
Computer Science, pages 695--702. Springer--Verlag, 2006.
[ bib |
DOI |
pdf ]
A. Kukush, I. Markovsky, and S. Van Huffel.
Consistent estimation of an ellipsoid with known center.
In J. Antoch, editor, Comput. Stat. (COMPSTAT), pages
1369--1376. Physica--Verlag, 2004.
[ bib |
DOI |
.ps.gz ]
A. Kukush, I. Markovsky, and S. Van Huffel.
On consistent estimators in linear and bilinear multivariate
errors-in-variables models.
In S. Van Huffel and P. Lemmerling, editors, Total Least
Squares and Errors-in-Variables Modeling: Analysis, Algorithms and
Applications, pages 155--164. Kluwer, 2002.
[ bib |
DOI |
.ps.gz |
Abstract ]
I. Markovsky.
Project-based teaching: A case study of learning systems theory
andsignal processing by a dynamic measurements project.
Technical report, CIMNE, 2024.
[ bib |
.pdf ]
I. Markovsky, C. Verhoek, and R. Tóth.
The most powerful unfalsified linear parameter-varying model with
shifted-affine scheduling dependence.
Technical report, CIMNE, 2024.
[ bib |
.pdf ]
N. Guglielmi and I. Markovsky.
Computing the distance to uncontrollability: the SISO case.
Technical report, Vrije Univ. Brussel, 2014.
[ bib |
pdf |
Abstract ]
I. Markovsky and K. Usevich.
SLRA: a package for weighted mosaic Hankel structured low-rank
approximation with interfaces to MATLAB/Octave and R.
https://github.com/slra/slra, 2012.
[ bib ]
I. Markovsky.
Results on the PASCAL challenge “Simple causal effects in time
series”.
Technical Report 16779, ECS, Univ. of Southampton, 2008.
[ bib |
pdf |
software ]
I. Markovsky, R. J. Vaccaro, and S. Van Huffel.
System identification by optimal subspace estimation.
Technical Report 06--210, Dept. EE, K.U.Leuven, 2006.
[ bib |
.ps.gz ]
I. Markovsky and S. Van Huffel.
A Matlab toolbox for weighted total least squares approximation.
Technical Report 04--220, Dept. EE, K.U.Leuven, 2004.
[ bib |
.ps.gz ]
I. Markovsky, J. C. Willems, P. Rapisarda, and B. De Moor.
Algorithms for deterministic balanced subspace identification.
Technical Report 04--13, Dept. EE, K.U.Leuven, 2004.
[ bib |
.ps.gz ]
I. Markovsky and S. Van Huffel.
Software for structured total least squares estimation: User's guide.
Technical Report 03--136, Dept. EE, K.U.Leuven, 2003.
[ bib |
.ps.gz ]
A. Kukush, I. Markovsky, and S. Van Huffel.
About the convergence of the computational algorithm for the EW-TLS
estimator.
Technical Report 02--49, Dept. EE, K.U.Leuven, 2002.
[ bib |
.ps.gz ]
I. Markovsky, J. Suykens, and S. Van Huffel.
Linear parametric design: Approximation, estimation and control.
Technical Report 01--39, Dept. EE, K.U.Leuven, December 2000.
[ bib |
.ps.gz ]
S. Van Huffel, I. Markovsky, R. J. Vaccaro, and T. Söderström.
Guest editorial: Total least squares and errors-in-variables
modeling.
Signal Proc., 87(10):2281--2282, October 2007.
[ bib ]